LHCb Detector & performance

University of Oxford ON BEHALF OF THE LHCb COLLABORATION

Neville Harnew

Beauty 2011 Conference

4-8th April 2011

Amsterdam

IHC

© 2010 Kaas Schoof

Outline

- Introductory remarks
- The LHCb detector and running conditions
- The detector operating performance
- A taste of the physics (focussing somewhat on non-B physics)
- 2011 running
- Summary

Note – I will only skim the surface – the detailed physics will be left to the many individual talks at this conference

14 LHCb talks at Beauty 2011

MONDAY

- 10:10 LHCb detector performance: Neville HARNEW (University of Oxford)
- 15:05 Flavour tagging and mixing at LHCb : Stefania VECCHI (INFN, Universita di Ferrara)
- 15:55 Bs -> J/psi phi : Uli UWER (Physikalisches Institut Heidelberg)

TUESDAY

- 09:00 Bs -> mumu, B -> K*mumu & B -> s gamma : Matteo PALUTAN (Frascati (LNF)
- 12:10 Charm mixing/CP violation and plans : Marco GERSABECK (CERN)
- 16:55 b production cross section and fragmentation fractions at LHCb : Niels TUNING (NIKHEF)
- 17:20 Charm production at LHCb : Alexandr KOZLINSKIY (NIKHEF)

WEDNESDAY

- 09:30 Upsilon production, Psi(2S), X states, chi-c at LHCb : Julien COGAN (CPPM)
- 10:00 J/Psi cross section (incl. B->J/Psi X), J/Psi polarization : Jibo HE (LAL Universite de Paris)

THURSDAY

- 09:25 Semileptonic decays (beauty/charm) & plans : Rob LAMBERT (CERN)
- 12:00 First measurement of sin2beta at LHCb with B0-> J/psi Ks, Marc GRABALOSA GANDARA (Barcelona)
- 12:15 Bs -> DsK and D K states : Steven BLUSK. (Department of Physics Syracuse University)
- 14:20 B -> hh (hadronic final states) : Vincenzo VAGNONI (INFN Bologna)

FRIDAY

12:05 LHCb Upgrade : Marcel MERK (NIKHEF)

LHCb - a forward physics experiment

- LHCb covers forward region: 1.9 < η < 4.9 : a unique rapidity range
- LHCb is optimized for the strongly forward peaked heavy quark production at the LHC
- It covers only ~4% of solid angle but captures ~40% of heavy-quark production cross section

A chequered history ...

- Forward physics experiments at hadron colliders has historically been challenging
 - ISR first paved the way
 - SPS and Tevatron focussed on the "central" region
 - H1/ZEUS found the forward region "difficult"
 - HERA-B was beset with problems
- So would LHCb actually be able to deliver physics ?
 - Trigger is a monumental challenge
 - Occupancies
 - Secondary interactions
 - Radiation damage ... etc etc ...
- We at LHCb (+ the CERN LHCC + our funding agencies) thankfully had confidence, but it was always going to be difficult ...

LHCb major physics aims - the "big six"

LHCb roadmap document: [arXiv:0912.4179v2 [hep-ex]]

- Tree and penguin-level determinations of CKM angle γ
- Charmless charged two-body B decays
- **B**_s mixing phase ϕ_s from $B_s \rightarrow J/\psi \phi$
- Branching fraction of $B_s \rightarrow \mu^+ \mu^-$
- Angular distributions in $B^0 \to K^{\bigstar} \mu^+ \mu^-$
- **B**_s $\rightarrow \phi \gamma$ and other radiative decays

AND A WHOLE LOT MORE !!!

LHCb IS A PRECISION EXPERIMENT DESIGNED TO MEASURE CKM PARAMETERS - BUT PRIMARILY TO DISCOVER PHYSICS BEYOND THE STANDARD MODEL

Beauty 2011 Conference, 4-8th April 2011, Amsterdam

N. Harnew

The LHCb detector and 2010 running conditions

The LHCb spectrometer

Beauty 2011 Conference, 4-8th April 2011, Amsterdam

N.Harnew

A fish-eye view

2010 Integrated Luminosity @ 2x3.5 TeV

... Note that it's a logarithmic scale ...

- Recorded 37.7 pb⁻¹ at √s = 7 TeV
- Data taking efficiency > 90%

Beauty 2011 Conference, 4-8th April 2011, Amsterdam

It has not always been easy ...

- Peak instantaneous luminosity almost 2x10³² cm⁻²s⁻¹ at end of run
- But: with only 344 colliding bunches (factor ~8 unfilled)
- But with all sub-detectors still working at > 99% efficiency.

 LHCb designed for a single interaction per bunch crossing at luminosity of 2x10³² cm⁻² s⁻¹

Design: <µ>=0.4 interactions per crossing

What we had to learn to cope with ...

Typical event at $\langle \mu \rangle = 2.5$ -the challenge

LHCb Event Display

Beauty 2011 Conference, 4-8th April 2011, Amsterdam

N.Harnew 12

The reality... first $B^+ \rightarrow J/\psi K^+$ candidate

5 April 2010, 01:30:09

Beauty 2011 Conference, 4-8th April 2011, Amsterdam

N.Harnew

LHCb detector performance

The LHCb trigger

To cope with the increased <µ>, the trigger strategy evolved over the course of the run – giving excellent efficiency

Tracking: Evolution of $J/\psi \rightarrow \mu^+\mu^-$ **mass calibration**

On-shift online real-time plots ...

I hour of data at 7 TeV. A fill of 300nb⁻¹. The HLT2 uses a fast version of reconstruction to make on-line plots.

Beauty 2011 Conference, 4-8th April 2011, Amsterdam

N.Harnew

Vertexing (& lifetime) performance

Particle ID

- Crucial for particle ID of B decays with identical topology, e.g. $B^0 \rightarrow \pi^+\pi^-$ and $B^0 \rightarrow K^+\pi^-$ and for flavour tagging
- Two RICH detectors with three radiators
- Efficiencies and mis-ID determined from data using calibration samples on $K_S \rightarrow \pi^+\pi^-, \Lambda \rightarrow p\pi^-, D \rightarrow K\pi, \phi \rightarrow K^+K^-$

PID calibration samples

Effect of PID on $\phi \rightarrow K + K - K$

- Early 900 GeV data
- Hard-ish RICH cut on each kaon track DLL(K-pi)>15

Calorimeters – photon and electron ID

- EM/Had calorimeters provide trigger, electron ID and neutral reconstruction \rightarrow e, γ , π^0 etc
- π⁰ resolution found in data actually exceeds expectations

Tagging performance - where are we?

Example of CP violation measurement

THURSDAY 14:20 B -> hh (hadronic final states) : Vincenzo VAGNONI (INFN Bologna)

- Separate samples into \overline{B}^{0} and B^{0} using particle ID
- Raw asymmetries clearly visible in data: direct CP Violation > 3σ
- Central values consistent with expectations and previous measurements
- NB: corrections from production and detector asymmetry not yet corrected for

Physics not in our initial planning ..

Very sensitive to PDFs

New regions of proton structure measurement

LHCb 2011 running

- LHCb plan to run in 2011 with a visible ppcollisions/bunch crossing up to <µ>=2 (2.5 at start-up). We prefer to maximize the number of LHC bunches to minimize <µ>.
- Luminosity levelling will be crucial for running with almost flat luminosity (to ~3×10³² cm⁻² s⁻¹) throughout the year.
- We hope to get ≥200 pb⁻¹ by end of June and ~1 fb⁻¹ by the end of 2011.

- 2011 data-taking has just started:
- Fills with 32/64/136/200 bunches being taken with >90% efficiency.
- Soon necessary for luminosity levelling
- It's all kicking off again ... © !

LHCb running in 2010 has been splendid, recording 37 pb⁻¹ of excellent data.

• LHCb has proven extremely versatile, both in its ability to trigger (< μ >) and in its physics. And it *works* !

• LHCb is already competing with Tevatron in some areas of B_s physics. Next year we will surpass the B factories.

Long programme over several years to explore the full potential of physics beyond the Standard Model

2011 WILL BE A VERY EXCITING TIME!

... to the representatives of LHCb experiment who helped me to prepare this talk

Marco Adinolfi, Patrick Koppenburg, Andrew Powell, Marie-Noelle Minard, Olaf Steinkamp, Andrei Goloutvin, Frederic Teubert, Guy Wilkinson, Stefania Vecchi, Matthew Charles, Gaia Lanfranchi, Victor Egorychev, Hamish Gordon ... And the many detector experts and analysists who I don't mention but we all rely on

Many thanks

Peter Schlein Werner Ruckstuhl Tom Ypsilantis

Beauty 2011 Conference, 4–8th April 2011, Amsterdam

Who sadly never got to see the results from this pioneering experiment

N.Harnew

That's all folks ! Spare slides from here on

Muon Identification Performance

- = Efficiency determined from data using tag-and-probe method on $J/\psi \to \mu \text{+}\mu\text{-}$
- Found to be > 90 % for p > 10 GeV
- Mis-ID probabilities $K \rightarrow \mu$, $\pi \rightarrow \mu$, $p \rightarrow \mu$ determined from data using tag-and-probe method on $\phi \rightarrow K+K-$, $K_{s} \rightarrow \pi + \pi -$, $\Lambda \rightarrow p\pi$
- All found to be < 2 % for p > 10 GeV
- Good agreement between data and simulation

Vibrant programme of Charm physics ...

- Dalitz structure in
 - $D^+ \rightarrow K^- K^+ \pi^+$
 - $D_s^+ \rightarrow K^- K^+ \pi^+$
- Signal and control for CP violation search

Tension in the CKM fit

From Lunghi and Soni, arXiv:1010.6069 (see also CKMfitter, UTfit, etc., etc.)

n.b. $\gamma = (74 \pm 11)^{\circ}$ used as input but CKMfitter gives $(71^{+21}_{-25})^{\circ}$

Contribution of LHCb to UT

Lattice QCD assumed: $\sigma(\xi)/\xi = 1.5\%$ $\sigma(\sin(2\beta)) = 0.01; \sigma(\gamma) = 2.4^{\circ}; \sigma(\alpha) = 4.5^{\circ}$

Beauty 2011 Conference, 4-8th April 2011, Amsterdam

N.Harnew