

J/ψ Production in pp and in Heavy-Ions Collisions in ATLAS

Shih-Chieh Hsu Lawrence Berkeley National Lab

On behalf of the ATLAS Collaboration

April 6, Beauty 2011, Amsterdam

Motivations & Outline

• Motivations:

No unified mechanism exists to consistently explain the heavy quarkonium production and spin-alignment in e+e-, hadron and heavy-ion colliders. J/ Ψ production measurements provide constraint to physics models.

• J/Ψ Cross-Section Measurement in 7 TeV pp Collisions

- New results with 2.4 pb⁻¹ data
- Part of the results related to $b\overline{b}X$ ->J/ $\Psi X'$ production, presented Tuesday, in ATLAS b-production overview by Ilektra Christidis
- More details in Nir Amram's poster

• J/ Ψ Production in 2.76 TeV pb pb Collisions

- PLB 697, 294-312, 2011 (accepted in Jan 2011)
- More details in Camilla Maiani's poster

ATLAS Detector

Key Elements for J/Ψ Analysis Trigger: Minimum Bias, Muon

Inner Detectors:

Designed resolution $\sigma(p_T)/p_T = 0.05\% p_T [GeV] \oplus 1\%$ Impact parameter (0.25< $|\eta|$ <0.5) $\sigma(d_0) = 10\mu m \oplus 140\mu m / p_T [GeV]$

Muon Spectrometer

More details in Rosy Nicolaidou's talk: ATLAS detector performance

Triggers, Dataset, Selections

Trigger:

- Single muon trigger
- Luminosity Un-prescaled trigger for inclusive production 2.27 pb⁻¹
- Include prescaled trigger for non-prompt **2.44 pb**⁻¹

Selections:

- >=3 tracks in Primary Vertex to veto Cosmics
- At least one combined muon
- Muon pT>3GeV and eta|<2.5
- For Non-prompt fraction study
 - \rightarrow Both tracks associated to the same Event Vertex

Inclusive Cross-Section Measurement

Measure Double Differential Cross-section as function of J/Ψ transverse momentum and rapidity

$$\frac{d^2\sigma(J/\psi)}{dp_T dy} \cdot Br(J/\psi \to \mu^+ \mu^-) = \frac{N_{corr}^{J/\psi}}{\mathcal{L} \cdot \Delta p_T \Delta y} \qquad N_{corr}^{J/\psi} = N_{J/\psi} \cdot w$$

Event-by-event weight is applied to retrieve true number of J/Ψ

$$w^{-1} = \mathcal{A} \cdot \mathcal{M} \mathcal{E}_{trk}^2 \cdot \mathcal{E}_{\mu}^+(p_T^+, \eta^+) \cdot \mathcal{E}_{\mu}^-(p_T^-, \eta^-) \cdot \mathcal{E}_{trig}$$
$$\mathcal{E}_{trig} = 1 - \left(1 - \mathcal{E}_{trig}^+(p_T^+, \eta^+)\right) \cdot \left(1 - \mathcal{E}_{trig}^-(p_T^-, \eta^-)\right)$$

A: geometrical acceptance depends on spin-alignment M: Bin migration factor to account for resolution effect ϵ_{trk} : ID tracking efficiency 99.0+-0.5 % $\epsilon(pt,eta)$: single muon offline reconstruction efficiency ϵ_{trig} : Charge dependent muon trigger efficiency

Efficiency measurement is described in Massimo Corradi's talk

Acceptance & Spin-Alignment

Unknown spin alignment of J/Ψ production in LHC

 $\frac{d^2 N}{d\cos\theta^{\star}d\phi^{\star}} \propto 1 + \lambda_{\theta}\cos^2\theta^{\star} + \lambda_{\phi}\sin^2\theta^{\star}\cos 2\phi^{\star} + \lambda_{\theta\phi}\sin 2\theta^{\star}\cos\phi^{\star}$

Central values are reported with un-polarized acceptance Spin-alignment envelopes are maximal variations from four polarization schemes

Spin-alignment envelopes

Inclusive J/ Ψ in pp Collisions

There are total \sim 31k J/ Ψ s used for double differential cross-section measurements in four rapidity bins. Mass resolution is 40 \sim 110 MeV

Yield & Cross-section Extraction

Signal P.D.F. is one Gaussian with scaled event-by-event mass errors while background P.D.F. is the first order polynomial

Systematics Uncertainties

- Muon Reconstruction
 - Muon/ID efficiency
- Acceptance
 - Bin Migration
 - Vertexing
- Trigger
- Fit uncertainty
- Total
 - Above
 - Luminosity (3.4%)
 - MC model dependence
 - Final State Radiation
- Spin-alignment envelopes are separate uncertainties (5~200%)

Inclusive Cross-Section

ATLS results are consistent with CMS results where overlap

Extraction of Non-prompt fractions

160

120

100

80

60

40

20

 $0.0 \le |y_{J/\psi}| < 0.75$

Non-promt fraction $f_{\rm B}$ is defined as:

$$\mathbf{f}_{\mathrm{B}} \equiv \frac{d\sigma(pp \rightarrow b\bar{b}X \rightarrow J/\psi \, X')}{d\sigma(pp \rightarrow J/\psi \, X'')}$$

Simultaneous mass-lifetime unbinned likelihood fit was used to extract f_{R} in multiple J/ Ψ p₋ and rapidity

Non-prompt fraction Results

ATLAS extends further to higher pT not covered by any of previous measurements.

Non-prompt Cross-Section

Good agreement is found to Fixed Order Next-to-leadinglogarithm calculation. JHEP 9805 (1998) 007, JHEP 0103 (2001) 006

Prompt Cross-Section

Comparisons include J/ψ feed-down from higher states Theoretical predictions have issues to describe both shapes and normalization

Color Evaporation Model: Phys. Rept. 462 (2008) 125, Phys. Lett. B 91 (1980) 253 Color Singlet Model: Phys. Rev. D 81 (2010), Eur. Phys. J. C 61 (2009) 693

J/Ψ Candidate in Heavy Ion

Run 169226, Event 379791 Time 2010-11-16 02:53:54 CET ATLAS

Heavy Ion Collisions

Trigger & Centrality

Trigger

Minimum Bias Trigger

Centrality

<u>Nd</u> characterized by percentage of total cross-section using the forward calorimeter (Fcal) transverse energy sum: ΣE_{τ} (3.2 < $|\eta|$ < 4.9)

- Four centrality bins: 0-10%, 10-20%, 20-40%, 40-80%
- Range between 80-100% excluded due to larger systematics in determining Ncoll, the number of nucleon-nucleon collisions

Signal Yield Extraction

Selections

2 Combined Muons with opposite signed pT> 3 GeV |eta|<2.5 Total ~600 J/Ψ

Yields Extractions:

Sideband subtraction to extract the J/Ψ Yields

Unbinned maximum likelihood fit for cross-check → good agreement

Reconstruction & Systematics

Results are normalized to the most peripheral bin

Centrality	$N^{\text{meas}}(J/\psi)$	$\epsilon (J/\psi)_c/$	Systematic Uncertainty		
		$\epsilon(J/\psi)_{40-80}$	Reco. eff.	Sig. extr.	Total
0-10%	190 ± 20	0.93 ± 0.01	6.8~%	5.2~%	8.6~%
10-20%	152 ± 16	0.91 ± 0.02	$5.3 \ \%$	$6.5 \ \%$	8.4~%
20-40%	180 ± 16	0.97 ± 0.01	3.3~%	6.8~%	7.5~%
40-80%	91 ± 10	1	2.3~%	5.6~%	6.1~%

Major centrality dependent systematics:

- Inner Detector efficiency due to high occupancy environments.
- Theoretical uncertainty of the mean number of binary nucleon-nucleon collisions

Centrality	$R_{\rm coll}$	Uncertainty
0 - 10%	19.5	5.3~%
10-20%	11.9	$4.7 \ \%$
20-40%	5.7	3.2~%
40-80%	1.0	—

$$R_{coll} = \frac{N_{coll}(C)}{N_{coll}(40-80\%)}$$

Ncoll is Glauber prediction of the number of nucleon-nucleon collisions

Final Results

Relative yields, Rc, is normalized to the most peripheral bin Normalized yields Rcp is Rc further corrected by the Rcoll

Results Comparison

PHENIX data on R_{AA} (relative to p-p) is recombined and ratio is taken from 40-93% bin, errors including uncertainties of the number of nucleon-nuclueon collisions, Ncoll

Centrality suppression appears no beam energy dependence!

Z Observation in Heavy Ion

Observation of 38 Z pairs:

- |η|<2.5, pT>20 GeV, |η1+η2|>0.01 (cosmics rejection)
- No conclusive centrality dependence effect due to limited statistics
- First Z production results in heavy ion collision history

Summary

- Present new ATLAS results of J/ Ψ production in 7 TeV pp collisions with 2.4 pb⁻¹ data
 - consistent with CMS and CDF where overlaps
 - ATLAS extends results to higher pT range (30~70 GeV)

- theory predictions are in good agreement to non-prompt results but have issues in non-prompt results in both shapes and normalizations

- Present the first J/ Ψ and Z production results in 2.76 TeV lead-lead collisions with 6.7 μ b⁻¹ data
 - Observe a centrality dependent suppression in the normalized J/Ψ yield
 - Centrality suppression is consistent to PHENIX Au+Au collision

J/ Ψ Trigger in pp Collisions

Trigger: Inclusive Cross-section Level1 Muon Event Filter Muon pT > 4GeV, 6GeV 2.27 pb⁻¹ (no pre-scale trigger)

Non-prompt fraction

Above triggers and additional Minimum Bias Event Filter Muon pT>10 GeV 2.44 pb⁻¹ (include pre-scale trigger)

Trigger in 2011 B-physics: Topological 2muon trigger

J/Ψ Systematics

Inner Detector Tracking in Heavy Ion Collisions

#SiHits>=9. #Missing Pix Hits=0, #Missing SCT Hits <=1 Tracking systematic uncertainties are determined from the comparisons of associated/missing hits distributions between MC/Data.

