

$\rm B_{s}$ and Y(5S) decays at Belle

きぼう (kibo) means hope

Jean Wicht (KEK) Beauty 2011 April 4th 2011

J. Wicht: B_{g} and $\Upsilon(5S)$ decays at Belle

And to $\Upsilon(nS)\pi\pi$, etc...

Reconstruction of B_s

Using well-known M_{bc} and ΔE variables $M_{
m bc} = \sqrt{(E_{
m CM}/2)^2 - (p_{B_s^0}^{
m CM})^2}$ taking advantage of e⁺e⁻ annihilation $\Delta E = E_{B_s^0}^{
m CM} - E_{
m CM}/2$

Three possible $\Upsilon(5S)$ decays: $B_s^*B_s^*$, $B_s^*B_s$ and $B_s^*B_s^*$ We don't reconstruct the ~50MeV photon from B_s^* decay to B_s^* Three regions in $M_{bc}^-\Delta E$ plane (well separated)

Observation of $B_s \rightarrow J/\psi f_0(980)$ and evidence of $B_s \rightarrow J/\psi f_0(1370)$

PRL 106 121802 (2011) 121.4 fb⁻¹

 $B_s \rightarrow J/\psi f_0(980)$

- Silver mode for LHCb to measure β_s , the CP-violating phase in the B_s mixing Stone et al., arXiv:0909.5442 (2009)
 - BF 2-5 times smaller than $B_s \rightarrow J/\psi \phi$ BUT $J/\psi f_0$ is a **pure CP-eigenstate** (S \rightarrow VS versus S \rightarrow VV)
 - No angular analysis required
- Branching fraction
 - $\begin{array}{lll} & \operatorname{Extrapolation from } B_{s} \to J/\psi \, \varphi \\ & \frac{\mathcal{B}(B_{s}^{0} \to J/\psi f_{0}) \mathcal{B}(f_{0} \to \pi^{+}\pi^{-})}{\mathcal{B}(B_{s}^{0} \to J/\psi \phi) \mathcal{B}(\phi \to K^{+}K^{-})} & \approx & 0.2 \\ & = & 0.42 \pm 0.11 \end{array} \begin{array}{lll} & \operatorname{Stone et al., PRD 79,} \\ & 0.74024 (2009) \end{array} \\ & \operatorname{CLEO}(D_{s} \to f_{0} \mathrm{ev}), \\ & \operatorname{PRD 80, 052009 (2009)} \end{array} \\ & \operatorname{CDF's } J/\psi \, \varphi \Rightarrow & \mathcal{B}(B_{s}^{0} \to J/\psi f_{0}) \mathcal{B}(f_{0} \to \pi^{+}\pi^{-}) = \boxed{(1.3 2.7)10^{-4}} \\ & \text{Theory (QCD@LO)} \\ & \mathcal{B}(B_{s}^{0} \to J/\psi f_{0}) \mathcal{B}(f_{0} \to \pi^{+}\pi^{-}) & = & (3.4 \pm 2.4)10^{-4} \times (50_{-9}^{+7})\% \\ & \operatorname{QCD (LO)} & \underset{\operatorname{PRD 81, 074001 (2010)}}{\operatorname{BES, PRD 80, 052009 (2009)}} \end{array}$

$$=$$
 $(1.6 \pm 1.3)10^{-4}$

 $B_s \rightarrow J/\psi f_0$ results

 $J/\psi \rightarrow e^+e^-, \mu^+\mu^-$ and $f_0 \rightarrow \pi^+\pi^-$; select B_s with M_{bc} ; fit $M_{\pi\pi}$ and ΔE distributions

BF in good agreement with predictions

 $B_s \rightarrow J/\psi f_0$ results

Helicity angle distribution is consistent with $\boldsymbol{f}_{\scriptscriptstyle 0}$ being scalars

Observation of B J/ψ f₀(980)Consistent**First evidence of B** J/ψ f₀(1370)LHCb has also observed J/ ψ f₀(980): PLB 698, 115 (2011)

Observation of $h_{b}(1P)$ and $h_{b}(2P)$

arXiv:1103.3419 [hep-ex] preliminary contributed to La Thuile 2011 121.4 fb^{-1}

Does not agree well with the conventional $\Upsilon(10860)$ line shape 1) Y_{b} particle: analog to $\Upsilon(4260)$ that has anomalously large $\Gamma(J/\psi\pi\pi)$ 2) Rescattering of $\Upsilon(5S) \rightarrow BB\pi\pi \rightarrow \Upsilon(nS)\pi\pi$

11.0

0.000

10.75

10.8

10.85

0.000

10.75

10.8

10.85

10.9

10.95

11

√s (GeV)

J. Wicht: $B_{\mbox{\tiny s}}$ and $\Upsilon(5S)$ decays at Belle

11.05

10.9

10.95

11

√s (GeV)

- CLEO observed $e^+e^- \rightarrow h_c \pi^+ \pi^-$
 - h_c production cross-section seems to be **enhanced near Y(4260)**

• Do we have more chance of seeing $h_b \text{ at } \Upsilon(5S)$?

J. Wicht: $B_{_{\rm S}}$ and $\Upsilon(5S)$ decays at Belle

$h_{b}(nP)$ properties

- $b\overline{b}$ states, spin 0, L=1, J^{PC}=1⁺⁻.
- Expected mass of $h_{_{\rm b}}(nP)$ at the 11 Center of Gravity (CoG) of $\chi_{_{\rm b}}$ $_{10}$ states
 - Test of hyperfine splitting
- Radiative transition to $\eta_{\rm b}(1S)$
 - BaBar has obtained evidence (3.0 σ) of h_b(1P) in $\Upsilon(3S) \rightarrow \pi^0 h_b(1P) \rightarrow \pi^0 \gamma \eta_b(1S)$

J. Wicht: B_s and $\Upsilon(5S)$ decays at Belle

Analysis procedure

- Similar to CLEO's $h_{\rm c}$ analysis: missing mass (MM) technique
 - Implicit reconstruction of $\boldsymbol{h}_{\scriptscriptstyle b}$ thanks to e^+e^- annihilation

$$e^+e^- \rightarrow \Upsilon(5S) \rightarrow h_b \pi^+\pi^-$$

$$MM = \sqrt{(P_{\Upsilon(5S)} - P_{\pi^+\pi^-})^2}$$

- $P_{\gamma(5S)}$: CM-energy and boost (accelerator information)
- P_{n+n-} : we reconstruct and measure
- Search for peaks in MM when $h_{_{b}}(nP),\,\Upsilon(1\mathchar`{3}S),\,etc...$ are produced:

$MM \equiv M_{h_b}$

- Selection is simple
 - Pions with opposite charges
 - track originating from IP and particle identification
 - Continuum suppression with event shape

Signal calibration

- Use the large exclusive " $\Upsilon(5S)\to\Upsilon(nS)\;\pi^+\pi^-$ with $\Upsilon(nS)\to\mu^+\mu^-$ " as reference
 - Signal: CrystalBall tail due to ISR
 - Reflections are also calibrated

Background

- Most background is random combination of pions that can be described by polynomial function
- At MM~ $M_{\gamma(3S)}$ region: contribution from real $K_S \rightarrow \pi^+\pi^-$ explodes
 - Near threshold: $M_{\gamma(3S)} \sim E_{CM} M_{KS}$

Fit procedure

- Three independent fit are performed to MM distribution
 - signals and reflections (calibrated with exclusive decays)
 - combinatorial background: order of polynomial: max of C.L.
 - K_s background (3rd region only)

Results

h_b(2P)

- Could the observed states be $\chi_{h1}(nP)$? No
 - Mass (GeV/c²) 10.00 10.00 9.75 Measured masses are ~3 σ off compared to $\chi_{h1}(nP)$ •
 - $\Upsilon(5S) \rightarrow \chi_{h1}(nP)\pi^+\pi^-$ violates isospin (strong interaction)
- Mass are in very good agreement with CoG of $\chi_{\rm b}$ states
 - $h_{b}(1P): \Delta M = 1.62 \pm 1.52 \text{ MeV/c}^{2}$

Consistent with hyperfine interaction

- $h_{\rm b}(2P): \Delta M = 0.48 \pm 1.57 \text{ MeV/c}^2$
- Ratio of production rate $\frac{\Gamma(\Upsilon(5S) \to h_b(1P)\pi^+\pi^-)}{\Gamma(\Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-)} = 0.407 \pm 0.079^{+0.043}_{-0.076}$ $\frac{\Gamma(\Upsilon(5S) \to h_b(2P)\pi^+\pi^-)}{\Gamma(\Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-)} = 0.78 \pm 0.09^{+0.22}_{-0.10}$
 - Spin of $h_{h}(nP)$ is 0 while $\Upsilon(nS)$'s are 1: decays to h_{h} should be suppressed because of spin-flip.
 - $\Upsilon(5S) \rightarrow h_{h}(nP) \pi^{+}\pi^{-}$ decays seem exotic! J. Wicht: $B_{_{\rm S}}$ and $\Upsilon(5S)$ decays at Belle

Search for $h_{\rm b}$ at $\Upsilon(4S)$

- Using all our data: 711 fb⁻¹ (ie six times more data than at $\Upsilon(5S))$

Future plans

Many results obtained with only one fifth of our data: 23.6 fb⁻¹

$B^0_s ightarrow$	\mathbf{Type}	\mathcal{B}	Signif.	Status	Reference
$\phi\gamma$	Radiative penguin	$(53^{+18+12}_{-15-11})\ 10^{-6}$	5.5	1^{st} obs.	PRL 100, 121801
$\gamma\gamma$	Radiative penguin	$< 8.7 \; 10^{-6}$	—	$\mathbf{Best} \mathbf{UL}$	PRL 100, 121801
$J/\psi\eta$	CP-eigenstate	$(3.3\pm0.9\pm0.5)\;10^{-4}$	7.3	1^{st} obs.	arXiv:0912.1434
$J/\psi\eta^\prime$	CP-eigenstate	$(3.1\pm1.2\pm0.7)\;10^{-4}$	3.8	1^{st} evid.	arXiv:0912.1434
$D_s D_s$	CP-eigenstate	$(1.0^{+0.4}_{-0.3})\%$	6.2	—	PRL 105, 201802
$D_s^*D_s$	CP-eigenstate	$(2.8^{+0.8}_{-0.7}\pm 0.7)~\%$	6.6	1^{st} obs.	PRL 105, 201802
$D_s^*D_s^*$	CP-eigenstate	$(3.1^{+1.2}_{-1.0}\pm 0.8)~\%$	3.1	1^{st} evid.	PRL 105, 201802

J. Wicht: $\boldsymbol{B}_{_{\!\boldsymbol{S}}}$ and $\boldsymbol{\Upsilon}(5S)$ decays at Belle

Future plans

- Measure branching fractions as precisely as possible
 - Important for example for $B_{_{s}} \rightarrow \mu \mu$ BF normalization at LHC
 - Need to improve precision on f_s (fraction of B_s)
 - Using new method: **dileptons**
 - $\Upsilon(5S) \rightarrow B_s(\rightarrow X^- \mathbf{l}^+ \nu) \overline{B}_s(\rightarrow X^+ \mathbf{l}^- \nu)$
 - B_s oscillate ~40 times faster than B^0

	Lifetime $[10^{-12} s]$	$\Delta m \; [10^{12} \; ar{h} \; s^{-1}]$
B_s^0	1.425 ± 0.041	17.77 ± 0.12
$B^{ar{0}}$	1.525 ± 0.009	0.507 ± 0.005

- Ratio of "same sign dileptons" to "opposite sign dileptons" is sensitive to ${\rm f}_{\rm s}$
- Reach **5% precision** on f_s according to: arXiv:hep-ph/0604201

Summary

- With 121.4 fb⁻¹ at Υ(5S)
- Observation of $B_s \rightarrow J/\psi f_0(980)$ and first evidence of $B_s \rightarrow J/\psi f_0(1370)$
 - CP eigenstates to measure $\beta_{_{\rm S}}$ without angular analysis
- First observation of two $b\overline{b}$ states: $h_b(1P)$ and $h_b(2P)$
 - Masses in agreement with expectations (CoG of $\,\chi_{\rm b})$
 - Production ratio of $h_{_{\rm b}}$ with respect to $\Upsilon(2S)$ is not suppressed as expected due to the spin-flip
 - Production of h_b at $\Upsilon(5S)$ is exotic
 - No evidence of $h_{_{b}}$ in 711 fb $^{\text{-1}}$ at $\Upsilon(4S)$
- Stay tuned for summer results!

	Polynomial	Fit	Signal	Selection
	order	range	shape	requirements
$N[h_b], 10^3$	± 2.4	± 3.6	$^{+1.2}_{-8.0}$	
$M[h_b], \mathrm{MeV}/c^2$	$\pm.04$	$\pm.10$	+0.04 -0.20	+.20 30
$N[h_b(2P)], 10^3$	± 2.2	± 2.6	+239.0	_
$M[h_b(2P)], \mathrm{MeV}/c^2$	$\pm .10$	$\pm .20$	$^{+1.0}_{-0.0}$	$\pm.08$

J. Wicht: $B_{_{\rm S}}$ and $\Upsilon(5S)$ decays at Belle