# Beauty 2011, Amsterdam 4th-8th April

# First measurement of $\sin 2\beta$ at LHCb with $B^0 \rightarrow J/\psi K_s$



#### Marc Grabalosa

On behalf of the LHCb collaboration







### CP Violation

In the standard model one complex phase is enough to explain all CPV effects

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Unitarity conditions of the mixing matrix can be written as 6 Unitary Triangles

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

$$\overline{\rho} + i\overline{\eta} \equiv (\rho + i\eta) \left(1 - \frac{\lambda^2}{2}\right)$$

$$-\frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}}$$

$$\gamma$$

$$\beta$$

$$\beta$$

# $\sin 2\beta$ in B<sup>0</sup> $\rightarrow J/\psi$ K<sub>s</sub>



$$\begin{split} \mathcal{A}_{J/\psi\,K^0_{\mathrm{S}}} &\equiv \frac{\Gamma(\overline{B}^0(t) \to J/\psi\,K^0_{\mathrm{S}}) - \Gamma(B^0(t) \to J/\psi\,K^0_{\mathrm{S}})}{\Gamma(\overline{B}^0(t) \to J/\psi\,K^0_{\mathrm{S}}) + \Gamma(B^0(t) \to J/\psi\,K^0_{\mathrm{S}})} \\ &= S_{J/\psi\,K^0_{\mathrm{S}}} \mathrm{sin}(\Delta m_d t) - C_{J/\psi\,K^0_{\mathrm{S}}} \mathrm{cos}(\Delta m_d t). \end{split}$$

Interference between mixing & decay

$$S_{J/\psi K_S^0} = \sin 2\beta$$

mixing & decay CP violation (negligible in SM)

# The LHCb experiment

LHCb is dedicated to study CP violation and rare decays in the beauty sector.

Forward spectrometer ( $2 < \eta < 5$ ) characterized by excellent tracking, vertexing, and particle identification system



# Analysis $\sin 2\beta$ with $B^0 \rightarrow J/\psi K_s$

- Selection of signal and trigger
- Flavour Tagging

Calibration of flavour tagging

• Fit

$$\mathcal{A}_{J/\psi K_{\mathrm{S}}^{0}}^{\mathrm{meas}} = (1 - 2\omega) \mathcal{A}_{J/\psi K_{\mathrm{S}}^{0}} \otimes \mathcal{R}(t)$$

- Systematic uncertainties
- Results

World average  $\sin 2\beta = 0.673 \pm 0.023$ 

Show first results at LHCb of CP violation in

$$B^0 \rightarrow J/\psi K_s$$

# Trigger and selection

- 35 pb<sup>-1</sup> at  $\sqrt{s} = 7$  TeV in 2010
- Trigger

Contains components which biases the proper time distribution of the selected events (impact parameter cut)

To increase statistics time biased trigger lines (~20%) are also used

Added acceptance for biased events

$$\epsilon_{\rm S}(t) = \frac{(a_a t)^{c_a}}{1 + (a_a t)^{c_a}}$$

- Common selection for  $b \rightarrow J/\psi X$
- Only tagged events are sensitive to  $\sin 2\beta$
- Selection of  $\sim 280$  tagged events for  $B^0 \to J/\psi K_s$

# Flavour Tagging

• Flavour Tagging is the procedure to determine the flavour of the reconstructed B meson at production time



**Taggers** 

**Opposite Side:** 

muons, electrons, kaons, vertex charge

Same Side:

kaons (B<sub>s</sub>) or pions (B<sub>d,u</sub>)

$$\varepsilon_{tag} = \frac{N_R + N_W}{N_R + N_W + N_U} \qquad \omega = \frac{N_W}{N_R + N_W}$$

$$\varepsilon_{eff} = \varepsilon_{tag} (1 - 2\omega)^2$$

• When measuring  $\sin 2\beta$  it is crucial to know the initial flavour of the decaying B.

The measurement is influenced directly by the tagging dilution.

# Calibration of Flavour Tagging

• For each event an estimated probability of the tagging decision to be correct  $(\eta)$  is given by a neural net.

Calibration of  $\eta$  is needed to obtain an  $\omega$  event per event

- Use per event mistag as observable  $\omega = p_0 + p_1 \cdot (\eta \bar{\eta})$
- $B^+ \to J/\psi \ K^+$  used for calibration, and the kinematically similar  $B^0 \to J/\psi \ K^*$  is used as crosscheck

MC  $\omega$  distribution/calibration totally compatible with B<sup>0</sup>  $\rightarrow$  J/ $\psi$  K<sub>s</sub>

Study correction function between actual mistag and calibrated mistag

Expected Obtained 
$$p_0 = \bar{\eta} = 0.35$$
  $p_0 = 0.333 \pm 0.025$   $p_1 = 1$   $p_1 = 0.71 \pm 0.36$ 

### Likelihood Fit

• The CP violation parameters are extracted through a simultaneous multidimensional unbinned extended maximum likelihood fit.

$$\mathcal{L}(\vec{\lambda}) = \frac{e^{-N} N^n}{n!} \prod_{s} \prod_{i=1}^{N^s} \mathcal{P}^s(\vec{x}_i; \vec{\lambda}_s)$$

• The fit is done simultaneous in 4 subsamples:

triggered by lifetime **biased/unbiased** (B/U) lines, and **tagged/untagged** (t,u) events

• We consider 4 observables:

the reconstructed mass of the **B** candidate, its **proper time** t, the flavour **tagging decision**, and the combined per-event mistag  $\omega$ 

• The pdf consists of three components:

Signal (S), prompt bkg (P) and long lived bkg (L)

# Parametrization (I)

### Mass p.d.f

Signal: Single Gaussian (parameters shared)

Bkg: Exponential (P, L bkg have similar mass distribuion, use the same parametrization for both)



# Parametrization (II)

### • Proper time p.d.f

$$\mathcal{P}_{S}(t, d, \omega) = \mathcal{P}_{S}(t, d|\omega) \cdot \mathcal{P}_{S}(\omega)$$
$$\mathcal{P}_{B}(t, d, \omega) = \mathcal{P}_{B}(t, d) \cdot \mathcal{P}_{B}(\omega)$$



Describes decay, mixing and CP violation

Acceptance effects

$$\mathcal{P}_{S}(t,d|\omega) = \epsilon_{S}(t) \cdot \left(\mathcal{P}_{S,CP}(t,d|\omega) \otimes \mathcal{R}(t)\right)$$

$$\mathcal{P}_{\mathrm{P}}(t) \propto \delta(t) \otimes \mathcal{R}(t; \lambda_{\mathcal{R}, t})$$

$$\mathcal{P}_{\mathrm{L}}^{\mathrm{U}}(t; \lambda_{\mathrm{L}, t}^{\mathrm{U}}) = \left( f_{\mathrm{L}, t}^{\mathrm{U}} \cdot \frac{1}{N_{\mathrm{L}, 1}^{\mathrm{U}}} e^{-t/\tau_{\mathrm{L}, 1}^{\mathrm{U}}} + (1 - f_{\mathrm{L}, t}^{\mathrm{U}}) \cdot \frac{1}{N_{\mathrm{L}, 2}^{\mathrm{U}}} e^{-t/\tau_{\mathrm{L}, 2}^{\mathrm{U}}} \right) \otimes \mathcal{R}(t; \lambda_{\mathcal{R}, t})$$

$$\mathcal{P}_{\mathrm{L}, t}^{\mathrm{B}}(t; \lambda_{\mathrm{L}, t}^{\mathrm{B}}) \propto e^{-t/\tau_{\mathrm{L}}^{\mathrm{B}}} \otimes \mathcal{R}(t; \lambda_{\mathcal{R}, t})$$

Resolution (triple gaussian)Constrain due to promptcomponent

### Systematic uncertainties

• Tagging (main effect),

Calibration: Propagate uncertainties on calibration (multiply gaussian priors to full pdf). Fit with the parameters obtained with the control channel

Per event mistag

- Production asymmetry (asymmetry in  $B^0$ ,  $\overline{B}^0$   $\varepsilon_{tag}$ )
- Proper time resolution (variation to statistic accuracy)
- Acceptance

Biased events (propagate the errors of acceptance function)

High proper time (omited correction for high t in test fit)

•  $\Delta m_d$  fixed to pdg value, refit with  $\pm \sigma$ 

### Systematic uncertainties

### List of systematic uncertainties

|                                   | -           |
|-----------------------------------|-------------|
| Source                            | uncertainty |
| tagger calibration                | 0.067       |
| per-event mistags p.d.f.          | 0.012       |
| $\Delta m_d$ uncertainty, z-scale | 0.0017      |
| proper time resolution            | 0.0085      |
| high propertime acceptance        | 0.00065     |
| biased events acceptance          | 0.0042      |
| production asymmetry              | 0.041       |
| total (sum in squares)            | 0.080       |
|                                   |             |

### Results: sin2\beta

### LHCb measurement of CP violation in $\sin 2\beta$



Statistically compatible with world average

 $\sin 2\beta = 0.673 \pm 0.023$ 

# Floating C<sub>J/YKs</sub>

- Refit without assuming null direct CP violation in SM
- When floating  $C_{J/\psi \, Ks}$  a correlation appears

$$\rho(S_{J/\psi Ks}C_{J/\psi Ks}) = 0.53$$

will not decrease with more statistics (sensitivity comes from proper time)

Results are compatible with world average meaurements

$$C_{J/\psi K_S^0} = 0.28^{+0.32}_{-0.32}$$
  
 $S_{J/\psi K_S^0} = 0.38^{+0.34}_{-0.35}$ 

### Conclusion

- Performed time dependent tagged CP analysis
- Flavour tagging is already performing in LHCb
- First measurement of  $\sin 2\beta$  in LHCb

Measurement of 
$$\sin 2\beta$$
  $S_{J/\psi K_S^0} = 0.53^{+0.28}_{-0.29}(\text{stat}) \pm 0.08(\text{syst})$ 

Results consistent with world average

Waiting for more data

LHCb coll. "Measurement of CP violation in the time-dependent analysis of B<sup>0</sup>  $\rightarrow$  J/ $\psi$  K<sub>s</sub> decays with the 2010 data", LHCb-CONF-2011-004

16

# Back-Up

### More on CP violation

'sd' triangle: K<sup>0</sup>



$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

$$V_{ub}^* V_{us} + V_{cb}^* V_{cs} + V_{tb}^* V_{ts} = 0$$





relative size of CP-violating effects

$$\alpha = \arg\left(-\frac{V_{tb}^* V_{td}}{V_{ub}^* V_{ud}}\right)$$

$$\gamma = \arg\left(-\frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}}\right)$$

$$\beta = \arg\left(-\frac{V_{cb}^* V_{cd}}{V_{tb}^* V_{td}}\right)$$

### CP violation in B mesons



#### **Amplitude**

$$A_{f_{CP}}e^{-imt}e^{-\Gamma t/2}\left(\cos\frac{\Delta mt}{2} + \lambda_{f_{CP}}\mathbf{i}\sin\frac{\Delta mt}{2}\right)$$

$$g_{+}(t) = e^{-imt}e^{-\Gamma t/2}\cos\frac{\Delta mt}{2}$$

$$g_{-}(t) = e^{-imt}e^{-\Gamma t/2}i\sin\frac{\Delta mt}{2}$$

$$\lambda_{fCP} = \frac{q}{p}\frac{\overline{A}_{fCP}}{A_{fCP}}$$

$$\overline{A}_{f_{CP}}e^{-imt}e^{-\Gamma t/2}\left(\cos\frac{\Delta mt}{2}+\frac{1}{\lambda_{f_{CP}}}\underline{i}\sin\frac{\Delta mt}{2}\right)$$

$$B^0 \to f_{CP}$$

$$\overline{B^0} \to f_{CP}$$

$$B^{0} \longrightarrow f_{CP} \qquad \frac{1}{2}e^{-\Gamma t} \left[ 1 + \left( \frac{1 - |\lambda|^{2}}{1 + |\lambda|^{2}} \right) \cos(\Delta m t) - \left( \frac{2\mathcal{I}(\lambda)}{1 + |\lambda|^{2}} \right) \sin(\Delta m t) \right]$$

$$\overline{B^{0}} \longrightarrow f_{CP} \qquad \frac{1}{2}e^{-\Gamma t} \left[ 1 - \left( \frac{1 - |\lambda|^{2}}{1 + |\lambda|^{2}} \right) \cos(\Delta m t) + \left( \frac{2\mathcal{I}(\lambda)}{1 + |\lambda|^{2}} \right) \sin(\Delta m t) \right]$$

# CP violation in $B^0 \rightarrow J/\Psi K_s$

$$\lambda_{J/\psi K_S} \equiv \frac{q}{p} \frac{\overline{A}_{J/\psi K_S}}{A_{J/\psi K_S}}$$

$$= -\frac{q}{p} \frac{\overline{A}_{J/\psi \overline{K^0}, \overline{K^0} \to K_S}}{A_{J/\psi K^0, K^0 \to K_S}}$$



$$\lambda_{J/\psi K_S} = -e^{-2i\beta}$$



$$rac{q_K}{p_K} pprox rac{V_{cs}^* V_{cd}}{V_{cs} V_{cd}^*} egin{pmatrix} V_{cs}^* & V_{cs}^* & \overline{d} \\ V_{cs}^* V_{cd}^* & V_{cd}^* & V_{cd}^* & V_{cd}^* & \overline{d} \\ \hline \end{array}$$

$$\mathcal{A}_{CP} = \frac{\Gamma(\overline{B^0} \to J/\psi K_S) - \Gamma(B^0 \to J/\psi K_S)}{\Gamma(\overline{B^0} \to J/\psi K_S) + \Gamma(B^0 \to J/\psi K_S)} = \sin(2\beta)\sin(\Delta mt)$$

# The LHCb experiment

#### PV resolution:

Data: 16  $\mu$ m for  $X \mathcal{C} Y$  and 76  $\mu$ m for Z MC: 11  $\mu$ m for  $X \mathcal{C} Y$  and 60  $\mu$ m for Z

### IP resolution:

~15 µm for highest pt bins

#### PID: RICH

Enables clean reconstruction of various hadronic decay channels of D(s) and B(s) mesons

### Tracking:

Excellent mass resolution







# Calibration of Flavour Tagging

Bkg

• Calibration of  $B^+ \rightarrow J/\psi K^+$ Signal



# Calibration of Flavour Tagging

• MC validation of tagging with other channels



$$\begin{array}{l} B^+ \to J/\psi \ K^+ \\ B^0 \to J/\psi \ K^* \\ B^0 \to J/\psi \ \phi \end{array}$$

LHCb coll. "Optimization and calibration of the LHCb flavour tagging performance using 2010 data", LHCb-CONF-2011-003

### Lifetime

• The fited value is:

$$\tau(B^0 \to J/\psi K_s^0) = 1.558 \pm 0.056 \text{ (stat.)} \pm 0.022 \text{ (syst.) ps}$$
PDG evaluation (ps)  $1.525 \pm 0.009$ 

- The proper time has a high precision in the fit
- We include acceptance correction in agreement with:

LHCb coll. "b-hadron lifetime measurements with exclusive b  $\to J/\psi$  X decays reconstructed in the 2010 data", LHCb-CONF-2011-001

### Parametrization (III)

• The efficiency function describes acceptance effects observed in the biased sample at low proper times..

$$\epsilon_{\rm S}(t) = \frac{(a_a t)^{c_a}}{1 + (a_a t)^{c_a}}$$

• CP p.d.f

Correction for acceptance at high lifetimes 
$$\mathcal{P}_{\mathrm{S},CP}^{\mathrm{t}}(t,d|\omega) \propto e^{-t/\tau'}(1-d(1-2\omega)\,S_{J/\psi\,K_{\mathrm{S}}^{0}}\,\sin\Delta m_{d}t \\ +d(1-2\omega)\,C_{J/\psi\,K_{\mathrm{S}}^{0}}\,\cos\Delta m_{d}t)$$
 
$$\mathcal{P}_{\mathrm{S},CP}^{\mathrm{u}}(t) \propto e^{-t/\tau'}$$

Describes decay, mixing and CP violation in the B<sup>0</sup> system.

# Parametrization (IV)

- Per event mistag probability (included in full pdf)
  - Use sPlot technique to extract histo pdf for sig/bkg  $\eta_c$  distribution
- The B<sup>0</sup> lifetime is shared in all four sample
- $\Delta m_d$ ,  $S_{J/\psi K}$ ,  $C_{J/\psi K}$  shared between the tagged sample

### Fit details

• Fit results and fitted event yields on the full  $B^0 \to J/\psi K_s$ 

| Parameter                                                                                                                               | Unit                    | Fitted Value                           |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|
| $S_{J/\psi  K^0_{ m S}}$                                                                                                                |                         | $0.53^{+0.28}_{-0.29}$                 |
| $m_{ m S}$                                                                                                                              | $MeV/c^2$               | $5278.13^{+0.29}_{-0.29}$              |
| $\sigma_{{ m S},m}$                                                                                                                     | $\mathrm{MeV}/c^2$      | $8.82^{+0.24}_{-0.24}$                 |
| au                                                                                                                                      | ps                      | $1.517^{+0.046}_{-0.045}$              |
| $egin{array}{c} lpha_m^{ m B} \ lpha_m^{ m U} \end{array}$                                                                              | $(\text{MeV}/c^2)^{-1}$ | $-8.71^{+3.8}_{-3.8} \cdot 10^{-4}$    |
| $\alpha_m^{ m U}$                                                                                                                       | $(MeV/c^2)^{-1}$        | $-5.864^{+0.87}_{-0.87} \cdot 10^{-4}$ |
|                                                                                                                                         |                         | $0.836^{+0.049}_{-0.054}$              |
| $egin{aligned} f_{	ext{L},t}^{	ext{U}} \ 	au_{	ext{L},1}^{	ext{U}} \ 	au_{	ext{L},2}^{	ext{U}} \ 	au_{	ext{L}}^{	ext{B}} \end{aligned}$ | ps                      | $0.221^{+0.036}_{-0.032}$              |
| $	au_{	ext{L},2}^{	ext{U}}$                                                                                                             | ps                      | $1.04^{+0.24}_{-0.16}$                 |
| $	au_{ m L}^{ m B}$                                                                                                                     | ps                      | $0.482^{+0.029}_{-0.027}$              |
| $f_{\mathcal{R},1}$                                                                                                                     |                         | $0.500^{+0.019}_{-0.019}$              |
| $f_{\mathcal{R},2}$                                                                                                                     |                         | $0.477^{+0.017}_{-0.017}$              |
| $\sigma_{\mathcal{R},1}$                                                                                                                | ps                      | $0.02522^{+0.00066}_{-0.00066}$        |
| $\sigma_{\mathcal{R},2}$                                                                                                                | ps                      | $0.0685^{+0.0016}_{-0.0015}$           |
| $\sigma_{\mathcal{R},3}$                                                                                                                | ps                      | $0.293^{+0.019}_{-0.017}$              |

| Sample      | Parameter           | Fitted Value          |
|-------------|---------------------|-----------------------|
| U,t         | $N_{ m S}^{ m U,t}$ | $221_{-17}^{+17}$     |
|             | $N_{ m P}^{ m U,t}$ | $3218^{+62}_{-62}$    |
|             | $N_{ m L}^{ m U,t}$ | $309^{+33}_{-30}$     |
| B,t         | $N_{ m S}^{ m B,t}$ | 59.8+8.7              |
|             | $N_{ m P}^{ m B,t}$ | $164^{+14}_{-14}$     |
|             | $N_{ m L}^{ m B,t}$ | $102_{-12}^{+12}$     |
| U,u         | $N_{ m S}^{ m U,u}$ | $767^{+32}_{-31}$     |
|             | $N_{ m P}^{ m U,u}$ | $21134^{+161}_{-161}$ |
|             | $N_{ m L}^{ m U,u}$ | $807^{+79}_{-74}$     |
| $_{ m B,u}$ | $N_{ m S}^{ m B,u}$ | $279^{+18}_{-18}$     |
|             | $N_{ m P}^{ m B,u}$ | $747^{+30}_{-29}$     |
|             | $N_{ m L}^{ m B,u}$ | $339_{-22}^{+23}$     |