Theory Overview of Semileptonic Decays

Thomas Mannel

Theoretical Particle Physics, University of Siegen

April 7th, 2011 BEAUTY 2011, Amsterdam

ヘロン 人間 とくほど くほとう

Contents

Theory Tools

- Heavy Quark Expansion
- Modified Heavy Quark Expansion
- Exclusive Decays: $b \rightarrow c$
- Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result
- 2 The
 - **Theoretical Issues**
 - Input Parameters
 - The Role of $B \rightarrow \tau \bar{\nu}$

Conclusions and Outlook

Introduction: Why is this of interest?

Important Ingredient for the Unitarity Traingle

- Standard Fit of for the Unitarity Traingle
- "Unitarity Clock": $|V_{ub}/V_{cb}|$ Buras
- Relation between Kaon CP violation and the Unitarity Trangle

ヘロト ヘアト ヘヨト ヘ

ъ

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \to c$ Exclusive Decays: $b \to u$: Updated LCQCDSR Result

Theoretical Tools

- There is a large toolbox:
- For inclusive decays:
 - Heavy Quark Expansion: Local OPE
 - Heavy Quark Expansion: Shape functions and Soft Collinear Effective Theory (SCET)
- For exclusive decays:
 - Heavy Quark Effective Theory (HQET)
 - QCD (Light Cone) Sum Rules
 - Lattice
- Models are completely outdated!
- Precision Methods with controllable uncertainties

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result

Heavy Quark Expansion

Heavy Quark Expansion = Operator Product Expansion (Chay, Georgi, Bigi, Shifman, Uraltsey, Vainstain, Manohar, Wise, Neubert, M....)

$$\begin{split} &\Gamma \propto \sum_{X} (2\pi)^{4} \delta^{4} (P_{B} - P_{X}) |\langle X | \mathcal{H}_{eff} | B(v) \rangle|^{2} \\ &= \int d^{4} x \, \langle B(v) | \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) | B(v) \rangle \\ &= 2 \, \mathrm{Im} \int d^{4} x \, \langle B(v) | T \{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \} | B(v) \rangle \\ &= 2 \, \mathrm{Im} \int d^{4} x \, e^{-im_{b} v \cdot x} \langle B(v) | T \{ \widetilde{\mathcal{H}}_{eff}(x) \widetilde{\mathcal{H}}_{eff}^{\dagger}(0) \} | B(v) \rangle \end{split}$$

• Last step: $b(x) = b_v(x) \exp(-im_v vx)$, corresponding to $p_b = m_b v + k$ Expansion in the residual momentum k

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result

イロト イポト イヨト イヨト

• Perform an "OPE": *m_b* is much larger than any scale appearing in the matrix element

$$\int d^4 x e^{-im_b vx} T\{\widetilde{\mathcal{H}}_{eff}(x)\widetilde{\mathcal{H}}_{eff}^{\dagger}(0)\} = \sum_{n=0}^{\infty} \left(\frac{1}{2m_Q}\right)^n C_{n+3}(\mu) \mathcal{O}_{n+3}$$

ightarrow The rate for $B
ightarrow X_c \ell ar
u_\ell$ can be written as

$$\Gamma = \Gamma_0 + \frac{1}{m_Q}\Gamma_1 + \frac{1}{m_Q^2}\Gamma_2 + \frac{1}{m_Q^3}\Gamma_3 + \cdots$$

- The Γ_i are power series in $\alpha_s(m_Q)$: \rightarrow Perturbation theory!
- Works also for differential rates!

٠

 Theory Tools
 Heavy Quark Expansion

 Theoretical Issues
 Modified Heavy Quark Expansion

 Conclusions and Outlook
 Exclusive Decays: $b \rightarrow c$

- Γ₀ is the decay of a free quark ("Parton Model")
- Γ₁ vanishes due to Heavy Quark Symmetries
- Γ₂ is expressed in terms of two parameters

$$2M_{H}\mu_{\pi}^{2} = -\langle H(v)|\bar{Q}_{v}(iD)^{2}Q_{v}|H(v)\rangle$$

$$2M_{H}\mu_{G}^{2} = \langle H(v)|\bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(iD^{\nu})Q_{v}|H(v)\rangle$$

 $\mu_{\pi} \text{:}$ Kinetic energy and $\mu_{\textit{G}} \text{:}$ Chromomagnetic moment

Γ₃ two more parameters

 $2M_{H}\rho_{D}^{3} = -\langle H(v)|\bar{Q}_{v}(iD_{\mu})(ivD)(iD^{\mu})Q_{v}|H(v)\rangle$ $2M_{H}\rho_{LS}^{3} = \langle H(v)|\bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(ivD)(iD^{\nu})Q_{v}|H(v)\rangle$

 ρ_D : Darwin Term and ρ_{LS} : Spin-Orbit Term

• Γ_4 and Γ_5 have been computed Bigi, Uraltsev, Turczyk, TM, ...

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result

ヘロト 人間 とくほとくほとう

Structure of the HQE

• Structure of the expansion (@ tree):

$$d\Gamma = d\Gamma_{0} + \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{2} d\Gamma_{2} + \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{3} d\Gamma_{3} + \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{4} d\Gamma_{4}$$
$$+ d\Gamma_{5} \left(a_{0} \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{5} + a_{2} \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{3} \left(\frac{\Lambda_{\text{QCD}}}{m_{c}}\right)^{2}\right)$$
$$+ \dots + d\Gamma_{7} \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{3} \left(\frac{\Lambda_{\text{QCD}}}{m_{c}}\right)^{4}$$

- $d\Gamma_3 \propto \ln(m_c^2/m_b^2)$
- Power counting $m_c^2 \sim \Lambda_{\rm QCD} m_b$

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result

ヘロト ヘワト ヘビト ヘビト

Present state of the $b \rightarrow c$ semileptonic Calculations

- Tree level terms up to and including $1/m_b^5$ known Bigi, Zwicky, Uraltsev, Turczyk, TM, ...
- $\mathcal{O}(\alpha_s)$ and full $\mathcal{O}(\alpha_s^2)$ for the partonic rate known Melnikov, Czarnecki, Pak
- $\mathcal{O}(\alpha_s)$ for the μ_π^2/m_b^2 is known Becher, Boos, Lunghi, Gambino
- In the pipeline:
 - Complete α_s/m_b^2 , including the μ_G terms
 - More on the "Intrinsic charm" and "weak annihilation" contributions

A theo. uncertainty of 1% in V_{cb,incl} looks plausible!

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result

・ロト ・回ト ・ヨト ・ヨト

Modified Heavy Quark Expansion: $B \rightarrow X_u \ell \bar{\nu}$

- Problem: Cuts needed to suppress charmed decays
- Forces us into corners of phase space, where the usual OPE breaks down
- Expansion parameter $\Lambda_{QCD}/(m_b 2E_\ell)$
- Instead of HQE Parameters: Shape Functions $f(\omega)$

$$2M_B f(\omega) = \langle B(\mathbf{v}) | \bar{b}_{\mathbf{v}} \delta(\omega + i(\mathbf{n} \cdot D)) | B(\mathbf{v}) \rangle$$

- Universal for all heavy-to-light decays
- Systematics: SoftCollinearEffectiveTheory calculation
 - Several subleading shape functions
 - perturbative QCD corrections

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result

ヘロト 人間 ト ヘヨト ヘヨト

æ

Shape Functions

• Shape function vs. local OPE: Moment Expansion

$$f(\omega) = \delta(\omega) + \frac{\mu_{\pi}^2}{6m_b^2}\delta''(\omega) - \frac{\rho_D^3}{18m_b^3}\delta'''(\omega) + \cdots$$

• Perturbative "jetlike" contributions: Convolution

$$S(\omega,\mu) = \int d\mathbf{k} \ C_0(\omega-\mathbf{k},\mu) f(\mathbf{k})$$

• Charged Lepton Energy Spectrum (H: hard QCD corrections)

$$\frac{d\Gamma}{dy} = \frac{G_F^2 |V_{ub}^2| m_b^5}{96\pi^3} \int d\omega \,\Theta(m_b(1-y)-\omega) H(\mu) S(\omega,\mu)$$

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \to c$ Exclusive Decays: $b \to u$: Updated LCQCDSR Result

Approaches

• Obtaining the Shape functions:

- From Comparison with $B \rightarrow X_s \gamma$
- From the knowledge of (a few) moments
- From modeling
- QCD based:
 - BLNP (Bosch, Lange, Neubert, Paz)
 - GGOU (Gambino, Giordano, Ossola, Uraltsev)
 - SIMBA (Tackmann, Tackmann, Lacker, Liegti, Stewart ...)
- QCD inspired:
 - Dressed Gluon Exponentiation (Andersen, Gardi)
 - Analytic Coupling (Aglietti et al.)

Attempts to avoid the shape functions (Bauer Ligeti, Luke ...)

Theo. uncertainty in $V_{ub,incl}$ is still $(7 \dots 10)$ %

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Exclusive $b \rightarrow c$ Decays

- Kinematic variable for a heavy quark: Four Velovity v
- Differential Rates

$$\begin{split} \frac{d\Gamma}{d\omega}(B \to D^* \ell \bar{\nu}_\ell) &= \frac{G_F^2}{48\pi^3} |V_{cb}|^2 m_{D^*}^3 (\omega^2 - 1)^{1/2} P(\omega) (\mathcal{F}(\omega))^2 \\ \frac{d\Gamma}{d\omega}(B \to D \ell \bar{\nu}_\ell) &= \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (\omega^2 - 1)^{3/2} (\mathcal{G}(\omega))^2 \end{split}$$

- with $\omega = vv'$ and
- $P(\omega)$: Calculable Phase space factor
- \mathcal{F} and \mathcal{G} : Form Factors

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result

Heavy Quark Symmetries

- Normalization of the Form Factors is known at vv' = 1: (both initial and final meson at rest)
- Corrections can be calculated / estimated

$$\mathcal{F}(\omega) = \eta_{\text{QED}} \eta_A \left[1 + \delta_{1/\mu^2} + \cdots \right] + (\omega - 1)\rho^2 + \mathcal{O}((\omega - 1)^2)$$

$$\mathcal{G}(1) = \eta_{\text{QED}} \eta_V \left[1 + \mathcal{O}\left(\frac{m_B - m_D}{m_B + m_D}\right) \right]$$

• Parameter of HQS breaking: $\frac{1}{\mu} = \frac{1}{m_c} - \frac{1}{m_b}$ • $\eta_A = 0.960 \pm 0.007, \eta_V = 1.022 \pm 0.004, \delta_{1/\mu^2} = -(8 \pm 4)\%, \eta_{\text{QED}} = 1.007$

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result

・ロン ・四 と ・ ヨ と ・ ヨ と …

$B \rightarrow D^{(*)}$ Form Factors from the Lattice

- Unquenched Calculations become available!
- Heavy Mass Limit is not used
- Lattice Calculations of the deviation from unity

$${\cal F}(1) = 0.908 \pm 0.016$$

 $\mathcal{G}(1) = 1.074 \pm 0.018 \pm 0.016$

F(1): upd. from CKM2010 , G(1): A. Kronfeld et al. 2005

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result

$B \rightarrow D^{(*)}$ Form Factors: Non-Lattice Results

- $B \rightarrow D^*$ Form Factor:
 - Based on Zero Recoil Sum Rules (Uraltsev, also Ligeti et al.)
 - Including full α_s and up to $1/m_b^5$

$$\mathcal{F}(1)=0.86\pm0.04$$

(Gambino, Uraltsev, M (2010))

ヘロト ヘワト ヘビト ヘビト

• $B \rightarrow D$ Form Factor:

• Based on the "BPS limit" $\mu_{\pi}^2 = \mu_G^2$

$$\mathcal{G}(1) = 1.04 \pm 0.02$$
 (Uraltsev)

The tension between $V_{cb,incl}$ and $V_{cb,excl}$ is about to disappear!

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow c$: Updated LCQCDSR Result

Exclusive Decays: $b \rightarrow u$

- Focus on $B \to \pi \ell \bar{\nu}_{\ell}$
- Hadronic Matrix Element:

 $\langle \pi(p)|ar{u}\gamma_{\mu}b|B(p+q)
angle=\mathit{f}^+_{\mathcal{B}\pi}(q^2)(2p+q)_{\mu}+ ext{Terms} ext{ with }\mathit{f}^0_{\mathcal{B}\pi}(q^2)$

• Differential rate:

$$\frac{d\Gamma(\bar{B}^0 \to \pi^+ l^- \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} p_\pi^3 |f_{B\pi}^+(q^2)|^2 + O(m_l^2)$$

- Measurements are quickly improving
- Shape constrained by analyticity
- Need the normalization $f^+_{B\pi}(0)$
- In case $\ell = \tau$ also $f_0(q^2)$ s needed!

Tools: Form Factor Parametrizations

Becirevic Kaidalov Parametrization

$$f_+(q^2) = rac{f_+(0)}{(1-q^2/m_{B^*}^2)(1-lpha q^2/m_{B^*}^2)}$$

• Z parametrization (Arnesen et al., Boyd, Grinstein, Lebed)

$$P(t)\phi(t,t_0)f_+(t) = \sum_{k=0}^{\infty} a_k(t_0)z^k(t,t_0)$$

with

$$z(t,t_0) = rac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}\,, \quad t_+ = (m_B + m_\pi)^2$$

イロト 不得 とくほ とくほ とう

E DQC

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result

イロト イポト イヨト イヨト

Status of LCSR calculation

- latest update: A. Khodjamirian, TM., N. Offen, Y-M. Wang 2011
- LCQCDSR Calculation of

$$\Delta \zeta \left(0, q_{max}^2\right) = \frac{1}{|V_{ub}|^2 \tau_{B^0}} \int_{0}^{q_{max}^2} dq^2 \frac{d\mathcal{B}(B \to \pi \ell \nu_\ell)}{dq^2} \,,$$

- ... including
 - Full $\mathcal{O}(\alpha_s)$ QCD corrections
 - Subleading twists
 - *a*₂ and *a*₄ corrections to the pion DA, fitted from the electromagnetic pion form factor

The pion e.m. form factor calculated from LCSR [16, 17] as a function of Gegenbauer moments $a_2^{\pi}(1 \text{ GeV})$ and $a_4^{\pi}(1 \text{ GeV})$ and fitted (solid) to the experimental data points taken from from [18].

 $a_2^{\pi}(1 \; \text{GeV}\;) = 0.17 \pm 0.08, \;\; a_4^{\pi}(1 \; \text{GeV}\;) = 0.06 \pm 0.10$

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result

3

- < ⊒ >

LCQCDSR Result for the from factor, $0 \le q^2 \le 12 \text{ GeV}^2$

Thomas Mannel, Uni. Siegen S

Semileptonic Theory

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow c$

イロン イロン イヨン イヨン

Linking high q^2 with low q^2

- LCQCDSR are limited to "small" values of q²
- Complementary to lattice calculations
- We have QCD based calculations / estimates of the from factors *f*₊ and *f*₀ in the full kinematic region
- Uncertainties become controllable and are already quite small !
- May become the most accurate way to determine V_{ub}

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \rightarrow c$ Exclusive Decays: $b \rightarrow u$: Updated LCQCDSR Result

Linking high q^2 with low q^2 : z parametrization

The vector form factor $f_{B\pi}^+(q^2)$ calculated from LCSR and fitted to the BCL parameterization (solid) with uncertainties (dashed), compared with the HPQCD [4] (triangles) and FNAL/MILC [5] (squares) results.

Thomas Mannel, Uni. Siegen Semileptonic Theory

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \to c$ Exclusive Decays: $b \to u$: Updated LCQCDSR Result

Theory vs. Experiment

(colour online) The normalized q^2 -distribution in $B \rightarrow \pi l \nu$ obtained from LCSR and extrapolated with the z-series parameterization (central input- solid, uncertainties -dashed). The experimental data points are from BABAR: (red) squares [1], (blue) triangles [2] and Belle [3]: (magenta) full circles.

Thomas Mannel, Uni. Siegen Semileptonic Theory

Heavy Quark Expansion Modified Heavy Quark Expansion Exclusive Decays: $b \to c$ Exclusive Decays: $b \to u$: Updated LCQCDSR Result

イロト イポト イヨト イヨト

ъ

Value of V_{ub} from this work:

$$|V_{ub}| = (3.50^{+0.38}_{-0.33}ig|_{\it th.} \pm 0.11ig|_{\it exp.}) imes 10^{-3}$$

Lattice \otimes LCQCDSR has reached 10% th. uncertainty in $V_{ub,excl}$!

Input Parameters The Role of $B \to \tau \bar{\nu}$

・ロト ・四ト ・ヨト ・ヨト

Inputs for the standard OPE

• Two, in principle equivalent schemes: kinetic scheme and 1S scheme

	Kinetic scheme	1S scheme
O(1)	m _b , m _c	m _b
O(1/m ² _b)	μ_{π}^{2} , μ_{G}^{2}	λ_1, λ_2
O(1/m ³ _b)	$\rho_{\rm D},\rho_{\rm LS}$	ρ ₁ , τ ₁₋₃

 Parameters are determined from the spectra: hadronic invariant mass, charged lepton and hadronic energy

Input Parameters The Role of $B \to \tau \bar{\nu}$

Quark Masses

(Plot from Paolo Gambino)

The semileptonic moments identify only a strip $m_b - 0.6m_c$ in the m_b, m_c plane!

Thomas Mannel, Uni. Siegen

Semileptonic Theory

ъ

Input Parameters The Role of $B \to \tau \bar{\nu}$

ъ

Recent Mass Determinations

Thomas Mannel, Uni. Siegen Semileptonic Theory

Input Parameters The Role of $B \to \tau \bar{\nu}$

HQE Parameters

These may be determined from the spectra

- Hadronic invariant mass
- Charged Lepton Energy
- Hadronic Energy
- Moments in terms of a $1/m_b$ expansion
- Higher Moments ⇔ Higher Dimensional Operators
- Lepton-Energy Cut dependence of the moments can be reliably calculated

・ロン ・聞 と ・ ヨ と ・ ヨ と

1

• Determinaton of m_b , $m_c \mu_{\pi}^2$, μ_G^2 , ... from data

Input Parameters The Role of $B \rightarrow \tau \bar{\iota}$

(Plots from P. Gambino and C. Schwanda)

 Reasonably good determination of the mass and the HQE parameters (up to 1/m³_b)

ヘロト ヘワト ヘビト ヘビト

э

Input Parameters The Role of $B \to \tau \bar{\nu}$

Shape Functions

- Shape functions can be extracted from $B \rightarrow X_s \gamma$
- Several sub-leading shape functions !
- Attempt for a systematic fit: SIMBA

(Tackmann, Tackmann, Lacker, Liegti, Stewart ...)

Systematic expansion in terms of basis functions

$$F(\lambda x) = \frac{1}{\lambda} \left[\sum_{n=0}^{\infty} c_n f_n(x) \right]^2 \quad \int dk \, F(k) = 1 = \sum_{n=0}^{\infty} c_n^2$$

・ロト ・四ト ・ヨト ・ヨト

• Reduce the cut dependences

Input Parameters The Role of $B \rightarrow \tau \bar{\nu}$

э

(Plots from K. Tackmann)

 Chose different bases: Check for basis independence

Input Parameters The Role of $B \to \tau \bar{\nu}$

The Role of $B \rightarrow \tau \bar{\nu}$

• $B \rightarrow \tau \bar{\nu}$ depends crucially on f_B

$$\mathcal{B}(B^- o au ar{
u}_ au) = rac{G_F^2}{8\pi} |V_{ub}|^2 m_ au^2 m_B \left(1 - rac{m_ au^2}{m_B^2}
ight)^2 f_B^2 au_{B^-}$$

- The extracted V_{ub} value is quite large ...
- However, if the data are right, QCD (or the SM) must have a problem: Define

$$\begin{array}{lll} R_{s/l}(q_1^2,q_2^2) &\equiv& \frac{\Delta \mathcal{B}_{B \to \pi \ell \nu_{\ell}}(q_1^2,q_2^2)}{\mathcal{B}(B \to \tau \nu_{\tau})} \left(\frac{\tau_{B^-}}{\tau_{B^0}}\right) \\ &=& \frac{\Delta \zeta(q_1^2,q_2^2)}{(G_F^2/8\pi)m_{\tau}^2 m_B(1-m_{\tau}^2/m_B^2)^2 f_B^2} \end{array}$$

ヘロン 人間 とくほ とくほ とう

1

Input Parameters The Role of $B \to \tau \bar{\nu}$

Exp.	$\Delta \mathcal{B}(10^{-4})$ [Ref.]	$\mathcal{B}(B o au u_{ au})(10^{-4})$ [Ref.]	$R_{s/l}$
BABAR	$0.32 \pm 0.03 \; [1] \\ 0.33 \pm 0.03 \pm 0.03 \; [2]$	$1.76 \pm 0.49 \; [36, 37]$	$0.20\substack{+0.08\\-0.05}$
Belle	$0.398 \pm 0.03 \; [3]$	$1.54^{+0.38}_{-0.37}^{+0.29}_{-0.31}$ [38]	$0.28\substack{+0.13 \\ -0.07}$
QCD	$\Delta \zeta({ m ps}^{-1})$ [Ref.]	$f_B({ m MeV})$ [Ref.]	$R_{s/l}$
HPQCD	2.02 ± 0.55 [4]	190 ± 13 [34]	0.52 ± 0.16
FNAL/MILC	$2.21^{+0.47}_{-0.42}$ [5]	$212\pm9[35]$	0.46 ± 0.10

 $R_{s/l}$ for the region 16 GeV² $< q^2 <$ 26.4 GeV²

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Input Parameters The Role of $B \to \tau \bar{\nu}$

Exp .	$\Delta \mathcal{B}(10^{-4})$ [Ref.]	$\mathcal{B}(B \to \tau \nu_{\tau})(10^{-4})$ [Ref.]	$R_{s/l}$
BABAR	$0.88 \pm 0.06 [1] \ 0.84 \pm 0.03 \pm 0.04 [2]$	$1.76 \pm 0.49 \; [36, 37]$	$0.52\substack{+0.20 \\ -0.12}$
QCD	$\Delta \zeta \;\; [{ m Ref.}]$	$f_B({ m MeV})$ [Ref.]	$R_{s/l}$
LCSR/QCDSR	$4.59^{+1.00}_{-0.85}$ [this work]	210 ± 19 [41]	$0.97\substack{+0.28 \\ -0.24}$

 $R_{
m s/l}$ for the region 0 GeV² $< q^2 <$ 12.0 GeV²

Some clarification is needed here ...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Conclusions and Outlook

- *V*_{cb} is in good shape
 - OPE in inclusive method very well understood
 - Excl. vs. Incl. tension is becomming smaller
 - Calculation of $\alpha_s \mu_G^2$ terms
- The tension in inc. vs. excl. V_{ub} stays with us ...
 - Form factors are pretty well constrained smaller uncertainties in V_{ub} from $B \rightarrow \pi \ell \bar{\nu}$
 - Scrutinize both inclusive and exclusive methods
 - It is not yet time to speculate about new physics in b → u semileptonics ...

ヘロン 人間 とくほ とくほ とう

• What is going on in $B \rightarrow \tau \bar{\nu}$?