Charm inputs for y measurements

Sneha Malde, University of Oxford on behalf of the CLEO collaboration

- The status of tree level γ measurements
- Where measurements from quantum-correlated
 D⁰D⁰ decays have an impact
- Measurements from CLEO-c

ο D⁰ --> Kπ, Kπππ, Kππ⁰, KπK_S

Status of direct determination of y

 γ is the least well known angle ~20°

Comparison of γ from tree and loop processes -- sensitive to new physics

Using $B \rightarrow DK$ for γ measurements

interference —

Require D⁰ and D⁰ to decay to same final state

$$\frac{\langle B^- \to D^0 K^- \rangle}{\langle B^- \to D^0 K^- \rangle} = r_B e^{i(\delta_B - \gamma)}$$

Comparison of B⁺ and B⁻ yields to determine γ

 r_D and δ_D are like B-decay quantities, but in multibody decays, they vary over Dalitz space

Data from CLEO-c can be used to determine the average for the varying parameters

Measuring γ using B \rightarrow DK, D \rightarrow K_shh

Br[D→K_Sππ] = 2.99±0.17 % Br[D→K_SKK] = 0.47±0.03 %

Studied at B factories

BABAR: PRL 105 121801(2010)

Belle: PRD 82 112002 (2010)

Necessary D information determined from the amplitude models of the decays $B^{\pm} \rightarrow (D \rightarrow K^{0}{}_{S}\pi^{+}\pi^{-})K^{\pm}$

Amplitude models determined from $D^* \rightarrow D^0 \pi$ decays

Amplitude models give rise to $3-9^{\circ}$ uncertainty on γ

For LHCb and future experiments it will limiting.

Model independent approach possible using CLEO-c data

Binned model dependent fit

Proposed by Giri *et al.*[PRD 68 054018 (2003)], developed by Bondar and Poluektov [EPJ C 55 (2008) 51]

Relates number of B events in the dalitz plots to other quantities including γ .

CLEO-c and quantum coherence

Strong phase differences from Q-C decays

 $D^{*+} \rightarrow D^0 \pi$

CP tags are just an example -- other hadronic decays can be used too.

Strengths of the CLEO-c detector

Using CLEO-c data to measure c_i, s_i

1. Reconstruct double tag : $D_1 \rightarrow K_s \pi \pi D_2 \rightarrow CP$

Ksππ flavour tagged yield in bin i

CP tagged Ks
$$\pi\pi$$

yield in bin i $M_i^{\pm} = h_{CP\pm}(K_i \pm 2c_i\sqrt{K_iK_{-i}} + K_{-i})$

2. Reconstruct double tag : $D_1 \rightarrow K_s \pi \pi D_2 \rightarrow K_s \pi \pi$

i and j are Dalitz plot bins for each $D \rightarrow K_s \pi \pi$ decay

$$M_{ij} = h_{\rm corr}(K_i K_{-j} + K_{-i} K_j - 2\sqrt{K_i K_{-j} K_{-i} K_j} (c_i c_j + s_i s_j))$$

3. Reconstruct double tag : $D_1 \rightarrow K_L \pi \pi D_2 \rightarrow CP$

CP odd K_s $\pi\pi\approx$ CP even K_L $\pi\pi$ $M_i'^{\pm} = h_{CP\pm}(K_i'\mp 2c_i'\sqrt{K_i'K_{-i}'} + K_{-i}')$

4. Reconstruct double tag : $D_1 \rightarrow K_s \pi \pi D_2 \rightarrow K_L \pi \pi$

$$M'_{ij} = h_{corr}(K_i K'_{-j} + K_{-i} K'_j + 2\sqrt{K_i K'_{-j} K_{-i} K'_j} (c_i c'_j + s_i s'_j))$$

Introduces weak model dependence as difference between c' and c is constrained by model prediction.

CP tagged Dalitz plots

What binning to use

Binning loses statistical sensitivity in comparison to the unbinned case.

This loss can be mitigated by "smarter" binning approaches

e.g choosing bins of *expected* similar strong phase

- lose 20% statistical sensitivity in comparison to the unbinned case. cf ~ 40% for rectangular bins. Worthwhile using an improved model

Using the *expected* B statistics distribution can optimize further

"optimal binning" gains ~10% if low background

Modified optimal best for LHCb bkgs

Results with new binnings

Belle model binning allows for further crosschecks

Sneha Malde: Charm inputs for γ measurements, Beauty 2011, Amsterdam

PRD 82, 112006 (2010)

Extension to KsKK

Similar analysis for KsKK

In addition can use double tags $D_1 \rightarrow KsKK$, $D_2 \rightarrow K^0 \pi \pi$ with knowledge of c_i and s_i of $K_S \pi \pi$

In total ~550 QC double tags

PRD 82, 112006 (2010)

Results for KsKK

Impact on y

Uncertainties on c_i and s_i will lead to uncertainties on γ measurement.

In the limit of high statistics these are:

1.7--3.9° for $K_s \pi \pi$ (dependent on binning)

3.2--3.9° for K_sKK (dependent on binning)

- s_i statistical uncertainties dominate

Compare this to a model error of 3--9°

Similar uncertainty, however the model independent uncertainty arises from experimentally measured quantities only.

Preliminary result from Belle using this method

ADS analysis

$$\mathsf{D}\mathsf{K}^{-} \qquad \mathsf{\Gamma}_{\mathsf{D}} \mathsf{e}^{\mathsf{i}(\delta_{\mathsf{D}})} \quad \Gamma\left(B^{+} \to D(K^{+}\pi^{-})K^{+}\right) \propto 1 + \left(r_{B}r_{D}\right)^{2} + 2r_{B}r_{D}\cos\left(\delta_{B} + \gamma - \delta_{D}\right)$$

$$\Gamma\left(B^{+} \to D(K^{-}\pi^{+})K^{+}\right) \propto r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos\left(\delta_{B} + \gamma + \delta_{D}\right)$$

$$\mathsf{i}(\delta_{\mathsf{B}} - \gamma) \qquad \mathsf{f}(\mathsf{K}\pi)\mathsf{K}^{-}$$

 $Br[D^0 \rightarrow K^- \pi^+] = 3.89 \pm 0.05 \%$

B

 $r_B e$

 $\delta_{\rm D}$ measured at CLEO

QC gives access to different D⁰ D⁰ superposition

 δ_D measurement uses many decays. Compares single tag yields (not affected by QC) to double tags (affected by QC)

Also sensitive to D mixing

QC Pred (r=0.06, cosδ =0 no mixing)
 Data

Preliminary $\delta_{K\pi}$ results

First measurement using 281 pb⁻¹

Update with full 818 pb⁻¹ on going adding many more decay channels

Parameter	Previous: PDG, HFAG, or CLEO	Fit: no ext. meas.	Fit: with ext. y, x, y'
y (10 ⁻²)	0.79 ± 0.13	3.0 ± 2.0 ± 1.2	0.635 ± 0.118
x ² (10 ⁻³)	0.037 ± 0.024	$1.5 \pm 2.0 \pm 0.9$	0.022 ± 0.017
r ² (10 ⁻³)	3.32 ± 0.08	4.12 ± 0.92 ± 0.23	3.32 ± 0.08
cosδ	1.10 ± 0.36	0.98 +0.27 +0.08	$1.15 \pm 0.16 \pm 0.12$
sinð		-0.04 ± 0.49 ± 0.08	$0.55 + 0.36_{-0.40} \pm 0.08$
δ (゜) [derived]	22 * ¹¹ -12 * ⁹ -11	0 ± 22 ± 6	15 ⁺¹¹ . ₁₇ ± 7
	T PRL 100, 221801 (2008) PRD 78, 012001 (2008)	preliminary 818 pb ⁻¹ results	

ADS - style analysis

$$\begin{split} &\Gamma_1(B^+ \ \rightarrow \ D(\rightarrow F^+)K^+) \propto 1 + (r_B r_D)^2 + 2r_B r_D R_F \cos(\delta_B + \gamma - \delta_D), \\ &\Gamma_2(B^+ \ \rightarrow \ D(\rightarrow F^-)K^+) \propto r_B^2 + r_D^2 + 2r_B r_D R_F \cos(\delta_B + \gamma + \delta_D), \end{split}$$

 $F^{\pm} = K^{\pm} \pi \pi \pi$, $K^{\pm} \pi \pi^{0}$, $K^{\pm} K_{s} \pi$.

For $K\pi\pi\pi$ and $K\pi\pi^0 r_D \sim 0.06$. CF ($D^0 \rightarrow K^-\pi^+$) and DCS decays ($D^0 \rightarrow K^+\pi^-$)

However for $K\pi K_S r_D \sim 0.7 \Rightarrow$ Both $D^0 \rightarrow K^-\pi^+K_s$ and $D^0 \rightarrow K^+\pi^-K_s$ SCS decays. Promising new channel despite lower branching fractions.

Double tags sensitive to the coherence factor

Senstivity to R_{F} and δ_{F} comes from counting various double tag yields.

 $\mathsf{F}^{\pm}=\mathsf{K}^{\pm}\pi\pi\pi,\ \mathsf{K}^{\pm}\pi\pi^{0},\ \mathsf{K}^{\pm}\pi\ \mathsf{K}_{S}.$

Coherence factor results

PRD 80, 031105 (2009)

Preliminary coherence factor results

The coherence around a resonance is expected to be close to 1.

Good motivation to repeat measurement in a Dalitz plot bin around the K* resonance.

Bin is 2*(natural width) around the K* mass.

Analysis is repeated using data in this bin only.

 $D^{0} \rightarrow K^{0}_{S} K^{c} \pi^{+}$ $D^{0} \rightarrow K^{0}_{S} K^{c} \pi^{+}$ $D^{0} \rightarrow K^{0}_{S} K^{c} \pi^{-}$ $D^{0} \rightarrow K^{0} \rightarrow K^{0} \pi^{-}$ $D^{0} \rightarrow K^{0} \pi^{-}$ $D^{0} \rightarrow$

Entries 1413

 Preliminary CLEO-c Results:

 Full Dalitz plot : $R_F = 0.73 \pm 0.09$ $\delta_D = 8.2 \pm 15.2^\circ$

 Bin 1 : $R_F = 0.961 \pm 0.171$, $\delta_D = 25.8 \pm 17.3$

Impact of these results on y

Expected γ precision using ADS modes at LHCb 2fb⁻¹

Knowledge of coherence factor for $D \rightarrow K\pi K_S$ means additional statistics of the decay $B \rightarrow D(K\pi K_S)K$ can also be used

Summary

- Quantum correlated decays give access to the strong phase difference
- Measurements can improve γ measurements in using B \rightarrow DK
- •Allows for Dalitz model independent measurements
- •Several measurements from CLEO-c
 - •D \rightarrow K_s $\pi\pi$ and K_sKK
 - $\bullet \delta_{K\pi}$ measurement

•Coherence factor and average strong phase measurements in D \rightarrow K $\pi\pi\pi$, K $\pi\pi^0$, K π K_s