The LHCb experiment and physics motivations	Flavour Tagging	$B^0 - \overline{B}^0$ oscillations	
	00	00	
	00	0000	

"Flavour tagging and mixing at LHCb"

S.Vecchi- INFN Ferrara, Italy

on behalf of the LHCb collaboration

Beauty 2011 - Amsterdam, April 4th-8th 2011

The LHCb experiment and physics motivations	Flavour Tagging	$B^0 - \overline{B}^0$ oscillations	
	00	0	
	00	0000	

Outline

1 The LHCb experiment and physics motivations

2 Flavour Tagging

- Tagging algorithms
- Flavour Tagging optimization
- Calibration of the mistag probability

3 $B^0 - \overline{B}^0$ oscillations

- Physics motivations
- Measurement of the B_d^0 mixing frequency
- Measurement of the B_s^0 mixing frequency

4 Conclusions

 Flavour Tagging
 $B^0 - \tilde{B}^0$ oscillations
 Conclusions

 OO
 O
 O

 OO
 OO
 OO

 OO
 OO
 OO

 OO
 OO
 OO

The LHCb experiment and physics motivations

The LHCb experiment: precision studies of *b*-hadron decays (CP violation, rare B decays) \rightarrow test SM/indirect evidence of NP

Requirements:

- High yield \rightarrow efficient trigger and selection, large $\bar{b}b$ production cross section
- \blacksquare Low background \rightarrow mass resolution, particle identification

For time dependent CP asymmetries:

- Measure the *B* proper time \rightarrow resolution (B_s^0) .
- tag the initial flavour → tagging power: particle identification, impact parameter resolution.

LHCb detector:

- Vertexing&Tracking: excellent resolutions
- Particle identification: $\pi/K/p$ (RICH), $\pi/e/\gamma$ (ECAL), μ (MUON)
- Trigger: L0 (hardware: high p_T e/γ /hadron/ μ candidates), HLT1& HLT1 (software)
- \rightarrow N.Harnew's presentation this morning

The LHCb experiment and physics motivations	Flavour Tagging	$B^0 - \overline{B}^0$ oscillations	
	00 00 00	0 00 0000	

Tagging algorithms

Tag the initial B flavour

OS tagging: exploit the properties of the decays of the *b*-hadron opposite to the signal *B*

■ μ , $e(b \rightarrow cl^- \bar{\nu}_l)$, $K(b \rightarrow c \rightarrow s)$, Q_{vtx} (inclusive secondary vertex reconstruction) **SS tagging**: exploit the hadronization process of the signal *B*, or in the decays of excited states B^{**}

SS π (tag the B_d and B^+), **SS**K (tag the B_s)

The LHCb experiment and physics motivations	Flavour Tagging O● ○○ ○○	$B^0 - \bar{B}^0$ oscillations O OO OOOO	
Tagging algorithms			

Tag the initial B flavour

Each tagging algorithm determine:

- **tag decision**: $q_i = \pm 1,0$ for the initial signal *b*-hadrons containing a \bar{b}/b quark
 - charge of the lepton/kaon/inclusively reconstructed secondary vertex (OS)
 - charge of the pion/kaon (SS)
- estimate of the mistag probability: η_i
 - based on a Neural Network (inputs: kinematical & geometrical information on the tagger and the event properties).

Combination of taggers based on (q_i, η_i) if more than one tagger is available $(\rightarrow q, \eta)$ OS (all b-hadrons), SS π +OS (B_d^0, B_u) , SSK+OS (B_s^0)

Tagging performance:

- $\epsilon_{tag} = \frac{R+W}{R+W+U}$, \rightarrow can be measured in any channels
- $\omega = \frac{W}{R+W}$ needed to measure asymmetries due to *CP* violation \rightarrow should be measured on flavour-specific channels. η can be a proxy of ω , if it is calibrated.
- Tagging power: $\epsilon_{eff} = \epsilon_{tag}(1 2\omega)^2 = \epsilon_{tag}D^2$

The LHCb experiment and physics motivations	Flavour Tagging	$B^0 - \overline{B}^0$ oscillations		
	00	0		
	00	0000		
Elayour Tagging optimization				

Flavour Tagging optimization

LHCb-CONF-2011-003 [3]

Tagging performance optimized on 2010 data ($\sqrt{s} = 7 TeV$, $\int \mathcal{L} \cdot dt \sim 35 pb^{-1}$) with different flavour-specific channels.

AIM: to find the set of cuts that maximize the ϵ_{eff} of each tagger and of the combination of taggers. Each set split randomly into two to avoid over-tuning.

- $B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}$ ~48*k* signal events, B/S~0.3 \rightarrow fit to time dependent B_d oscillation to measure ω
- $B^+ \rightarrow J/\psi K^+ \sim 11k$ signal events, B/S~0.065 (t>0.3ps) \rightarrow compare the tag decision with the B^{\pm} charge,

count W, R events $\rightarrow \omega$

- $B^0 \rightarrow J/\psi K^{*0}$ ~3.3k signal evens, B/S~15 \rightarrow fit to time dependent B_d oscillation to measure ω (cross-check)
- **B** $_{s}^{0} \rightarrow D_{s}^{-}(K^{+}K^{-}\pi^{-})(3)\pi$: control channel for SSK tagger studies: too little statistics to optimize (~1 300).

The LHCb experiment and physics motivations	Flavour Tagging ○○ ○● ○○	B ^U — B ^U oscillations O OO OOOO	Conclusions
Flavour Tagging optimization			
Flavour Tagging optimized p	performance	LHCb-CON	F-2011-003 [3]

OS	ϵ_{tag} (%)	ω (%)	ϵ_{eff} (%)
$B^0 \rightarrow D^{*-} \mu^+ \nu_\mu$	18.3±0.2	33.6±0.8	$1.97{\pm}0.18$
$B^+ \rightarrow J/\psi K^+$	15.4 ± 0.3	32.2±1.2	$1.97{\pm}0.31$
$B^0 ightarrow J/\psi K^{*0}$	$15.8 {\pm} 0.7$	30.0±6.6	$2.52{\pm}0.82$
SS $\pi+OS$	ϵ_{tag} (%)	ω (%)	ϵ_{eff} (%)
$B^0 ightarrow D^{*-} \mu^+ u_\mu$	28.9±0.2	34.2±0.8	2.87±0.32
$B^+ \rightarrow J/\psi K^+$	23.0±0.5	33.9 ± 1.1	2.38 ± 0.33
$B^0 ightarrow J/\psi K^{*0}$	26.1±0.9	$33.6{\pm}5.1$	$2.82{\pm}0.87$

- Measured ω agree within the channels \rightarrow can be used in other channels for *CP* measurement (if trigger and selection are similar).
- Asymmetries of the tagging performance of B/\bar{B} mesons due to the detector efficiency/acceptance or to particle interaction with matter are found negligible within the present statistical error.

The LHCb experiment and physics motivations	Flavour Tagging	B ⁰ — B ⁰ oscillations	Conclusions
	00		
	0	0000	
Calibration of the mistag probability			

Calibration of the predicted mistag probability

LHCb-CONF-2011-003 [3]

The tagging optimization implies also that the predicted mistag η is calibrated.

• Use $B^+\to J/\psi K^+$ channel to perform the calibration of the single taggers first, then of the combination.

OS combination calibration

signal:
$$\omega = p_0 + p_1 \cdot (\eta - \langle \eta \rangle)$$

$$\sum_{\substack{0 = 0 \\ 0 = 0 \\$$

Use the calibrated mistag η per-event as a proxy of ω to exploit the tagging information at best.

The LHCb experiment and physics motivations	Flavour Tagging	$B^0 - \overline{B}^0$ oscillations	
	00		
	00	00	
	00		
<u> </u>			

Calibration of the mistag probability

Validity of the calibration on different channels

LHCb-CONF-2011-003 [3]

Monte Carlo

Same trigger and similar selection for $B^+ \to J/\psi K^+$, $B^0 \to J/\psi K^{*0}$, $B^0_d \to J/\psi K^0_S$ and $B^0_s \to J/\psi \phi$ channels to guarantee the same tagging performance.

 \rightarrow Use the calibrated mistag in $B^+ \rightarrow J/\psi K^+$ for the analysis of the other channels.

Validation on data, using $B^0 \rightarrow J/\psi K^{*0}$:

$SS\pi+OS$ tagging	$p_0 - <\eta >$	p_1
$B^0 o J/\psi K^{st 0}$	$-0.017 {\pm} 0.025 {\pm} 0.003$	$0.71{\pm}0.26{\pm}0.24$

The LHCb experiment and physics motivations	Flavour Tagging	$B^0 - \overline{B}^0$ oscillations	
	00	• •	
	00	0000	

Physics motivations

$B^0 - \bar{B}^0$ oscillations

In the Standard Model $B_{d/s}^0$ mix through the box diagram:

 $\Delta m_q \propto m_{B_q} \hat{\mathcal{B}}_{B_q} f_{B_q}^2 |V_{tb} V_{tq}^*|^2 \qquad q = d, s$

In the ratio $\Delta m_s / \Delta m_d$ most of theoretical uncertainties cancel:

 $\begin{array}{l} \frac{\Delta m_{\rm s}}{\Delta m_d} = \frac{m_{B_{\rm s}}}{m_{B_d}} \times \xi^2 \times \frac{|{\rm V}_{\rm ts}|^2}{|{\rm V}_{td}|^2} \\ \xi^2 = 1.210^{\pm 0.047}_{-0.035} & \mbox{Lattice QCD calculations.} \end{array}$

$$\frac{|V_{ts}|^2}{|V_{td}|^2} = 0.2061 \pm 0.0012(exp)^{+0.0080}_{-0.0060}(lattice)$$

$$\begin{split} \text{Measure the mixing in a flavour-specific decay:} \\ \mathcal{A}^{th}(t) &= \frac{{}^{\Gamma}_{\bar{B}_{d}^{0}} - {}^{\bar{f}}(t) - {}^{\Gamma}_{\bar{B}_{d}^{0}} - {}^{f}(t)}{{}^{\bar{B}_{d}^{0}} - {}^{\bar{f}}(t) + {}^{\Gamma}_{\bar{B}_{d}^{0}} - {}^{f}(t)} &\sim \cos(\Delta m_{q} t) \\ \text{experimental asymmetry:} \\ \mathcal{A}^{exp}(t) &\propto (1 - 2\omega) \exp^{-(\Delta m_{q} \sigma_{t})^{2}/2} \cos(\Delta m_{q} t) \end{split}$$

The average statistical significance is:

 $S \sim \sqrt{N/2} f_{sig} \sqrt{\epsilon_{tag} (1 - 2\omega)^2} \exp^{-(\Delta m_q \sigma_t)^2/2}$

Flavour Tagging 00 00 00	$B^{U} - B^{U} \text{ oscillations}$ $O = O O O O O O O O O O O O O O O O O O$	Conclusions
	LHCb-CONF-20	011-010 [4]
	Flavour Tagging OO OO OO	Flavour Tagging B ⁰ − B ⁰ oscillations ○○ ○○ ○○ ○○ ○○ CHCb-CONF-20

Analysis of $B^0
ightarrow D^- (K^+ \pi^- \pi^-) \pi^+$ channel: 6k signal events

- Use a double Gaussian *time resolution model* from Monte Carlo ($<\sigma_t>=49$ fs)
- proper time acceptance from Monte Carlo
- Use *per-event* mistag probability with free calibration parameters (different trigger&selection with respect to the $B^+ \rightarrow J/\psi K^+$ channel.)

	ϵ_{eff}	$p_0 - <\eta >$	<i>p</i> ₁
OS	3.4±0.9%	$-0.015 \pm 0.021 \pm 0.004$	$0.61{\pm}0.20{\pm}0.15$
SS $\pi+OS$	4.3±1.0%	$-0.011 {\pm} 0.016 {\pm} 0.002$	$0.69{\pm}0.16{\pm}0.05$

The LHCb experiment and physics motivations	Flavour Tagging 00 00 00	$B^0 - \overline{B}^0$ oscillations $\circ \bullet$ $\circ \circ \circ \circ \circ$	
Measurement of the B_d^0 mixing frequency			
$B^0_d - ar{B}^0_d$ oscillations		LHCb-CONF-20	011-010 [4]

$$\Delta m_d = 0.499 \pm 0.032 (\text{stat}) \pm 0.003 (\text{sys}) \ ps^{-1}$$

 $(\Delta m_d = 0.507 \pm 0.005 \ ps^{-1}$ world average, PDG [1])

Systematic uncertainties on Δm_d

source	$\Delta(\Delta m_d) \text{ [ps}^{-1}\text{]}$
proper time resolution [40-63] fs	0.000
proper time acceptance	0.002
variation of $PDF(\eta)$	0.000
floating fit parameters	0.001
double Gaussian mass signal PDF	0.001
z-scale (~0.1%)	0.0005
momentum scale ($\sim 0.1\%$)	0.0005
Sum	0.003

$$B^{0} \rightarrow D^{-}(K^{+}\pi^{-}\pi^{-})\pi^{+} \ 6k \ (signal)$$

$$\downarrow Element by the preliminary the preliminary to the preliminary tothet preliminary to thep$$

B_s mass [MeV/c²]

fitted B₄->Dx bkg

itted $\Lambda_{-} \rightarrow \Lambda_{-} \pi$ bkg

36 pb⁻¹

5600

5400

LHCb preliminary

√s = 7 TeV

5400

5800 B_s mass [MeV/c²]

36 pb⁻¹

 $B_s \to D_s^- (K^+ K^- \pi^-) 3\pi$: (245 ± 46 ev.)

5500

5400

 $B_s \rightarrow D_s^- (K^+ K^- \pi^-) \pi^+$: (283 ± 27 ev.)

5400

events / 15 MeV

120

60Ē

LHCb preliminary

VS = 7 TeV

B. mass [MeV/c²] B. mass [MeV/c²] $\sigma_m = 18.1 \ MeV/c^2 \ (D_s \pi), \ 12.7 \ MeV/c^2 \ (D_s 3\pi)$

15 MeV 200

180

The LHCb experiment and physics motivations	Flavour Tagging	$B^0 - \overline{B}^0$ oscillations	
	00		
	00	0000	
Measurement of the B_s^0 mixing frequency			

 $B_s^0 - \bar{B}_s^0$ oscillations

• Use *per-event* mistag probability (OS only) re-calibrated in $B^0 \rightarrow D^- \pi^+$ channel Uncertainties on the calibration parameters propagated

Proper time acceptance from Monte Carlo.

• Use *per-event* time resolution \rightarrow calibration on data

• $<\sigma_t>=$ 44 fs $(D_s\pi)$, 36 fs $(D_s3\pi)$

using prompt $D_s \& \pi$: $S_{\sigma_t} = 1.3$

The LHCb experiment and physics motivations		$B^0 - \bar{B}^0$ oscillations	
	00	0	
	00	0000	
Measurement of the B_s^0 mixing frequency			
$B_{-}^{0} - \overline{B}_{-}^{0}$ oscillations			
25 25 000114010110			

The LHCb experiment and physics motivations	Flavour Tagging	$B^0 - \overline{B}^0$ oscillations	
	00		
	00	0000	

Measurement of the B_s^0 mixing frequency

$B_s^0 - \bar{B}_s^0$ mixing frequency

$$\Delta m_s = {}^a 17.63 \pm 0.11 (\text{stat}) \pm 0.04 (\text{sys}) \ ps^{-1}$$
$$(\Delta m_s = 17.77 \pm 0.10 (\text{stat}) \pm 0.07 (\text{sys}) \ ps^{-1} \ \text{CDF}, \ 2006 \ [2])$$

Systematic uncertainties on Δm_s			
source	$\Delta_{\Delta m_s}[ps^{-1}]$		
proper time resolution $S_{\sigma_t} = [1.2 - 1.4]$	0.006		
proper time resolution model	0.001		
proper time acceptance function	0.000		
fixed parameters floating	0.003		
diff. background shape in mass fit	0.010		
phys. bkg mass templates	0.002		
variation of η and σ_t PDFs	0.026		
z-scale (0.1%)	0.018		
momentum scale (0.1%)	0.018		
$\Delta\Gamma_s = [0 - 0.2] \times \Gamma_s$	0.002		
total systematic uncertainties	0.038		

asymmetry modulo $2\pi / \Delta m_s$

Nice prospects for an improvement of the Δm_s measurement in the (near) future

^aAssumption: $\Delta\Gamma_s = 0.1 \times \Gamma_s$

The LHCb experiment and physics motivations	Flavour Tagging	$B^0 - \overline{B}^0$ oscillations	Conclusions
	00	00	

Conclusions

With the statistics of $\int \mathcal{L} \cdot dt \sim 35 pb^{-1}$ collected by LHCb in 2010

- Optimization of **OS** & **SS** π +**OS** flavour tagging performances using different control channels: $B^0 \rightarrow D^{*-}\mu^+\nu_{\mu}$, $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow J/\psi K^{*0}$
 - $\blacksquare \ B_s^0 \to D_s^- \pi^+ \text{ sample too small to study SSK tagger } (\to \text{ not used})$

performance agree within errors:

■ Tagging power: $<\epsilon_{tag}^{OS}>=1.99\pm0.15\%$ (~CDF); $<\epsilon_{tag}^{SS\pi+OS}>=2.64\pm0.22\%$; ■ mistag: $<\omega^{OS}>=32.9\pm0.7\%$; $<\omega^{SS\pi+OS}>=34.1\pm0.6\%$.

Good margins of improvement with improved statistics (better optimization & calibration, $\mathsf{SS}K)$

- The mistag probability was calibrated in $B^+ \to J/\psi K^+$ and cross-checked in $B^0 \to J/\psi K^{*0}$. It can be exported to the analysis of $B_s^0 \to J/\psi \phi$ channel.
- Validation of the tagging in a physics analysis:
 - measurement of the $B_d^0 \bar{B}_d^0$ mixing frequency using $B^0 \rightarrow D^-(K^+\pi^-\pi^-)\pi^+ : \Delta m_d = 0.499\pm0.032(\text{stat})\pm0.003(\text{sys}) \ ps^{-1}$ measurement of the $B_s^0 - \bar{B}_s^0$ mixing frequency using $B_s^0 \rightarrow D_s^-(K^+K^-\pi^-)(3)\pi : \Delta m_s = 17.63\pm0.11(\text{stat})\pm0.04(\text{sys}) \ ps^{-1}$ Already reached the CDF precision. Prospects of improvements in the next future

- K.Nakamura, et al. (PDG coll.) Journal of Phys. G **37**, 7A, 075021 (2010)
- A.Abulencia, et al. (CDF coll.) Phys. Rev. Lett. 97, 242003 (2006)
- (LHCb coll.) "Optimization and calibration of the LHCb avour tagging performance using 2010 data", LHCb-CONF-2011-003
- (LHCb coll.) "Measurement of Δm_d in $B^0 \rightarrow D^-(K^+\pi^-\pi^-)\pi^+$ ", LHCb-CONF-2011-010
- (LHCb coll.) "Measurement of Δm_s in the decay $B_s^0 \rightarrow D_s^- (K^+ K^- \pi^-)(3)\pi$ ", LHCb-CONF-2011-005.