13th International Conference on B-Physics at Hadron Machines

Suppressed B_s decays at Tevatron

Mirco Dorigo*
(on behalf of the CDF collaboration)

*INFN and University of Trieste

The Strange Beauty of the Tevatron

Tevatron has pioneered the B_s physics sector

- Usable b x-section ~6 μb (p_T>6 GeV/c, |y|<1)
- b-quark fragmentation to \dot{B}_s mesons f_s/\dot{f}_d =0.269±0.033

No longer alone: first Belle, then LHC friends join us in this exciting business

10 years of pp collisions (10¹³ collisions): still have something to take out of the oven

 $B_s^0 \to \phi \phi$

$$B_s^0 \to \phi \phi$$

Comparing with tree transition could help to disentangle NP contribution in mixing and decay

$B_s^0 \rightarrow \phi \phi$ at Tevatron

- CDF first evidence 2005. 8 events in 180 pb⁻¹. PRL 95, 031801 (2005)
- BR measurements: 295 ± 20 events in 2.9 fb⁻¹.cdf-pub-10064 (2010) BR= $(2.40\pm0.21\pm0.86)\times10^{-5}$
- First Polarization MeasurementCDF-PUB-10120 (2010)

Found large transverse polarization

$$(|A_{||}|^2 + |A_{\perp}|^2)/|A_0|^2 = 1.9 \pm 0.2$$

disagreement with SM Naïve expectation $(|A_{||}|^2 + |A_{\perp}|^2)/|A_0|^2 \ll 1$

Consistent behaviour with other $b \rightarrow s$ penguin. Both SM (PA or FSI) and NP has been proposed to resolve the puzzle.

NP through a CPV search

- CP-violation (Φ_s) expected very tiny in SM for $B_s^0 \to \phi \phi$. NP could enhance it.
- The best (hard) way: measurement from full tagged and time-dependent analysis as case of favored transition but: O(1000) events required, lack of statistics...

Can we get something anyway?

I. Bigi: look at an asymmetry of distribution of CP-odd variables.

No need of time-evolution, no need of tagging. Look at: KTeV Coll., PRL 96,101801 (2006)

BRAND NEW!

CDF 2011: First CPV search in untagged sample

$B_s^0 \rightarrow \phi \phi$ Triple Products (TP)

CP-even/CP-odd interference (A_0A_\perp) and $(A_{||}A_\perp)$:

$$\Im(A_{\perp}A_i^{\star}) - \Im(\bar{A}_{\perp}\bar{A}_i^{\star}) \ i = 0, \parallel$$

 f_4 and f_6 :

Proportional to True

CP-violating Triple Product

observables

$$\vec{p} \cdot (\vec{\varepsilon}_1 \times \vec{\varepsilon}_2)$$

(seen in J. Rosner's talk)

TP asymmetries expected zero in the SM

Experimentally accessed by asymmetry of distribution of two angular functions

$$\mathbf{u} = \cos \Phi \sin \Phi \longrightarrow \mathbf{A}_{||} \mathbf{A}_{\perp}$$

$$\mathbf{v} = \begin{cases} \sin \Phi & \text{if } \cos \vartheta_1 \cos \vartheta_2 > 0 \\ \sin(-\Phi) & \text{if } \cos \vartheta_1 \cos \vartheta_2 < 0 \end{cases} \longrightarrow \mathbf{A}_0 \mathbf{A}_{\perp}$$

$B_s^0 \rightarrow \phi \phi sample$

- collected by displaced track trigger
- optimized selection based on kinematic and impact parameter cuts.

 $B_s^0 \rightarrow \phi K^*$ reflection ~3%, no other peaking bkg from simulation of B_s^0 or Λ_b decays

• take $|m_{[KK]}-m_{\phi(1020)}|<15 \text{ MeV/c}^2$

u and v distributions

Measure u and v asymmetries (proportional to TP asymmetries)

Strategy

Is the splitting biased?

Variables u and v defined by helicity angles. Is the angular acceptance introducing artificial asymmetries? From full MC simulation: check no bias at permille level.

Asymmetries fit

Unbinned Max Likelihood fit:

- Signal asymmetry enter directly the Likelihood
- Backg asymmetry consistent with zero.

u observable

v observable

$B_s^0 \rightarrow \phi \phi$ TP results

Systematics: potential contribution of physics background ($B^0_s \rightarrow \phi K^*$, $B^0_s \rightarrow \phi K^+ K^-$ and $B^0_s \rightarrow \phi f_0$). Negligible bias from time-acceptance from MC simulations.

CDF-PUB-10424 (2011)

$$A_u$$
= (-0.8 \pm 6.4(stat.) \pm 1.8(syst.))% A_v =(-12.0 \pm 6.4(stat.) \pm 1.6(syst.))%

Constrain
TP asymmetries
of SM
arXiv:hep-ph/11032442

$$\propto \sin \varphi_{weak} \cos \delta_{strong}$$

First measurement of CP violation in the $B_s^0 \rightarrow \phi \phi$

Sensitive to CP-violation (i.e. NP) both in mixing and decay

$$\lambda \equiv \boxed{\frac{q}{p} \frac{\langle f | \bar{B}^0 \rangle}{\langle f | B^0 \rangle}}$$

 $B_s^0 \rightarrow J/\psi f_0$

$B_s^0 \rightarrow J/\psi \uparrow_0 at CDF$

• CP-odd final state. Potential clean measurement of Γ_{odd} (= Γ_{H}). β_s (w/o angular analysis).

CDF 2011 observation (see I. Ripp-Baudot's talk for DO)

$$R_{f_0/\phi} = \underbrace{\frac{\mathcal{B}(B_s^0 \to J/\psi f_0(980))}{\mathcal{B}(B_s^0 \to J/\psi \phi)}}_{\mathcal{B}(\phi \to K^+K^-)} \underbrace{\frac{\mathcal{B}(f_0(980) \to \pi^+\pi^-)}{\mathcal{B}(\phi \to K^+K^-)}}_{\text{prom PDG}}$$

$$\begin{array}{c|c} N(B_s^0 \to J/\psi f_0) & \varepsilon_{J/\psi\phi} \\ \hline N(B_s^0 \to J/\psi \phi) & \varepsilon_{J/\psi f_0} \end{array}$$

from data:

from MC

- dimuon trigger, 3.8 fb⁻¹
- optimized selection: NN for unbiased maximization of ε/(2.5+√B). ε from simulation, B from mass sideband.

$B_s^0 \rightarrow J/\psi f_0 fit$

$$\frac{N(B_s^0 \to J/\psi f_0)}{N(B_s^0 \to J/\psi \phi)} \frac{\varepsilon_{J/\psi \phi}}{\varepsilon_{J/\psi f_0}}$$

careful understanding of background components:

- ✓ linear combinatorial
- \checkmark physics from MC $B^0 \rightarrow J/\psi \pi^+\pi^-$

$$N(B_s^0 \to J/\psi f_0)=571\pm37\pm25$$

 $N(B_s^0 \to J/\psi \phi$
 $)=2302\pm49\pm49$

Systematic: signal-background modeling

$B_s^0 \rightarrow J/\psi f_0 efficiency$

$$\frac{N(B_s^0 \to J/\psi f_0)}{N(B_s^0 \to J/\psi \phi)} \frac{\varepsilon_{J/\psi \phi}}{\varepsilon_{J/\psi f_0}}$$

= 1.178 ± 0.040 from full MC simulation.

 $B_s^0 \rightarrow J/\psi \phi$ from CDF Note 10206 $B_s^0 \rightarrow J/\psi f_0$ modeled by Flattè distr. (input from BES, PLB 607, 243(2005)).

Systematic: MC-data agreement, input uncertainties

$B_s^0 \rightarrow J/\psi f_0 \text{ result}$

Final Resuts CDF-PUB-10404 (2011)

CDF:
$$R_{f_0/\phi} = 0.292 \pm 0.020 \pm 0.017$$

In agreement with DO: R = 0.210 \pm 0.032 \pm 0.036

and with LHCb: $R_{f_0/\phi} = 0.252^{+0.046}_{-0.032}^{+0.046}_{-0.033}^{+0.027}$

Expectation: R in 0.1-0.5

Fixing BR($B_s^0 \rightarrow J/\psi \phi$) to PDG value

$$\mathcal{B}(B_s^0 \to J/\psi f_0(980))\mathcal{B}(f_0(980) \to \pi^+\pi^-) = (1.85 \pm 0.13 \pm 0.11 \pm 0.57) \cdot 10^{-4}$$

Agreement with Belle: $(1.16^{+0.31}_{-0.19} \, {}^{+0.15}_{-0.17} \, {}^{+0.26}_{-0.18}) \cdot 10^{-4}$

 $B_s^0 \rightarrow J/\psi K^{(*)}$

$B_s^0 \rightarrow J/\psi K^{(*)}$ analysis

CDF 2010 first observation (5.9 fb⁻¹)

Reconstruct J/ $\psi \rightarrow \mu^{+}\mu^{-}$. $K_{S} \rightarrow \pi^{+}\pi^{-}$, K_{S} decay length> 5 mm. $K^{*}(892) \rightarrow K\pi$, $|M_{K\pi} - M_{K^{*}}| < 50$ MeV/ c^{2} Binned fit to extract signal yield:

$$N(B_s^0 \rightarrow J/\psi K_S)=$$

 $N(B_s^0 \to J/\psi K^*)=151\pm 25$

Main background: combinatorial and partially reconstructed decays

$B_s^0 \rightarrow J/\psi K^{(*)}$ results

$$\frac{\mathcal{B}(B_s^0 \to J/\psi \, K_S^0)}{\mathcal{B}(B^0 \to J/\psi \, K_S^0)} = 0.041 \pm 0.007(\text{stat})$$
$$\pm 0.004(\text{syst}) \pm 0.005(\text{frag})$$

$$\frac{\mathcal{B}(B_s^0 \to J/\psi K^{*0})}{\mathcal{B}(B^0 \to J/\psi K^{*0})} = 0.062 \pm 0.009(\text{stat})$$
$$\pm 0.025(\text{syst}) \pm 0.008(\text{frag})$$

Fixing reference mode's BR's to PDG:

$$\mathcal{B}(B_s^0 \to J/\psi \, K^0) = (3.5 \pm 0.6 (\mathrm{stat}) \pm 0.4 (\mathrm{syst}) \\ \pm 0.4 (\mathrm{frag}) \pm 0.1 (\mathrm{norm})) \times 10^{-5} \\ \mathcal{B}(B_s^0 \to J/\psi \, K^{*0}) = (8.3 \pm 1.2 (\mathrm{stat}) \pm 3.4 (\mathrm{syst}) \\ \pm 1.0 (\mathrm{frag}) \pm 0.4 (\mathrm{norm})) \times 10^{-5} \\$$

Dominated by backg. modeling and knwoledge of polarization

Published in PRD 83, 052012 (2011)

confirmed by LHCb

Conclusion

Rewarding results from Tevatron on B_s suppressed decays.

- $B_s^0 \to \phi \phi$: probing NP with b $\to s$ penguin. Update BR and first polarization measurement 2010. NEW: First search for CP violation through TP in untagged sample.
- $B_s{}^0 \to J/\psi f_0$: clean mode for Γ_{odd} measurement. Potential simpler analysis for β_s (w/o angular analysis). Tevatron confirms LHCb and Belle observation with higher precision.
- $B_s^0 \rightarrow J/\psi K^{(*)}$: disentangle penguin contribution. With K_S CP-odd mode, sensitive to γ. First observation 2010 and BR measurement.
- Expected ~10 fb⁻¹ per experiment in October. Analyses steadily improving. Still some aces up our sleeves.

Backup

$B_s^0 \rightarrow \phi \phi$ selection requirements

Take $|m_{[KK]} - m_{\phi(1020)}| < 15 \text{ MeV/c}^2$

Optimized selection

L_{xy}^B	$[\mu \mathrm{m}]$	> 330
$p_{ m Tmin}^{K^{\circ}}$	$[\mathrm{GeV}/c]$	> 0.7
p_{T}^{ϕ}	[GeV/c]	
χ^2_{xy}		< 17
d_0^B	$[\mu \mathrm{m}]$	< 65
$d_0^{\phi_{ ext{max}}}$	$[\mu \mathrm{m}]$	> 85
$p_{ m T}^{J/\psi}$	$[\mathrm{GeV}/c]$	

1° Polarization Measurement

Unbinned Maximum Likelihood fit to Mass and Angles

- Acceptance correction from simulation
- background modeled on sideband (polynomials) and fitted in the whole mass range

Polarization Results

- Cross check with $B^0_s \rightarrow J/\psi \phi$ sample used in BR measurement (same trigger, ~1800 ev.) consistent with WA within stat. uncertainties
- Systematics dominated by:
 - Non-resonant contributions ($B_s^0 \rightarrow \phi(KK)$) and $B_s^0 \rightarrow \phi f_0$: ~1%
 - Dependence of acceptance on $\Delta\Gamma_s$: ~1%
 - Uncertainties of $\tau_{L(H)}$: ~1%

$$|A_0|^2 = 0.348 \pm 0.041(\text{stat}) \pm 0.021(\text{syst}),$$

 $|A_{\parallel}|^2 = 0.287 \pm 0.043(\text{stat}) \pm 0.011(\text{syst}),$
 $|A_{\perp}|^2 = 0.365 \pm 0.044(\text{stat}) \pm 0.027(\text{syst}),$
 $\cos \delta_{\parallel} = -0.91^{+0.15}_{-0.13}(\text{stat}) \pm 0.09(\text{syst}).$

CDF-PUB-10120 (2010)

...a little insight the Puzzle

Naïve expectation: $|A_0|^2 \gg |A_{||}|^2 \sim |A_{\perp}|^2$

- V-A nature of weak interaction and conservation helicity in QCD

Experimentally violated in penguin decays (BaBar, Belle):

- PA [e.g. PL B601, 151 (2004); NP B774, 64 (2007)]
- FSI [PL B597, 291 (2004) + many others]
- NP? [PR D76, 075015 (2007)]

Agreement with QCDf prediction

	$\cos\delta_\parallel$	
CDF	$-0.91^{+0.15}_{-0.13}(stat) \pm 0.09(syst)$)
QCDf	$-0.80^{+0.31}_{-0.16}$ NP B774 (2007)	
QCDp	0.27 ^{+0.09} _{-0.27} PR D76 (2007)	

TP in $B_s^0 \rightarrow \phi \phi$

Two TP's in $B_s^0 \rightarrow \phi\phi$:

$$\begin{array}{ccc} \mathsf{TP_1} & \mathsf{TP_2} \\ (\hat{n}_1 \times \hat{n}_2) \cdot \hat{n}_z (\hat{n}_1 \cdot \hat{n}_2) & (\hat{n}_1 \times \hat{n}_2) \cdot \hat{n}_z \\ \downarrow & \downarrow \\ f_4, K_4 & f_6, K_6 \end{array}$$

$B_s^0 \rightarrow J/\psi f_0$

$$B_s^0 \rightarrow J/\psi f_0$$

Potential S-wave contamination of $B_s^0 \to J/\psi \phi$ sample biasing β_s analysis PRD, 074024 (2009)

CP-odd:

Potential clean measurement of

$$\Gamma_{\text{odd}} \left(= \Gamma_{\text{H}} \right)$$

If no CPV in mixing

Could be used to measure β_s without angular analysis

arXiv:hep-ex/09095442

CP admixture:

- both Γ_L and Γ_H
- angular analysis

$B_s^0 \rightarrow J/\psi f_0$ efficiency

 $B_s^0 \rightarrow J/\psi \phi$: CDF Pub Note 10206

$$\tau = 458.6 \pm 8.4 \,\mu\text{m},$$

$$\Delta\Gamma = 0.075 \pm 0.036 \,\text{ps}^{-1},$$

$$|A_0|^2 = 0.524 \pm 0.020,$$

$$|A_{||}^2 = 0.231 \pm 0.021.$$

$$\phi_{||} = -2.86 \pm 0.11$$
 PDG for $B^0 \rightarrow J/\psi \ K^*$

 $B_s^0 \rightarrow J/\psi f_0$ modeled by Flattè distr. input from BES, PLB 607, 243(2005):

$$m_0 = 965 \pm 8 \pm 6 \text{ MeV}/c^2,$$

 $g_{\pi} = 165 \pm 10 \pm 15 \text{ MeV}/c^2,$
 $g_K/g_{\pi} = 4.21 \pm 0.25 \pm 0.21.$

CDF measures:

$$m_0 = 989.6 \pm 9.9 \text{(stat) MeV}/c^2,$$

 $g_{\pi} = 141 \pm 19 \text{(stat) MeV}/c^2$
 $g_K/g_{\pi} = 2.3 \pm 1.3 \text{(stat)}$

$B_s^0 \rightarrow J/\psi f_0 \text{ checks}$

Positive muon helicity angle (corrected for efficiency)

Positive pion helicity angle (corrected for efficiency)

$B_s^0 \rightarrow J/\psi K^{(*)}$

1. "Suppressed decay" $B_s^0 \rightarrow J/\psi K_S$

$T + O(\lambda)P$

- Greater sensitivity to penguin in B_s decays
- CP-odd: clean measurement of $\Gamma_{s,odd}$ (= $\Gamma_{s,H}$)
 If no CPV in mixing
- sensitive to γ (EPJC 10,299 (1999))

"Favored partner" $B^{0} \rightarrow J/\psi K_{5}$ $T+ O(\lambda^{2})P$

2. "Suppressed decay" "Favored partner" $B_s^0 \to J/\psi \ \text{K(892)}^* \ \text{CP admixture} = B^0 \to J/\psi \ \text{K(892)}^*$

Help to disentagle penguin contribution in $B_s^0 \to J/\psi \phi$ (PRD 79, 014005 (2009)).

$B_s^0 \rightarrow J/\psi K^{(*)}$: selection

Reconstruct J/ $\psi \rightarrow \mu^{+}\mu^{-}$ K_S $\rightarrow \pi^{+}\pi^{-}$, K_S decay length> 5 mm K*(892) \rightarrow K π , |M_{K π} - M_{K*}|< 50 MeV/c²

With loose vertexing requirement B_d signal very clear already.

Optimization: maximize

$$5/(1.5+\sqrt{B})$$

 $B_s^0 \rightarrow J/\psi K^*$: rectangular cuts $B_s^0 \rightarrow J/\psi K_S$: use of NN

$B_s^0 \rightarrow J/\psi K^{(*)}$

 Λ_b reflection removed by $\cos\theta_{K\pi}$ -0.75

