CP violation measurements with B_s → J/ψφ decays at the Tevatron

Isabelle Ripp-Baudot IPHC - CNRS/IN2P3 and Université de Strasbourg on behalf of the CDF & the DØ collaborations

BEAUTY 2011, Amsterdam, April 2011

motivation

• CPV in $B_s \rightarrow J/\psi \phi$ decays occurs through interference between decays with and w/o mixing. Analogous to the measurement of $\sin 2\beta$ with $B^0 \rightarrow J/\psi K_s^0$ events. But with $B_s \rightarrow J/\psi \phi$ events we measure sin $2\beta_s$.

• SM predicts very small observable phase β_s:

$$2\beta_{s}^{SM} = 2 \arg \left(-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right) = \lambda^{2}\eta = 0.038 \pm 0.002$$

• The CPV phase
in the box:
decay rate ~
$$\int_{\overline{b} \to 0}^{s} \frac{1}{b} \int_{\overline{b} \to 0}^{c} \frac{1}{c} \int_{\overline{b}}^{s} \frac{1}{c}$$

. . S

new physics NP

$$\varphi_{s} = \varphi_{s}^{SM} + \varphi_{s}^{NP}$$
with
$$\varphi_{s}^{SM} = 0.0042 \pm 0.0014$$

$$2\beta_{s} = 2\beta_{s}^{SM} - \varphi_{s}^{NP}$$

If B.SM physics with $\phi_s^{NP} >> \phi_s^{SM}$, β_s^{SM} :

 $\phi_s \sim \phi_s^{NP} \sim -2\beta_s$

measurement method

- ϕ_s and $\Delta\Gamma_s$ will be measured by studying the time evolution of flavour tagged $B_s \rightarrow J/\psi \phi$ decays.
- Decay of a pseudo-scalar B_s into 2 vector-mesons J/ ψ and ϕ with 3 possible orbital angular momentum L final states. Linear polarization states of the J/ ψ and ϕ provide a convenient basis for the analysis of the B_s \rightarrow J/ $\psi\phi$ decay.
- → characterization by 3 independent complex amplitudes:
 - A₀ L=0 CP-even final state
 - A_{II} L=2 CP-even final state
 - A_{\perp} L=I CP-odd final state

and 2 relative strong phases $\delta_{\prime\prime}$ and δ_{\perp} w.r.t. A_0.

 The J/ψφ final state is a mixture of CP-even (~75 %) and CP-odd (~25%) states
 → Measure angular distributions θ_T, φ_T and ψ_T to disentangle the 3 final states and so separate CP eigenstates.

measurement method (2)

• Fit differential decay rates for B_s and \overline{B}_s :

 $\frac{d^4\Gamma(B_s \longrightarrow J/\psi \varphi)}{dt \ dcos\theta_T \ d\varphi_T \ dcos\psi_T} = f(\varphi_s, \Delta m_s, \Delta\Gamma_s, \tau_s, A_0, A_{||}, A_{\perp}, \delta_{||}, \delta_{\perp})$

- Flavour tagging used to disentangle the 2 initial states B_s and B_s.
 Untagged analyses allow higher efficiencies
 → still sensitive to cosφ_s and (exp^{-Γ_H} exp^{-Γ_L})sinφ_s thanks to sizeable width difference ΔΓ_s between the B_s eigenstates
 → sign ambiguity on the weak phase for a given ΔΓ_s.
- Multidimensional unbinned likelihood fit to background+signal distributions of:
 - reconstructed invariant mass $M(J/\psi \phi)$,
 - reconstructed proper decay time I/F,
 - 3 angles θ_T , ϕ_T and ψ_T , convoluted to detector acceptance,

for each $B_s \rightarrow J/\psi \phi$ reconstructed decay weighted by its flavour tagging probability,

- mass and lifetime uncertainties, tagging dilution.

previous measurements

- With low statistics (1.1 to 1.35 fb⁻¹), CDF and DØ performed **untagged analyses**.
- First flavour tagged result from CDF with 1.35 fb⁻¹ suggests a 1.5σ deviation from the S.M. expectation.
- Updates with **2.8 fb⁻¹**:
- CDF and DØ results were consistent and observed each a deviation in the same direction of $\sim 1.8\sigma$ w.r.t. the SM central point (p-value $\sim 7\%$).

• combination CDF + DØ : 2.1σ deviation w.r.t. the SM central point (p-value = 3.4 %).

DØ - PRL 101, 241801 (2008) → combination CDF - Public Note 9458 (2008) DØ Public Note 5928

• **Present measurements**: with increased statistics.

• CDF: based on **5.2 fb⁻¹** with improved particle Id, NN, flavour tagging (SST) and contribution of S-wave included.

• DØ: based on **6.1** fb⁻¹ with improved selection and no same side tagger anymore.

CDF - PRL 100, 121803 (2008) 5 fb⁻¹ CDF - PRL 100, 161802 (2008)

DØ - PRL 98, 121801 (2007)

DØ - Public Note 6098
CDF - Public Note 10206

experimental environment

Tevatron Run II (since 2001):

- $\sqrt{s} = 1.96 \text{ Tev},$
- inst. lumi ~ 3.5×10³² cm⁻²s⁻¹,
- total lumi. ~ 10.5 fb⁻¹ delivered.
- end of run : 2011, ~ 11 fb⁻¹ analysable.

Tevatron offers:

- large bb production rate,
 ~40×10⁶ bb pairs/hour produced,
- high integrated luminosity.

But also:

- huge background (> x1000),
- high track multiplicity environment.

 \rightarrow underlying differences w.r.t. the instantaneous luminosity.

CDF and DØ's major assets for this measurement :

- highly selective triggers based on single- and di-muon triggers,
- good vertex and mass resolutions.

$B_s \longrightarrow J/\Psi \varphi \ reconstruction$

- This analysis is **statistically limited**: efficient selection is important.
- CDF and DØ apply ~ the same selection based on kinematical variables.
- Further background suppression by CDF by cutting on an (new) NN combining kinematical variables with particle identification.

Signal is simulated and background is modeled by data B_s mass sideband regions for training.

flavour tagging

• Techniques developed and used in other B analyses. Calibration in data with inclusive and exclusive B decays of known flavours (for the OST) and with B_s mixing measurement (SST).

- **Opposite Side Tagger** based on charged decay particles from the opposite side B meson. Discriminating variable built from an inclusive combination (likelihood ratio method or NN) of:
 - e^+ or μ^+ from other B semi-leptonic decay,
 - charge of the opposite decay vertex,
 - opposite tracks charge (only DØ).

OST tagging power = Efficiency x Dilution² ~ I.2 % (CDF) ~ 2.5 % (DØ). Dilution = $\frac{\text{correct - wrong}}{\text{correct + wrong}}$

• Same Side Tagger \rightarrow charged K⁺, sharing the same ss di-quark from fragmentation with same side B_s.

Impact from higher instantaneous luminosity (currently dropped by DØ). CDF benefits from particle-Id (dE/dx and TOF).

SST tagging power $\epsilon D^2 \sim 3.1$ % (CDF).

• Flavour is given as a **tagging probability** on an event-by-event basis.

CDF point estimates

- Addition of an S-wave component due to fo or non-resonant K⁺K⁻contribution

(both = flat KK invariant mass distributions under the ϕ mass peak).

→ fitted fraction of S-wave contamination is < 6.7 % @ 95 % C.L. and can be neglected.

• Also most precise measurement of $|A_0(0)|^2$, $|A_{||}(0)|^2$ and $|A_{\perp}(0)|^2$. And the strong phase δ_{\perp} is also extracted, in agreement with previous determinations.

DØ point estimates

- S-wave found to be non-significant → not included.
- gaussian constraints on Δm_s (PDG) and on strong phases δ_i (values from $B^0 \rightarrow J/\Psi K^*$ under U(3) flavour symmetry assumption).
- two background components: prompt and non-prompt J/ ψ associated to a ϕ candidate.

ϕ_s - $\Delta\Gamma_s$ C.L. contours

- Analysis statistically limited: the likelihood is not gaussian.
- → a likelihood-C.L. conversion curve, including effects of systematic uncertainties,

is determined by an ensemble study.

$B_s \longrightarrow J/\Psi f_0(980)$ decay

- Current ϕ_s measurement is statistically limited \rightarrow add the $B_s \rightarrow J/\Psi f_0(980)$ decay mode. This decay channel is a **CP eigenstate** \rightarrow no angular analysis needed and different systematics uncertainties.
- DØ measures the ratio of the $B_s \rightarrow J/\Psi f_0$ and $B_s \rightarrow J/\Psi \varphi$ branching fraction, with identical reconstruction criteria for the 2 decay modes \rightarrow systematics cancellation:

$$R = \frac{B.R. (B_s \longrightarrow J/\psi f_0(980), f_0(980) \longrightarrow \pi^+\pi^-)}{B.R. (B_s \longrightarrow J/\psi \varphi, \varphi \longrightarrow K^+K^-)} = \frac{\# B_s \longrightarrow J/\psi f_0(980) \times \epsilon_{reco}^{J/\psi\varphi}}{\# B_s \longrightarrow J/\psi \varphi \times \epsilon_{reco}^{J/\psi f_0}}$$

- This measurement is based on 8 fb⁻¹ of analysed data and after a complete **re-optimization** of the reconstruction criteria : 2 Boosted Decision Tree discriminants built to discriminate the prompt and the non-prompt J/ ψ background against the B_s signal.
- CDF has presented also a new first measurement of this ratio in March 2011, see talk by M. Dorigo: "Suppressed B_s Decays at the Tevatron" at same conference.

$B_s \rightarrow J/\Psi f_0(980) decay (2)$

• Efficiencies estimated in MC and determined for each run range separately (triggers, tracking):

data sample	ε J/ψf0 reco	ε ^{J/ψφ} reco	ratio R
Ι	0.0231 ± 0.0004	0.0191 ± 0.0004	0.210 ± 0.0321
2	0.0191 ± 0.0004	0.0146 ± 0.0003	0.228 ± 0.0353
3	0.00636 ± 0.00018	0.00529 ± 0.00015	0.210 ± 0.032

DØ's measurement: and CDF: $R = 0.210 \pm 0.032 \text{ (stat.)} \pm 0.036 \text{ (syst.)}$ $= 0.292 \pm 0.020 \text{ (stat.)} \pm 0.017 \text{ (syst.)}$

in good agreement with Belle and LHCb results.

conclusion

• Most direct and precise experimental results on the CPV phase ϕ_s and the mass eigenstates width difference $\Delta\Gamma_s$ come from the Tevatron, using reconstructed $B_s \rightarrow J/\psi \phi$ decays

CDF and DØ latest measurements have been presented, based on 5.2 and 6.1 fb⁻¹ of collected data respectively.

- Error contour has significantly decreased with higher dataset.
- New results are consistent and also consistent with previous Tevatron measurements using $B_s \rightarrow J/\psi \varphi$ decays.
- Consistency with SM has improved.

• New results demonstrate also better consistency with NP models predictions and are in good agreement with the anomalous like-sign dimuon charge asymmetry result, under the assumption of a single source of CPV in the B_s system.

and outlook

Not the final word yet:

• twice as much data are still to be analysed,

- analysis improvements are in progress: wider acceptance, better selection and inclusion of new decay modes. Namely **CDF and DØ have measured the relative branching ratio of B**_s $\rightarrow J/\Psi f_0$ w.r.t. the B_s $\rightarrow J/\Psi \varphi$ one. But other modes are possible, for instance: B_s $\rightarrow \Psi(2S)\varphi$, B_s $\rightarrow J/\Psi K_s$, B_s $\rightarrow J/\Psi K^*$,

- combination of CDF+DØ results with $B_s \longrightarrow J/\psi \phi$ decays,

 Tevatron performs extensive study of CPV in B_s system: combinations of all measurements.

thank you

comparison of data periods

