"Unitarity Triangle Measurements"

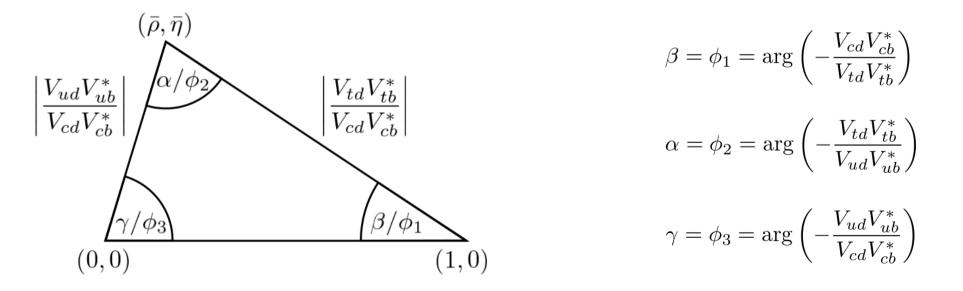
Markus Röhrken

Institute of Experimental Nuclear Physics

Karlsruhe Institute of Technology

on behalf of the Belle collaboration

Beauty 2011, Amsterdam, April 4-8, 2011


CKM Quark Mixing Matrix and the Unitarity Triangle

• Wolfenstein parametrization (expansion in powers of $\lambda \approx 0.22$) of the unitary CKM matrix:

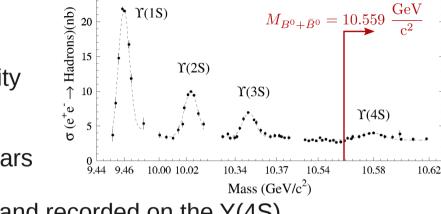
$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 \left(\rho - i\eta\right) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3 \left(1 - \rho - i\eta\right) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}\left(\lambda^4\right)$$

3 real parameters (A, λ , ρ) + 1 complex phase (η) \rightarrow irreducible phase causes CP violation

• Unitarity of matrix imposes 6 relations, e.g. $V_{td}V_{tb}^* + V_{cd}V_{cb}^* + V_{ud}V_{ub}^* = 0$, which can be representated as triangles in the complex plane.

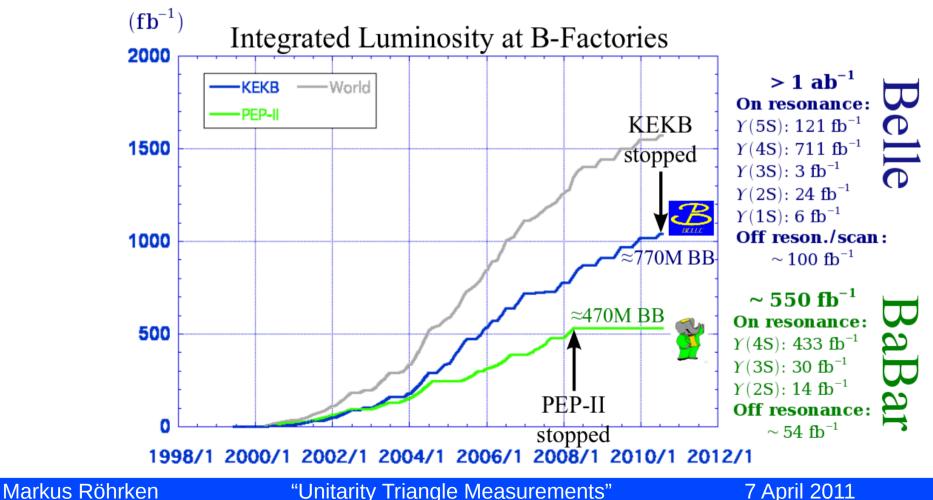
Experimental determination of the angles is closely related to measurements of CP asymmetries. This has been a key objective of the B-factories BaBar and Belle.

Markus Röhrken

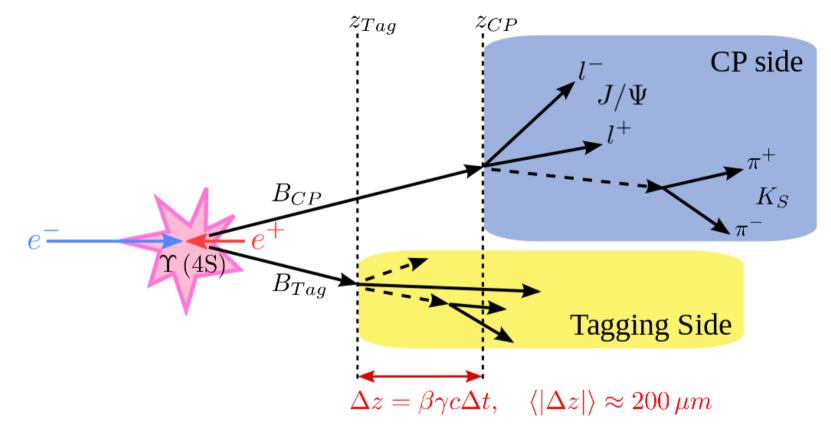

"Unitarity Triangle Measurements"

7 April 2011

1/14

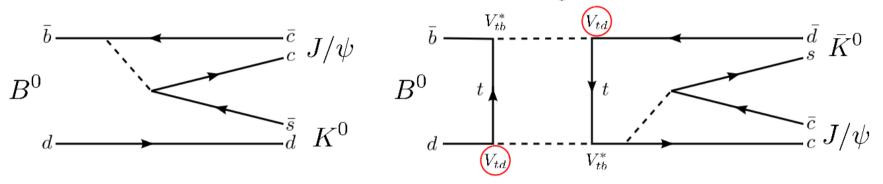

Data collected at the B-factories

- Belle set a world record in instantaneous luminosity of 2.11×10³⁴ cm⁻²s⁻¹
- BaBar and Belle have collected >1.5 ab^{-1} in 10 years



25

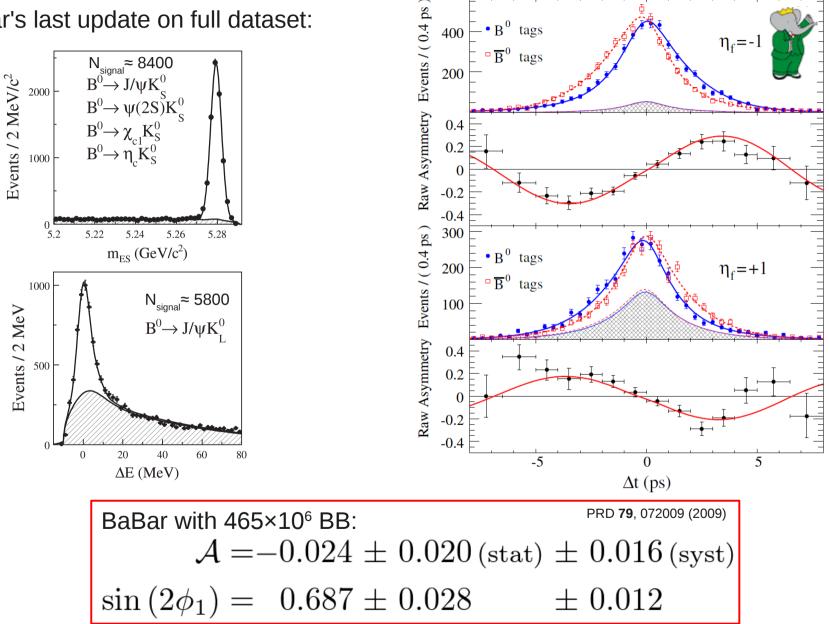
• This corresponds to ≈1200×10⁶ BB pairs created and recorded on the Y(4S)

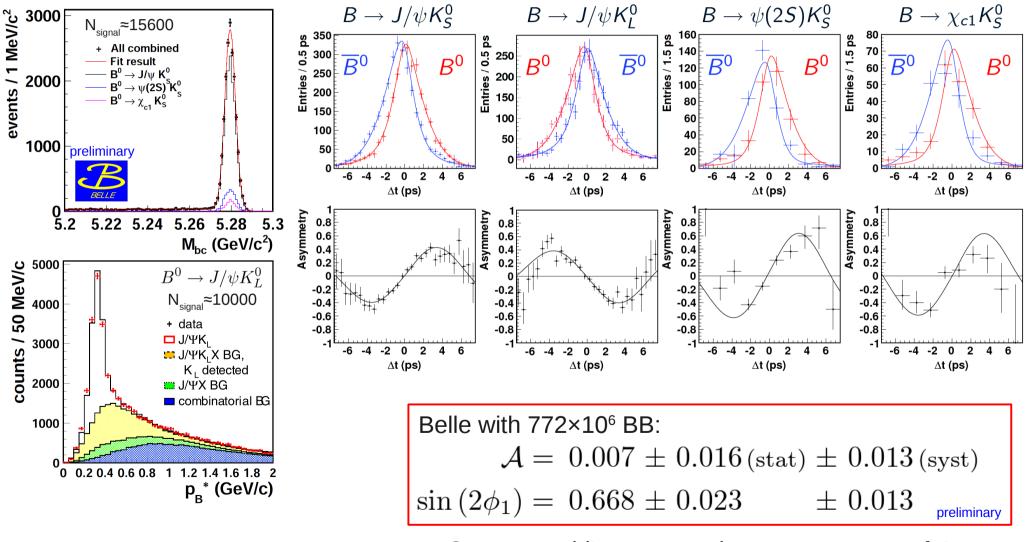

Principle of Time-dependent CP Violation Measurements

• Time-dependent CP asymmetry:

Markus Röhrken

- Φ_1 can in principle be obtained from decays involving $b \rightarrow c\overline{c}s$, $b \rightarrow c\overline{c}d$, $b \rightarrow c\overline{u}d$ or $b \rightarrow sq\overline{q}$.
- $B^0 \rightarrow J/\psi$ K⁰ is the "golden mode" for determination of Φ_1 :

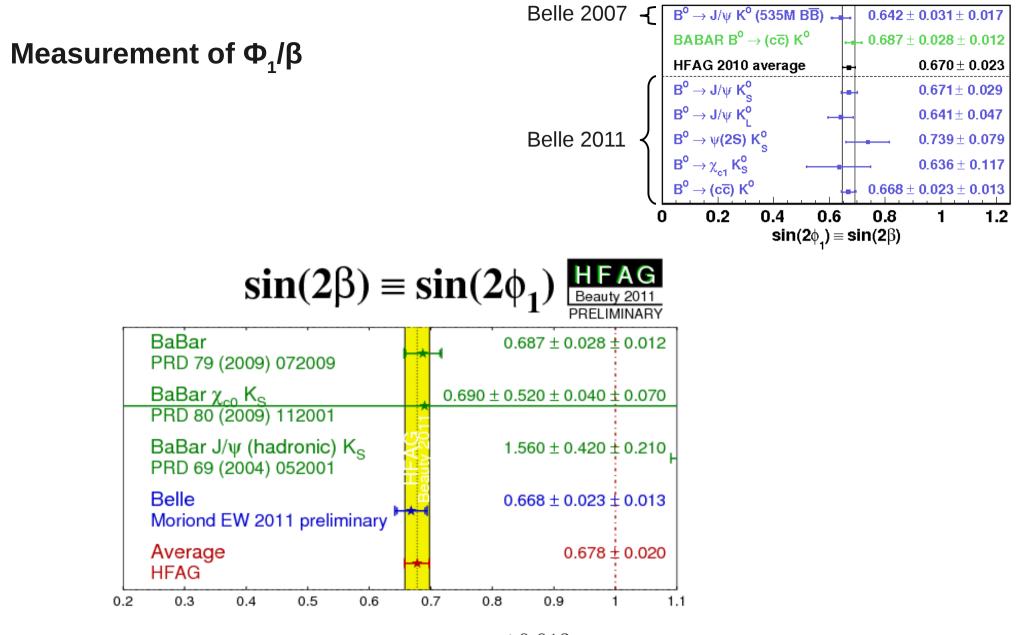



- Φ_1 determination from $B^0 \rightarrow J/\psi K^0$ decays is clean:
 - Decay is dominated by only one tree amplitude with real CKM elements, possible gluonic penguins have same weak phase and are small.
 - \circ Mixing vertices V_{td} introduce phase, which leads to $\lambda_{J/\psi K^0} = \xi_f e^{-i2\phi_1}$

$$\longrightarrow S_{J/\Psi K^0} = -\xi_f \sin(2\phi_1)$$
 and $A_{J/\psi K^0} = 0$

 Φ_1 can be precisely determined from the time-dependent CP asymmetry $A_{CP_{J/\Psi K^0}}(\Delta t) = -\xi_f \sin(2\phi_1) \sin(\Delta m \Delta t)$

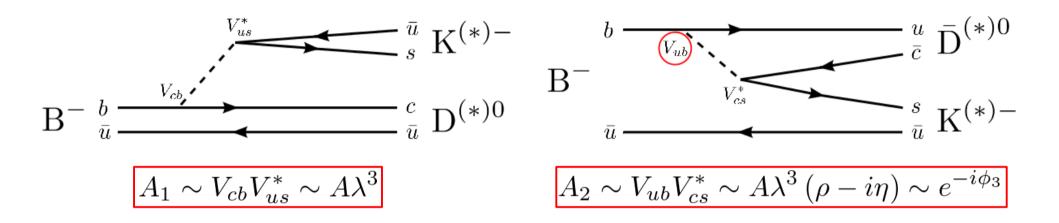
BaBar's last update on full dataset:



Belle's update on full dataset (preliminary):

Current world's most precise measurement of Φ_1

7 April 2011


6/14

Indirect estimation: $\sin(2\phi_1) = 0.830^{+0.013}_{-0.034}$ (global fit, CKMfitter ICHEP10)

Tension of 2.9 σ in global CKM fit is expected to reduce slightly due to new Belle result.

• Φ_3 is accessible by utilizing the interference of $b \rightarrow c$ and $b \rightarrow u$ transitions in $B^{\pm} \rightarrow D^{(*)}K^{(*)\pm}$

- Interference, if D^o and \overline{D}^o decay into common final state: $|\tilde{D}\rangle = |D^0\rangle + r_B e^{i(\pm\phi_3 + \delta_B)} |\bar{D}^0\rangle$
- Weak phase difference Φ_3 , strong phase difference δ_B and amplitude ratio

$$r_B = \left| \frac{A \left(B^- \to \bar{D}^0 K^- \right)}{A \left(B^- \to D^0 K^- \right)} \right| = \left| \frac{V_{ub} V_{cs}^*}{V_{cb} V_{us}^*} \right| \times [\text{color supp}] \approx 0.1$$

Advantage: • only tree, no penguin contributions – can provide SM anchor point

Drawback: • small branching fractions due to Cabibbo- and color-suppression • small $\rm r_{_B}$

Markus Röhrken

"Unitarity Triangle Measurements"

Three methods and their observables that can be used to determine Φ_3 in $B^{\pm} \rightarrow D^{(*)}K^{(*)\pm}$:

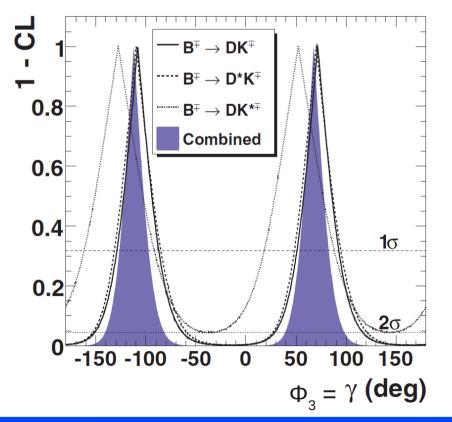
PLB **253**, 483 (1991) PLB **265**, 172 (1991) **GLW: Gronau, Wyler, London** Cabibbo-suppressed D decays to CP eigenstates, e.g. $D \rightarrow K^{+}K^{-}$ (CP-even) and $D \rightarrow K_{s}\pi^{0}$ (CP-odd) $A_{CP\pm} = \frac{2r_B \sin \delta_B \sin \phi_3}{1 + r_B^2 + 2r_B + \cos \delta_B \cos \phi_3}$ $R_{CP+} = 1 + r_B^2 + 2r_B + \cos\delta_B\cos\phi_3$ ratio charged averaged decay rates direct CP asymmetry PRL 78, 3257 (1997) PRD 63, 036005 (2001) ADS: Atwood, Dunietz, Soni Doubly Cabibbo-suppressed (e.g. $D^0 \rightarrow K^+\pi^-$) and Cabibbo-favored ($\overline{D}{}^0 \rightarrow K^+\pi^-$) D decays $\mathcal{A}_{DK} = 2r_B r_D \sin\left(\delta_B + \delta_D\right) \frac{\sin\left(\phi_3\right)}{\mathcal{R}_{DK}} \qquad \mathcal{R}_{DK} = r_B^2 + r_D^2 + 2r_B r_D \cos\left(\delta_B + \delta_D\right) \cos\left(\phi_3\right)$ direct CP asymmetry ratio suppressed to favored decay PRD 68, 054018 (2003) GGSZ: Giri, Grossman, Soffer, Zupan Dalitz analysis of multi-body D decays into self-conjugated states (e.g. $D \rightarrow K_s \pi^+\pi^-$)

Interference $M_{\pm}\left(m_{\pm}^{2}, m_{\mp}^{2}\right) = f_{D}\left(m_{\pm}^{2}, m_{\mp}^{2}\right) + r_{B}e^{i(\pm\phi_{3}+\delta_{B})}f_{D}\left(m_{\mp}^{2}, m_{\pm}^{2}\right)$ varying over Dalitz plot

GGSZ method [PRD 68, 054018 (2003)]:

• Reconstruct D in self-conjugated state like $D \to K_{_S} \pi^+ \pi^-$

$$|M_{B^+ \to DK^+} \left(m_{K_S \pi^+}^2, m_{K_S \pi^-}^2 \right)|^2 = \left| \left| \begin{array}{c} \overline{\mathbf{b}}_{\to} \overline{\mathbf{c}} \\ + r_B e^{i(+\phi_3 + \delta_B)} \end{array} \right|^2 \left| \begin{array}{c} \overline{\mathbf{b}}_{\to} \overline{\mathbf{u}} \\ + r_B e^{i(-\phi_3 + \delta_B)} \end{array} \right|^2 \left| \begin{array}{c} \mathbf{b}_{\to} \mathbf{u} \\ \mathbf{b}_{\to} \mathbf{u} \\ + r_B e^{i(-\phi_3 + \delta_B)} \end{array} \right|^2$$

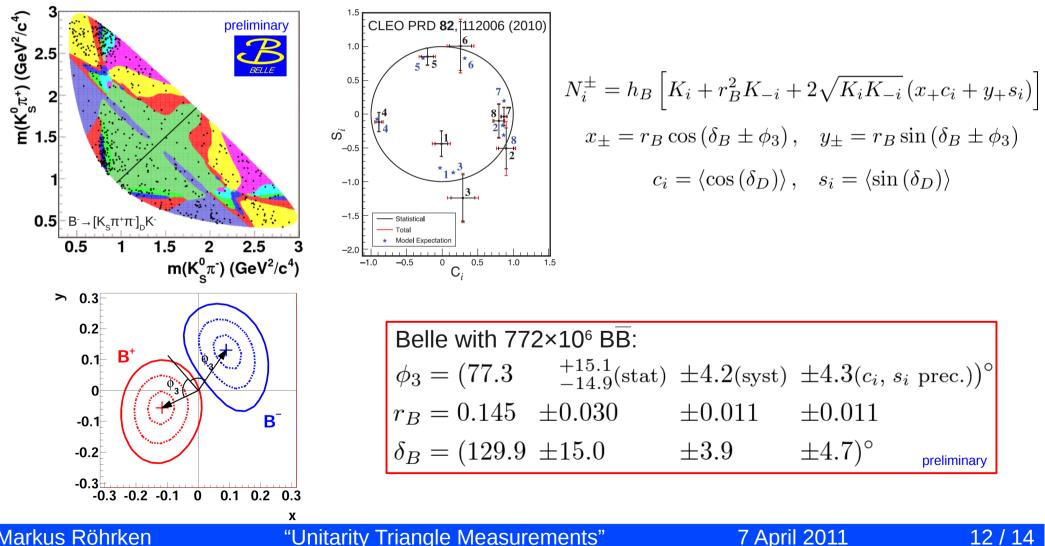

- Advantage: large interferences can occur in some regions of the Dalitz plot
- In previous analyses amplitudes f_D have been extracted by fitting tagged D^o decays using model assumptions involving several two-body intermediate states (Isobar model, K-matrix model). The systematic uncertainty to Φ_3 associated to modeling may be up to $\approx 10^\circ$.

GGSZ method - model-dependent analysis at BaBar:

• BaBar uses $D \to K_s \pi^+ \pi^-$ and $D \to K_s K^+ K^-$ in: $B^{\pm} \to DK^{\pm}$

$$B^{\pm} \to D^* K^{\pm}, \quad D^* \to D\pi^0, \ D\gamma$$

 $B^{\pm} \to DK^{*\pm}, \quad K^{*\pm} \to K_S \pi^{\pm}$

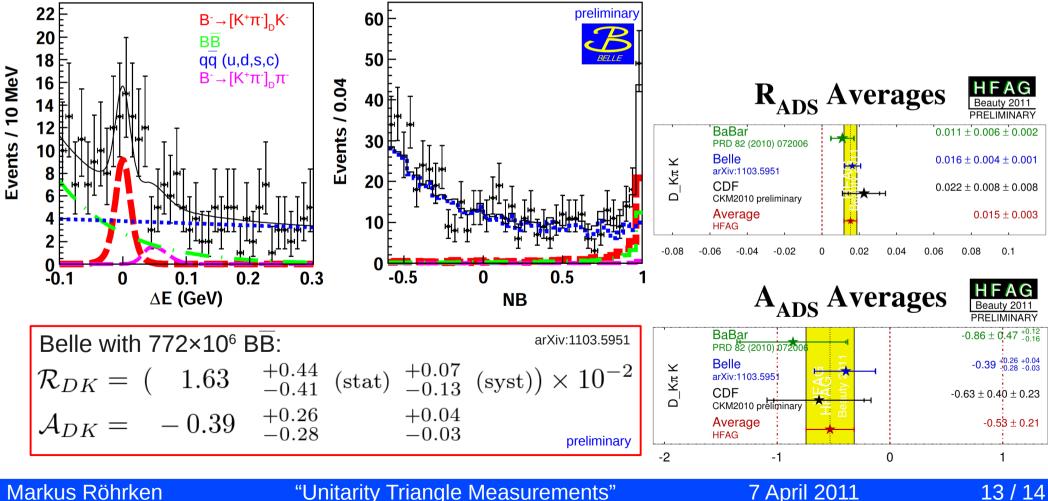

• Modelling of f_D applies K-matrix formalism (amongst others).

BaBar with 468×10 ⁶ BB: PRL 105, 121801 (2010)				
$\phi_3 = (68)$	$^{+15}_{-14}(\mathrm{stat})$	$\pm 4(\text{syst})$	$\pm 3 (\mathrm{model}) \big)^{\circ}$	
$r_B = (9.6)$	± 2.9	± 0.5	$\pm 0.4)\%$	
$r_B^* = (13.3$	$+4.2 \\ -3.9$	± 1.3	$\pm 0.3)\%$	
$\kappa r_s = (14.9)$	$+6.6 \\ -6.2$	± 2.6	$\pm 0.6)\%$	
$\delta_B = (119$	$^{+19}_{-20}$	± 3	$\pm 3)^{\circ}$	
$\delta_B^* = (-82$	± 21	± 5	$\pm 3)^{\circ}$	
$\delta_s = (111$	± 32	± 11	$\pm 3)^{\circ}$	

GGSZ method - new model-independent approach at Belle [EPJC 55, 51 (2008)]:

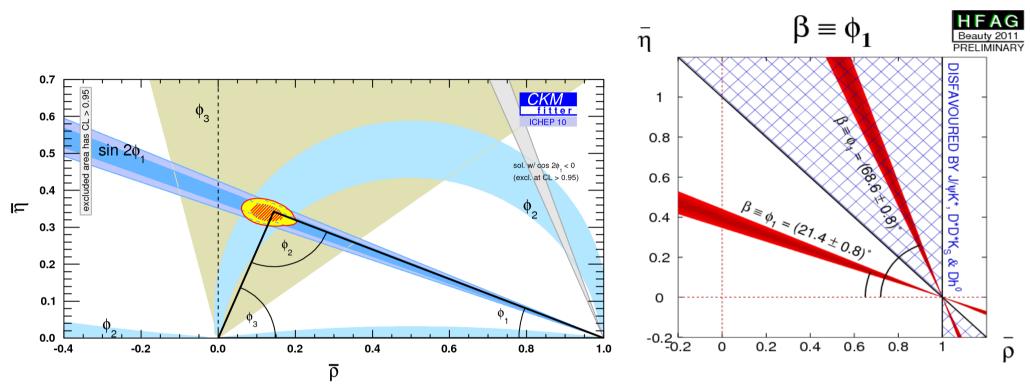
• bin Dalitz plot and use in each bin strong phase difference obtained in measurements on quantum-correlated D⁰ decays in $\psi(3770) \rightarrow D\overline{D}$ by CLEO

12/14


Markus Röhrken

"Unitarity Triangle Measurements"

Measurement of Φ_3/γ – ADS Method


ADS method - new Belle measurement:

- First evidence for the suppressed decay $B^- \rightarrow DK^-$ with $D \rightarrow K^+\pi^-$ (significance of 4.1 σ)
- Improved continuum suppression ($e^+e^- \rightarrow q\overline{q}$ (q=u,d,s,c)) utilizing neural networks (NB)

Markus Röhrken

Summary

	Overview of results of a few analyses				
Angle	BaBar		Belle		
$\phi_1 \ / \ eta$	$(21.7 \pm 1.2)^{\circ}$	$[B^0 \to c\bar{c}K^{(*)0}]$	$(21.0 \pm 1.0)^{\circ}$	$[B^0 \to c \bar{c} K^0]$	
$\phi_2 \ / \ lpha$	$71^{\circ} < \phi_2 < 109^{\circ}$	$[B o \pi \pi]$	$(97 \pm 11)^{\circ}$	$[B ightarrow \pi \pi]$	
	$\left(87\ ^{+45}_{-13} ight)^{\circ}$	$[B o ho\pi]$	$68^{\circ} < \phi_2 < 95^{\circ}$	$[B ightarrow ho \pi]$	
	$(92.4 \ {}^{+6.0}_{-6.5})^{\circ}$	[B ightarrow ho ho]	$(91.7 \pm 14.9)^{\circ}$	[B o ho ho]	
ϕ_3 / γ	$(68^{+15}_{-14} \pm 4 \pm 3)^{\circ}$	$[B^{\pm} \to D^{(*)}K^{(*)\pm}]$	$(78^{+11}_{-12} \pm 4 \pm 9)^{\circ}$	$[B^{\pm} \to D^{(*)}K^{\pm}]$	
	· /	[model-dep. GGSZ]		[model-dep. GGSZ]	
			$(77.3^{+15.1}_{-14.9} \pm 4.2 \pm 4.3)^{\circ}$	$[B^{\pm} \to DK^{\pm}]$	
				[model-indep. GGSZ]	

Markus Röhrken

"Unitarity Triangle Measurements"

7 April 2011

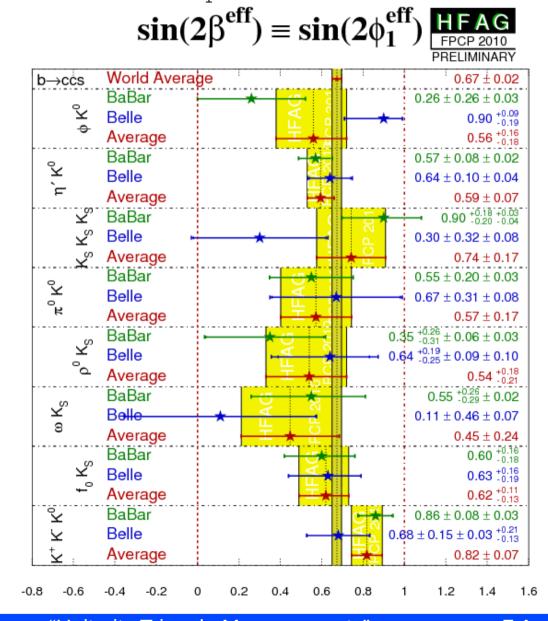
Supplementary Slides

• Belle's update on full dataset (preliminary):

systematic uncertainties	ΔS	ΔA
Vertexing	$^{+0.008}_{-0.009}$	±0.008
Flavor tagging	$^{+0.004}_{-0.003}$	± 0.003
Resolution function	±0.007	± 0.001
Physics parameters	± 0.001	< 0.001
Fit bias	± 0.004	± 0.005
$J/\psi K_S^0$ signal fraction	±0.002	± 0.001
$J/\psi K_L^0$ signal fraction	± 0.004	$+0.000 \\ -0.002$
$\psi(2S)K_S^0$ signal fraction	< 0.001	< 0.001
$\chi_{c1} K_S^0$ signal fraction	< 0.001	< 0.001
Background Δt	± 0.001	< 0.001
Tag-side interference	± 0.001	±0.008
Total	±0.013	±0.013

significant improvement in systematic error compared to Belle's last update on $sin(2\Phi_1)$

(mainly due to vertexing and resolution functions)


```
 \begin{array}{l} \mbox{Belle with 772\times10^{6} BB:} \\ \mathcal{A} = \ 0.007 \pm 0.016 \, ({\rm stat}) \pm 0.013 \, ({\rm syst}) \\ \sin \left( 2\phi_{1} \right) = \ 0.668 \pm 0.023 \qquad \pm 0.013 \end{array} _{\mbox{preliminary}}
```

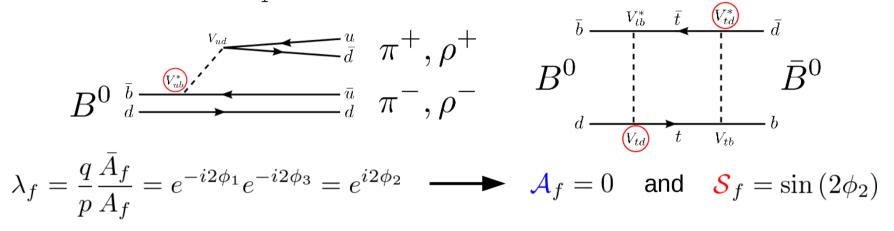
"Unitarity Triangle Measurements"

7 April 2011

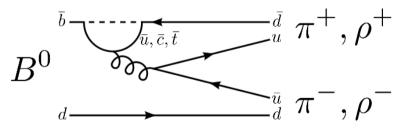
Backup 1 / 8

Overview of measurements of $sin(2\Phi_1^{eff})$ in $b \rightarrow qqs$ penguin transitions

Markus Röhrken


"Unitarity Triangle Measurements"

7 April 2011

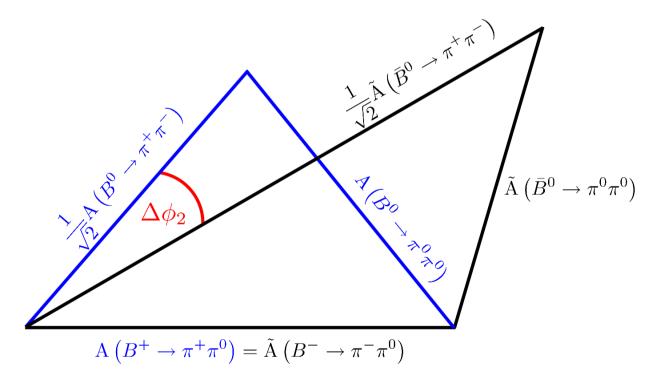

Backup 2/8

Measurement of Φ_2/α

• Φ_2 is directly accessible only by measurements of time-dependent CPV in b \rightarrow uud transitions like in B $\rightarrow \pi\pi$, $\rho\pi$, $\rho\rho$ or a₁(1260) π .

• Problem: $b \rightarrow d$ penguins have different weak phases and magnitudes of same order in λ

• This results in a "penguin pollution" with a shifted $\Phi_{2, eff} = \Phi_2 + \Delta \Phi_2$:

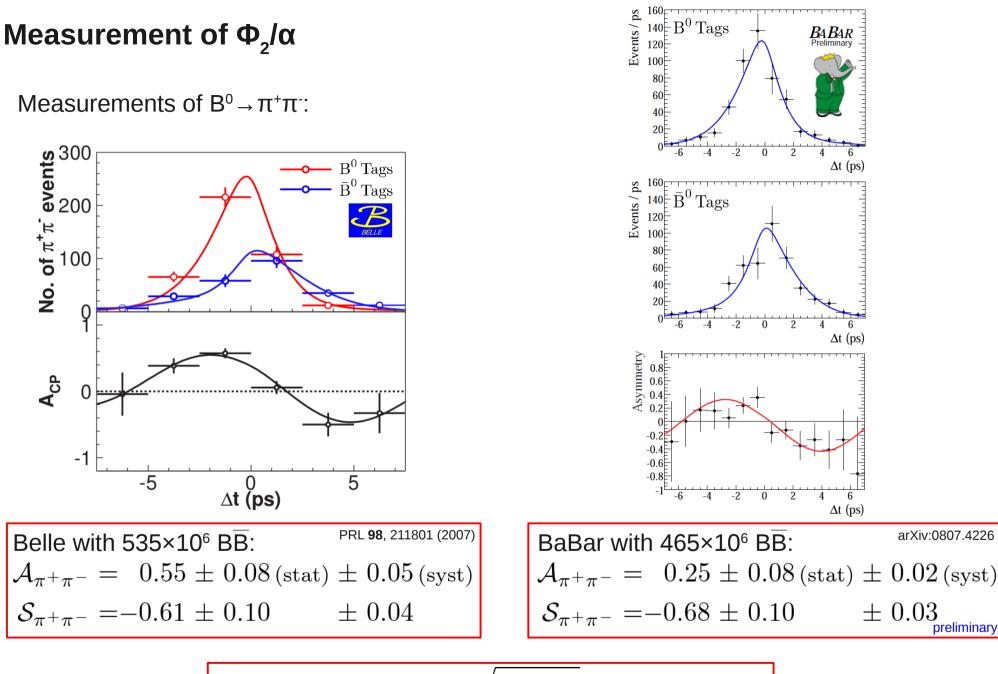

$$\mathcal{A}_f = -\sin(2\delta)$$
 and $\mathcal{S}_f = \sqrt{1 - \mathcal{A}_f^2 \sin(2\phi_{2,\text{eff}})}$

Measurement of Φ_2/α

• Φ_2 in $B^0 \rightarrow \pi^+\pi^-$ and $\rho^+\rho^-$ can be extracted from $\Phi_{2, eff} = \Phi_2 + \Delta \Phi_2$ by disentangling tree and penguin contributions using isospin relations: [Gronau, London: PRD **65**, 3381 (1990)]

•
$$I(\pi^+) = (1, +1)$$
 $I(\pi\pi) = 0$ (tree, penguin) V $I(\pi\pi) = 2$ (tree) $I(\pi^-) = (1, -1)$

 \circ B[±] $\rightarrow \pi^{\pm}\pi^{0}$ can have only I=2, it arises only from tree diagram.


Expansion of amplitudes for $B^0 \rightarrow \pi^+\pi^-$, $B^0 \rightarrow \pi^0\pi^0$ and $B^+ \rightarrow \pi^+\pi^0$ and their charge-conj. in terms of I=0 and I=2 leads to relations of 2 complex triangles sharing same base.

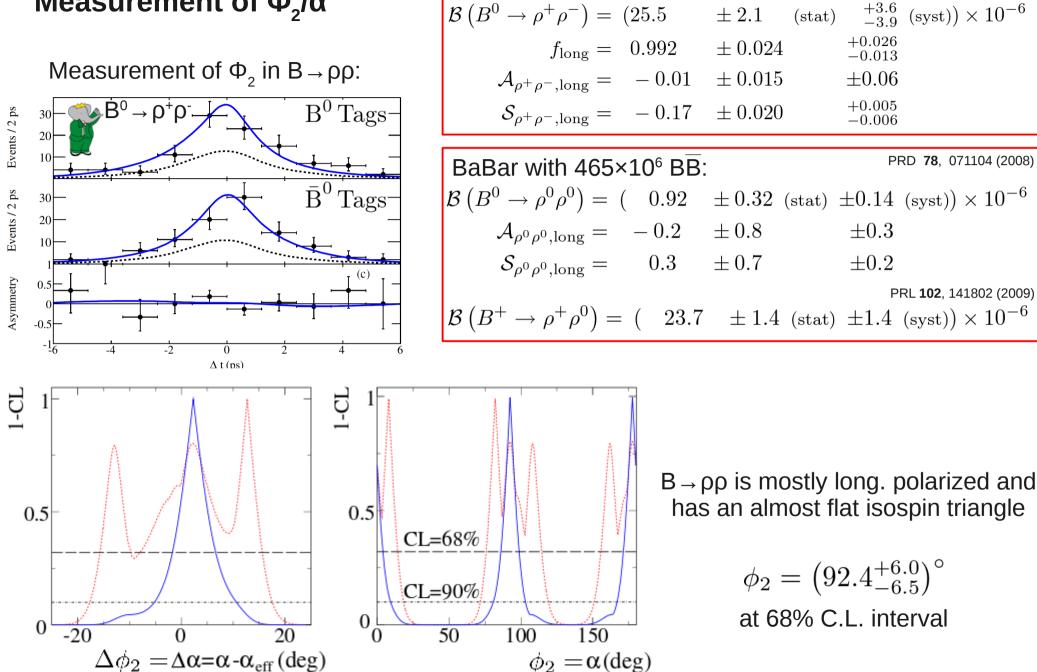
Markus Röhrken

"Unitarity Triangle Measurements"

7 April 2011

Backup 4 / 8

$$\mathcal{A}_f \neq 0 \Rightarrow \mathcal{S}_f = \sqrt{1 - \mathcal{A}_f^2 \sin\left(2\phi_{2,\text{eff}}\right)}$$


Markus Röhrken

"Unitarity Triangle Measurements"

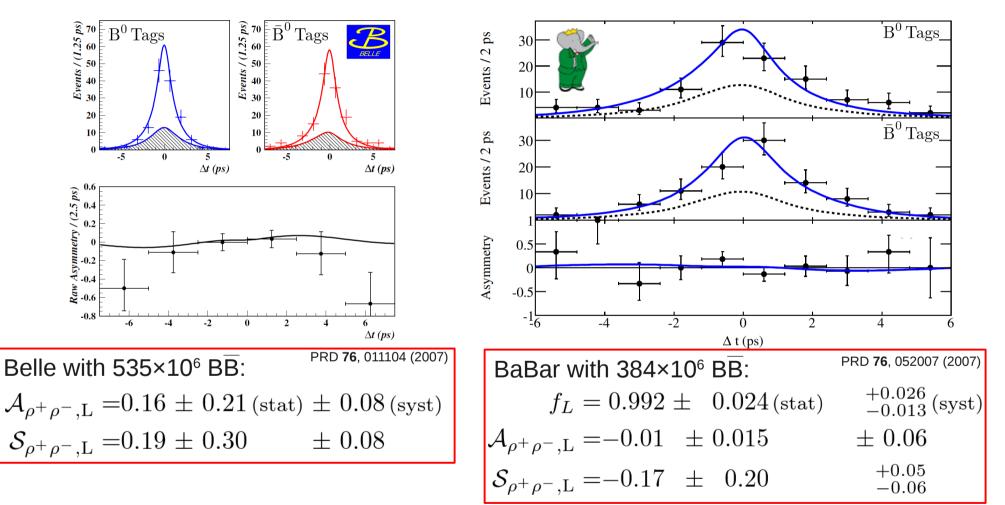
7 April 2011

Backup 5 / 8

Measurement of Φ_2/α

BaBar with 384×10⁶ BB:

Markus Röhrken


"Unitarity Triangle Measurements"

7 April 2011

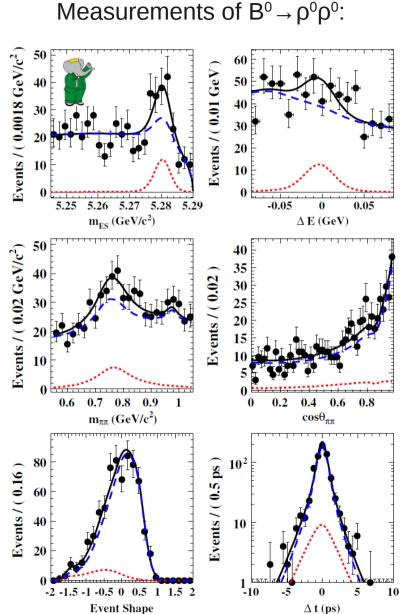
Backup 6/8

PRD 76, 052007 (2007)

Measurement of Φ_2/α

Measurements of $B^0 \rightarrow \rho^+ \rho^-$:

Latest results of $B^+ \rightarrow \rho^+ \rho^0$ [PRL **102**, 141802 (2009)] and $B^0 \rightarrow \rho^0 \rho^0$ [PRD **78**, 071104 (2008)] from BaBar suggest an almost flat isospin triangle in $B \rightarrow \rho\rho$.


Markus Röhrken

"Unitarity Triangle Measurements"

7 April 2011

Backup 7 / 8

Measurement of Φ_{2}/α

projections of $B^0 \rightarrow \rho^0 \rho^0$ PDF component

BaBar could see a signal of $B^0 \rightarrow \rho^0 \rho^0$ with 3.1 σ significance:

BaBar with 465×10^6 BB:		PRD 78, 071104 (2008)
$\mathcal{B}\left(B^0 \to \rho^0 \rho^0\right) = (0.92)$	±0.32 (st	tat) $\pm 0.14 \text{ (syst)} \times 10^{-6}$
$\mathcal{A}_{ ho^0 ho^0, \mathrm{long}} = -0.2$	± 0.8	± 0.3
$\mathcal{S}_{ ho^0 ho^0, \mathrm{long}}= 0.3$	± 0.7	± 0.2

Belle hasn't found evidence for $B^0 \rightarrow \rho^0 \rho^0$ yet:

Belle with 657×10⁶ BB: PRD 78, 111102 (2008) $\mathcal{B}(B^0 \to \rho^0 \rho^0) < 1.0 \times 10^{-6}$ at 90% CL

Markus Röhrken

"Unitarity Triangle Measurements"

7 April 2011