

Impact of the D0 Dimuon A_{SL} Result

- Result is 40 times SM expectation.
- Requires some serious theoretical gymnastics to accommodate the result.
- About 30 papers cite this result, most proposing a model to explain the result.
- The D0 analysis doesn't use dimuon mass or impact parameters.

Impact of the D0 Dimuon Ası Result

- Result is 40 times SM expectation
- Requires some serious theoretics to accommodate the result.
- About 30 papers cite to esplain the resultation of the second of the seco
- The D0 analysis desnite dimuon mass or impact parameter.

CDF Technique

- Use muon impact parameter distributions to separate bb contribution from other sources.
- Select dimuon events with $|\eta|$ <0.6 and p_T >3GeV/c for each muon.
- 5 GeV/ c^2 < $M_{\mu\mu}$ < 80 GeV/ c^2
- Remove events with additional muons
- Plot the IP distributions (d_1,d_2) for opposite sign (OS) and same sign (++,--) muons.
- Simultaneously fit the distributions for muons from b pairs (BB), c pairs (CC), sequential decays (BC), Drell-Yan (PP), and D.I.F.'s or misID's with a muon or in pairs (BB_{FK}, CC_{FK}, and other).

A Note on Templates

- Sequential decays
 (b→μc→μμx) contribute to
 OS templates but not SS
 templates.
- And cc source is only OS.
- Prompt → Y data
- b and c \rightarrow simulation [tuned in $\sigma(b\overline{b})$ analysis]

Advantages

- Use data-derived templates for these sources (as much as possible).
- Excellent I.P. resolution allows us to disentangle the sources.
- This technique has been used since Run I
 - most recently to measure bb production xsec:
 PRD 77, 072004 (2008).
 - Previous A_{SL}: http://www-cdf.fnal.gov/physics/new/bottom/070816.blessed-acp-bsemil/
- Measurement of $\overline{\chi}$ is good preparation for an A_{SL} measurement

• $\overline{\chi}$ is the average mixing probability

$$\overline{\chi}_b = \frac{\Gamma(B^0 \to \overline{B}^0 \to \ell^+ X)}{\Gamma(B \to \ell^\pm X)} = f_d \chi_d + f_s \chi_s$$

And is related to R:

$$R = \frac{N^{++} + N^{--}}{N^{OS}}$$

• Difference in $\overline{\chi}$ from LEP (0.1259±0.0042) and Tevatron (0.147±0.011)

CDF Runl: PRD 69, 012002 (2004)

Relation of R to $\overline{\chi}$

- R has contributions from mixing, and other decay processes such as
 - $-b\rightarrow c\rightarrow \mu$ decays
 - $-b\rightarrow \psi X$, $b\rightarrow \chi_c X$, and other $b\rightarrow c\overline{c}$ q decays
- We account for these effects with a parameter f, determined from simulation to be f=0.176±0.011
- We obtain the relation:

$$R = \frac{f\left[\overline{\chi}^2 + (1 - \overline{\chi})^2\right] + 2\overline{\chi}(1 - \overline{\chi})(1 - f)}{(1 - f)\left[\overline{\chi}^2 + (1 - \overline{\chi})^2\right] + 2\overline{\chi}(1 - \overline{\chi})f}$$

\(\overline{\chi} \) Measurement

- Use dimuon triggered data from 1.44/fb of int. lumi.
- Same selection requirements as described for A_{SL} measurement.
- Require that both muons have a hit in one of the two innermost silicon layers
 - Removes a large fraction of poorly understood events
 - Reduces overall statistics.
- Fit the OS, ++, and impact parameter distributions simultaneously
- Determine R from BB component of the fit.

The Fit Function (for completeness)

$$L = \prod_i \prod_j \left[\ell_{ij}^{n(i,j)} rac{e^{-\ell_{ij}}}{n(i,j)!}
ight]$$

$$egin{aligned} \ell_{ij} = &BB^{XS} \cdot S_b^{XS}(i) \cdot S_b^{XS}(j) + BB_{FK}^{XS} \cdot S_b(i) \cdot S_b(j) \ &+ \left(CC + CC_{FK}^{XS}\right) \cdot S_c(i) \cdot S_c(j) + PP^{XS} \cdot S_p(i) \cdot S_p(j) \ &+ rac{1}{2} \left[BP^{XS} \cdot \left(S_b(i) \cdot S_p(j) + S_p(i) \cdot S_b(j)
ight) \ &+ CP^{XS} \cdot \left(S_c(i) \cdot S_p(j) + S_p(i) \cdot S_c(j)
ight) \ &+ BC^{XS} \cdot \left(S_b(i) \cdot S_c(j) + S_c(i) \cdot S_b(j)
ight)
ight] \end{aligned}$$

$$\frac{1}{2} \left[\frac{(CP - BP)^2}{CP + BP + (0.14 \cdot BP)^2} + \frac{(BC - 0.046 \cdot BB)^2}{BC + (0.046)^2 \cdot BB + (0.013 \cdot BB)^2} \right]$$

$$CP^{LS} = (1.05 \pm 0.05) \cdot CP^{OS}$$
 $CP^{++} = (1.2 \pm 0.1) \cdot CP^{--}$ $BP^{LS} = (0.87 \pm 0.07) \cdot BP^{OS}$ $BP^{++} = (1.15 \pm 0.05) \cdot BP^{--}$ $BC^{LS} = BC^{OS}$ $BC^{++} = BC^{--}$

₹ Result

- R=0.467±0.008 (stat only)
- Varying the templates within their uncertainties yields a systematic error of 0.007
- $R = 0.467 \pm 0.011$ (stat and sys)
- Yields $\overline{\chi}$ = 0.126±0.008 (0.005 is due to R and 0.006 to f)
- Compare to LEP average $\overline{\chi} = 0.1259 \pm 0.0042$

Additional Checks on $\overline{\chi}$

- To investigate difference w.r.t. earlier Tevatron measurements, we revert to "standard" silicon hit requirements.
- This lets in a class of muons missing from the simulation; we refer to them as "ghosts".
- The ghosts are dominated by punchthrough, and it is important to correctly account for them.
- The ghost template is derived from 0.7/fb of data and applied to the other 0.7/fb of data.

0.2

0.2

15

Fit result with ghosts

Consistent result R=0.466±0.007 (stat only)

Fit probability 49.1%

R. Harr for CDF

Prospects for A_{SL}

Measure the dimuon asymmetry defined as

$$A_{SL} = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

- Using 6/fb of data, like sign sample is about 1.2 million events, about 1/3 the size of the D0 sample.
- Will yield 70% larger statistical errors than D0.
- Systematic errors should scale similarly.

Conclusion

- The new
 \overline{\chi}\ result is in agreement with the LEP measurements, possibly settling a long standing difference.
- Previous disagreement related to class of poorly understood muons (ghosts).
- Data-derived templates for ghosts allows us to extract $\overline{\chi}$.
- These techniques are being used to measure A_{SL} in 6/fb of data.

Magnetic Field

- CDF does not reverse solenoid polarity
 - Central tracker has tilted drift cells intended for one field direction
 - We evaluate tracking asymmetry with data (see CPV in charm decays talk by Angelo Di Canto on Tuesday).
 - CDF muon chambers are not in a magnetized region
 - We don't see an asymmetry in muon ID.