



# LHCb semileptonic highlights from 2010 and prospects for 2011

Robert W. Lambert

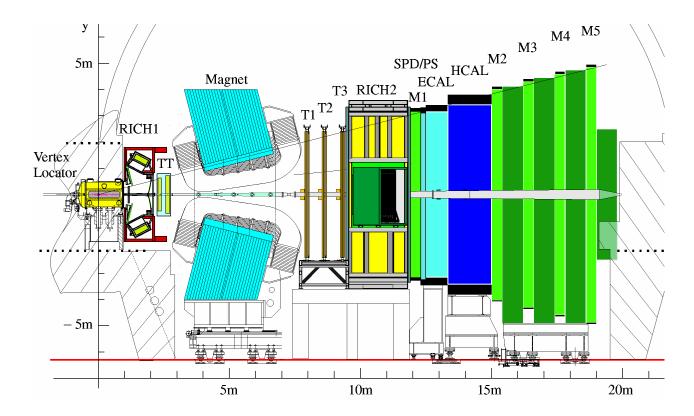
on behalf of the LHCb Collaboration







#### LHC and LHCb

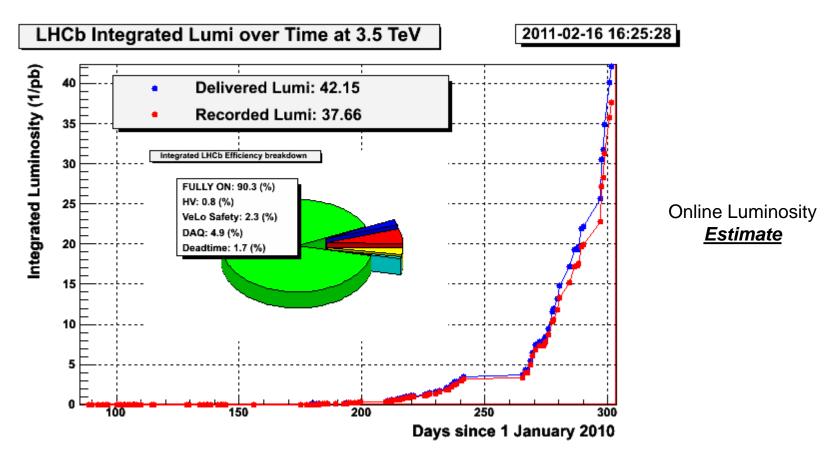

- Semileptonics in general
- > Motivation and measurement of  $B_s^0 \rightarrow D_{s1,2}^{*\pm} \mu^{\mp} \nu X^0$
- Flavour specific asymmetry







- > LHCb is a dedicated, precision, *b*-physics experiment
- ➢ High statistics: we're in the forward region, and at LHC

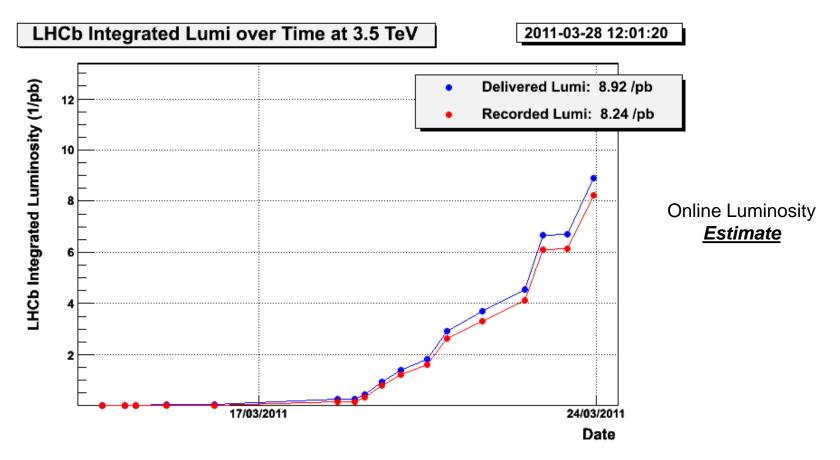









#### ➤ The LHC delivered ~40 pb<sup>-1</sup> in 2010

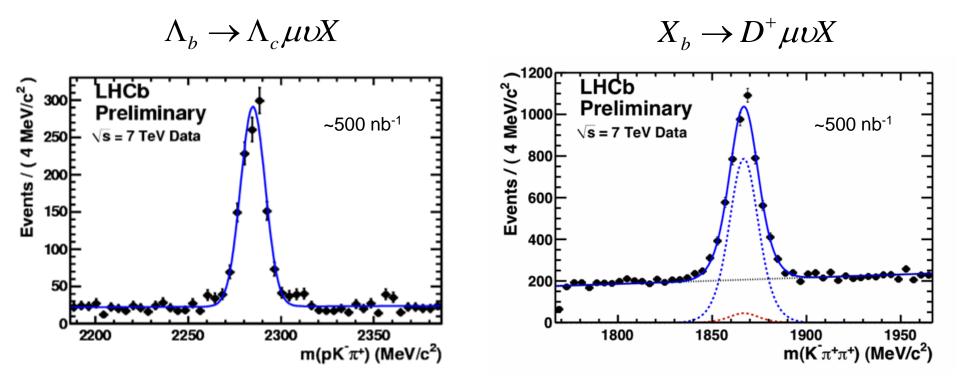









#### ➤ The LHC delivered ~40 pb<sup>-1</sup> in 2010




#### > 25% more already in 2011!



#### LHCb reconstructs charmed and charmless B-decays

Backgrounds from open charm and other light mesons



... just a sample of the many reconstructed moded

Beauty, 7th April 2011



# **Semileptonic Program**



#### **Production and decay**

- Spectroscopy
- Hadronization fractions
- Form factors
- V<sub>cb</sub>, V<sub>ub</sub>

#### **B-meson mixing**

- Lifetime
- Mass difference
- Width difference
- Flavour-specific asymmetry



# Semileptonic Program



#### **Production and decay**

- Spectroscopy
- Hadronization fractions
- Form factors
- V<sub>cb</sub>, V<sub>ub</sub>

#### **B-meson mixing**

- Lifetime
- Mass difference
- Width difference
- Flavour-specific asymmetry

2010, 2011



# Semileptonic Program



#### **Production and decay**

- Spectroscopy
- Hadronization fractions
- Form factors
- V<sub>cb</sub>, V<sub>ub</sub>

#### Highlights to cover here:

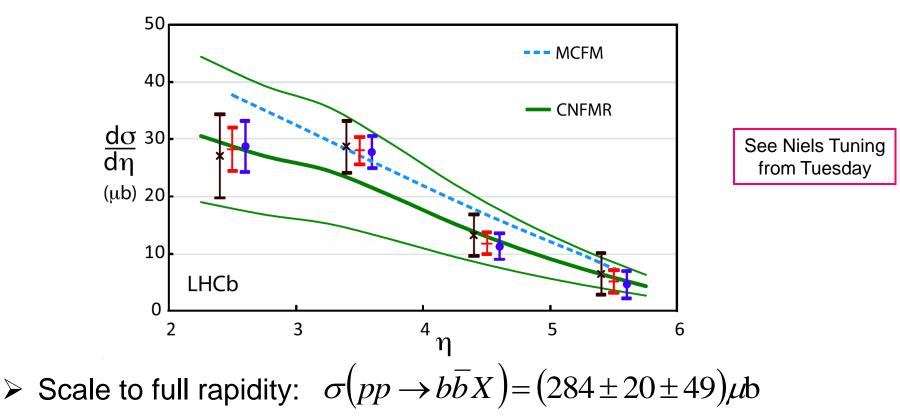
- First LHC *b*-physics paper
- New D\*\* decays of B-mesons
- Prospects for flavour-specific asymmetry

#### **B-meson mixing**

- Lifetime
- Mass difference
- Width difference
- Flavour-specific asymmetry

2010, 2011

See Niels Tuning from Tuesday, <u>and</u> Stefania Vecchi from Monday



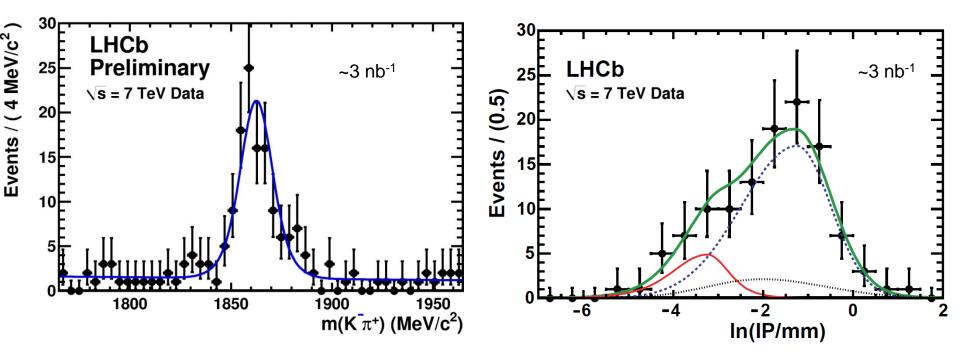

# **bb** cross-section



Phys. Lett. B 694 pp. 209 arxiv:1009.2731

- > First LHCb *b*-physics paper,  $\mathcal{L}=(15.0\pm1.5)$ nb<sup>-1</sup>
- $\succ \sigma_{b\bar{b}}$  from semileptonic decays of the form  $X_b \rightarrow D^0 \mu \nu X$






# **bb** cross-section



➢ First LHCb *b*-physics paper, ∠=(15.0±1.5)nb<sup>-1</sup>
Phys. Lett. B 694 pp. 209 arxiv:1009.2731

 $\succ \sigma_{b\bar{b}}$  from semileptonic decays of the form  $X_b \rightarrow D^0 \mu \nu X$ 



In(IP) distribution used to discriminate prompt contribution

Beauty, 7th April 2011



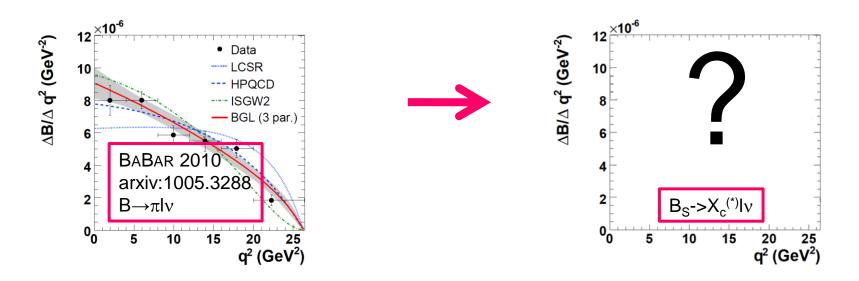



# Progress towards $V_{(u/c)b}$ Measurement of $B_s^0 \rightarrow D_{s1,2}^{*\pm} \mu^{\mp} \nu X^0$



#### Constrains UT and/or measures form factors




> LHCb also probes  $V_{(u/c)b}$  in the B<sub>s</sub> system

Beauty, 7th April 2011





- > To determine  $V_{ub}$ , we must first understand  $V_{cb}$
- X In the B<sub>s</sub> system, very little is known phenomenologically X Form factors unknown, expected to differ in q<sup>2</sup> shape



#### Theory interest and input encouraged

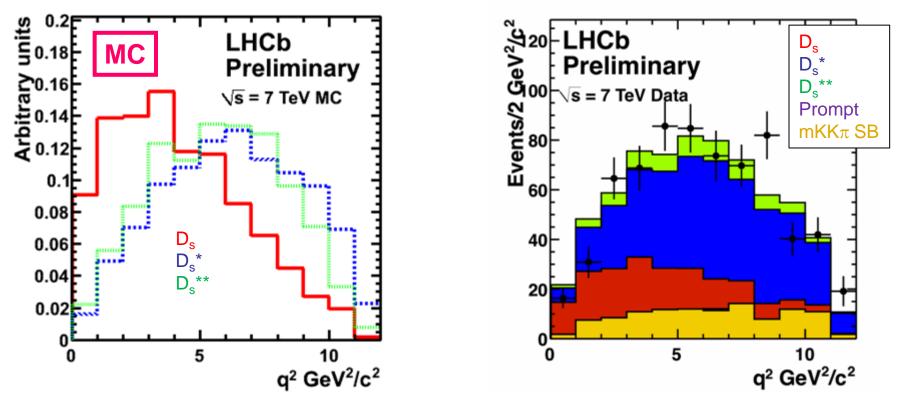


### Complementarity



- $\succ$  To determine V<sub>ub</sub>, we must first understand V<sub>cb</sub>
- X In the B<sub>s</sub> system, very little is known experimentally X Excited D resonances unknown




✓ There are many more resonances to be found!

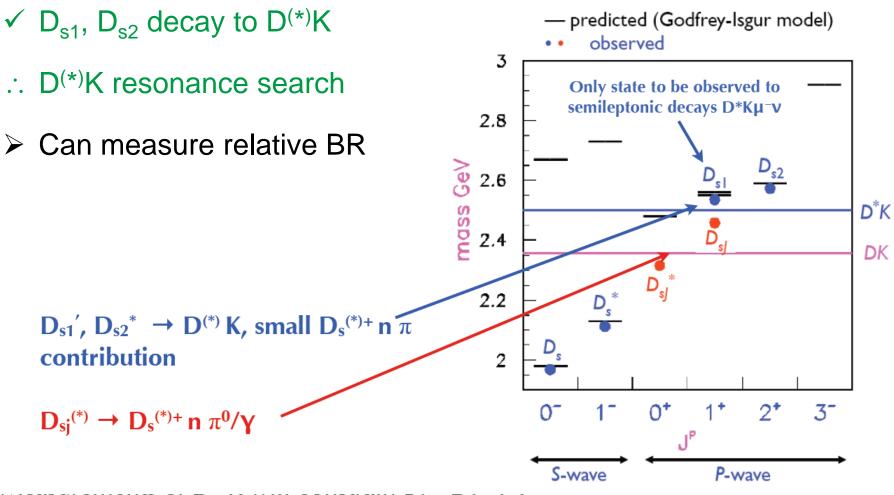






- The form factors in q<sup>2</sup> differ for the different excited states
  - Neither branching ratios nor form factors are well known!




Need to experimentally constrain ratio of D\*\* : D\*





Phys. Rev. D 32, pp. 189–231 (1985)

> Spectroscopy of  $D_s$  states is very rich



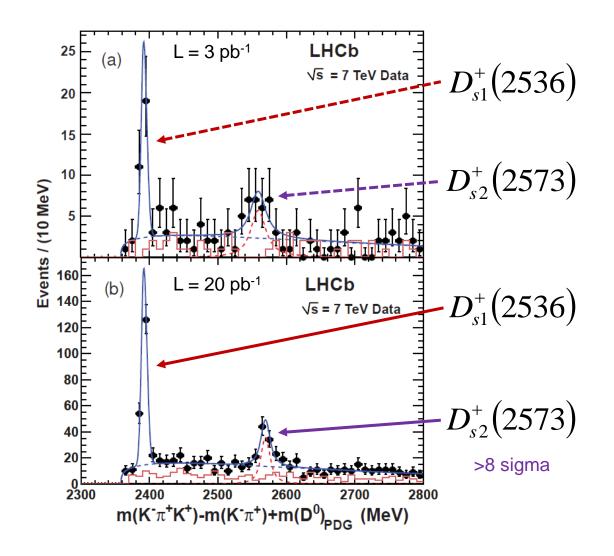
Beauty, 7th April 2011



### **Analysis strategy**



Phys. Lett. B 698 pp.14-20,2011 arXiv:1102.0348

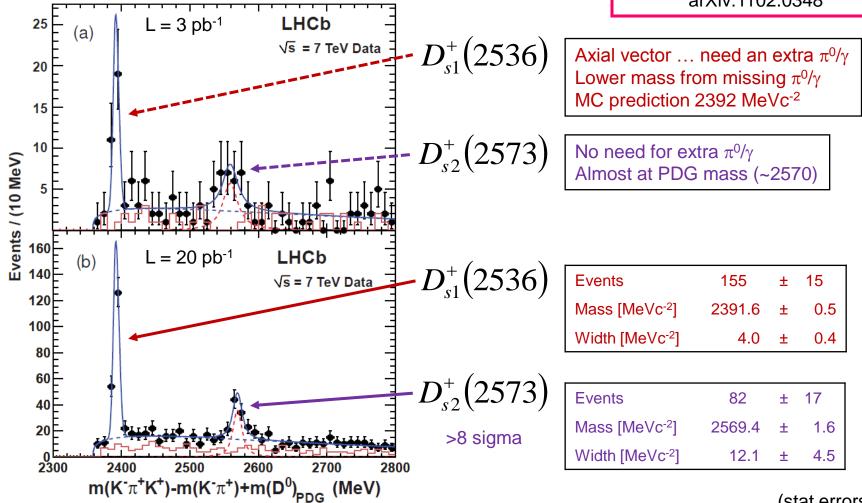

Quickly changing 2010 conditions

- Need to subdivide into two datasets
  - 3 pb<sup>-1</sup>, small pileup, inclusive single-muon trigger
  - 20 pb<sup>-1</sup>, larger pileup, any trigger (hadronic, muonic, random)
- 1. Observe D<sup>0</sup>K modes in both samples
- 2. Measure significance, widths and masses in 20 pb<sup>-1</sup>
- 3. Determine ratio of D<sup>0</sup>K yields in 20 pb<sup>-1</sup>
- 4. Normalize to total SL-width within the 3 pb<sup>-1</sup>
  - (due to the inclusive triggering)



### 1: Observe D<sup>0</sup>K modes

Phys. Lett. B 698 pp.14-20,2011 arXiv:1102.0348



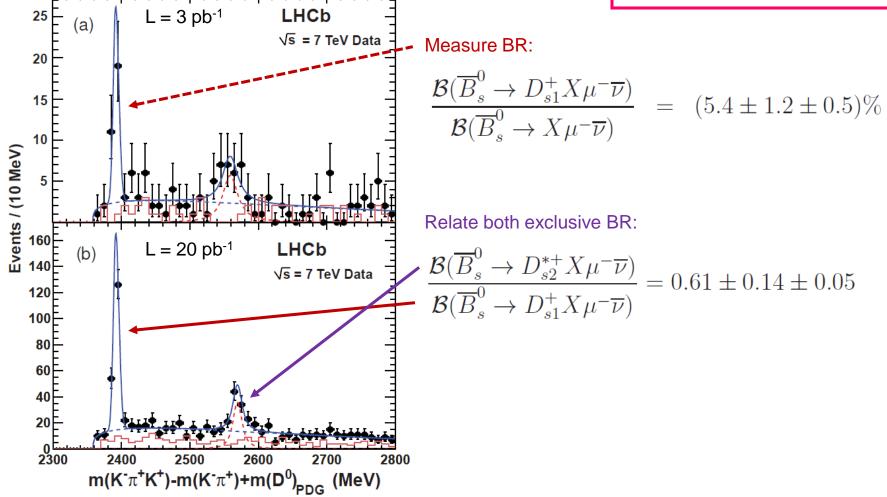



### 2: Masses and widths



Phys. Lett. B 698 pp.14-20,2011 arXiv:1102.0348



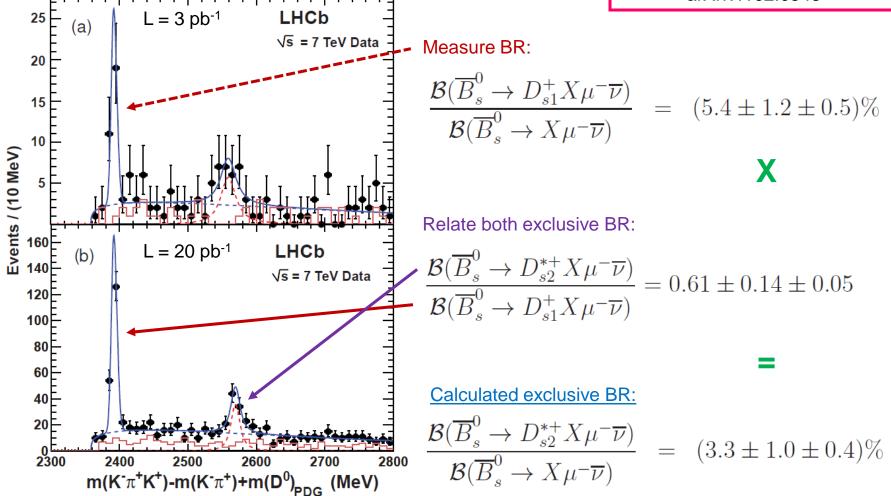

(stat errors)



### **3: Ratio Measurements**



Phys. Lett. B 698 pp.14-20,2011 arXiv:1102.0348






### 4: Branching Ratios



Phys. Lett. B 698 pp.14-20,2011 arXiv:1102.0348





### **Partial Summary**



$$\frac{\mathcal{B}(\overline{B}_s^0 \to D_{s1}^+ X \mu^- \overline{\nu})}{\mathcal{B}(\overline{B}_s^0 \to X \mu^- \overline{\nu})} = (5.4 \pm 1.2 \pm 0.5)\%$$

$$\frac{\mathcal{B}(\overline{B}_s^0 \to D_{s2}^{*+} X \mu^- \overline{\nu})}{\mathcal{B}(\overline{B}_s^0 \to D_{s1}^+ X \mu^- \overline{\nu})} = 0.61 \pm 0.14 \pm 0.05$$

- We constrain the D\*\* branching ratios
  - $\checkmark$  Important for the attempt on V\_{cb}
- We now use these measurements in our MC
  - ✓ Important for MC-corrections of missing neutrino
  - ... Important for many other SL measurements
  - ... such as ...





# Flavour-specific asymmetry





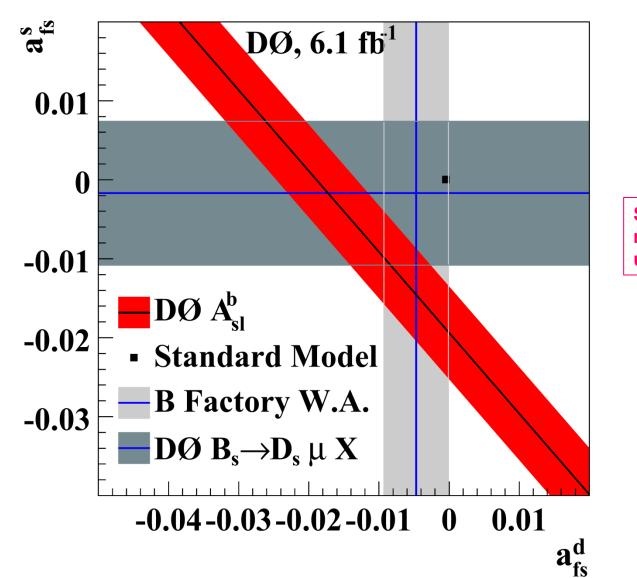


 ${\rm Fermilab-Pub-10/114-E}$ 

#### Evidence for an anomalous like-sign dimuon charge asymmetry

V.M. Abazov,<sup>36</sup> B. Abbott,<sup>74</sup> M. Abolins,<sup>63</sup> B.S. Acharya,<sup>29</sup> M. Adams,<sup>49</sup> T. Adams,<sup>47</sup> E. Aguilo,<sup>6</sup> G.D. Alexeev,<sup>36</sup> G. Alkhazov,<sup>40</sup> A. Alton<sup>a</sup>,<sup>62</sup> G. Alverson,<sup>61</sup> G.A. Alves,<sup>2</sup> L.S. Ancu,<sup>35</sup> M. Aoki,<sup>48</sup> Y. Arnoud,<sup>14</sup> M. Arov,<sup>58</sup> A. Askew,<sup>47</sup> B. Åsman,<sup>41</sup> O. Atramentov,<sup>66</sup> C. Avila,<sup>8</sup> J. BackusMayes,<sup>81</sup> F. Badaud,<sup>13</sup> L. Bagby,<sup>48</sup> B. Baldin,<sup>48</sup> D.V. Bandurin,<sup>47</sup> S. Banerjee,<sup>29</sup> E. Barberis,<sup>61</sup> A.-F. Barfuss,<sup>15</sup> P. Baringer,<sup>56</sup> J. Barreto,<sup>2</sup> J.F. Bartlett,<sup>48</sup> U. Bassler,<sup>18</sup> S. Beale,<sup>6</sup> A. Bean,<sup>56</sup> M. Begalli,<sup>3</sup> M. Begel,<sup>72</sup> C. Belanger-Champagne,<sup>41</sup> L. Bellantoni,<sup>48</sup> J.A. Benitez,<sup>63</sup> S.B. Beri,<sup>27</sup> G. Bernardi,<sup>17</sup> R. Bernhard,<sup>22</sup> I. Bertram,<sup>42</sup> M. Besançon,<sup>18</sup> R. Beuselinck,<sup>43</sup>

We measure the charge asymmetry A of like-sign dimuon events in 6.1 fb<sup>-1</sup> of  $p\overline{p}$  collisions recorded with the D0 detector at a center-of-mass energy  $\sqrt{s} = 1.96$  TeV at the Fermilab Tevatron collider. From A, we extract the like-sign dimuon charge asymmetry in semileptonic *b*-hadron decays:  $A_{\rm sl}^b = -0.00957 \pm 0.00251$  (stat)  $\pm 0.00146$  (syst). This result differs by 3.2 standard deviations from the standard model prediction  $A_{\rm sl}^b(SM) = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$  and provides first evidence of anomalous CP-violation in the mixing of neutral B mesons.


PACS numbers: 13.25.Hw; 14.40.Nd

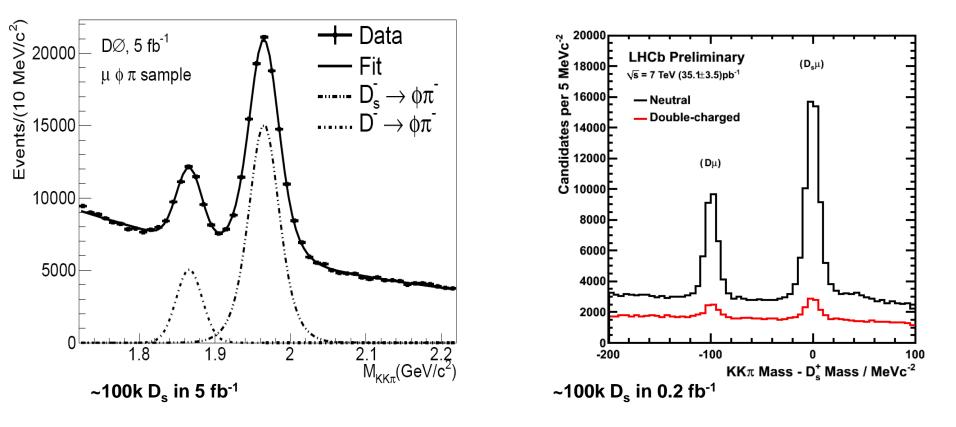
See talks from Monday morning



## Hot Topic






Situation could really be cleared up by LHCb



### **Current status**



- > LHCb is reconstructing both  $B_s^0 \to D_s^{\mp} \mu^{\pm} \nu_{\mu}$  and  $B_d^0 \to D_d^{\mp} \mu^{\pm} \nu_{\mu}$
- LHCb is catching up with DØ very quickly



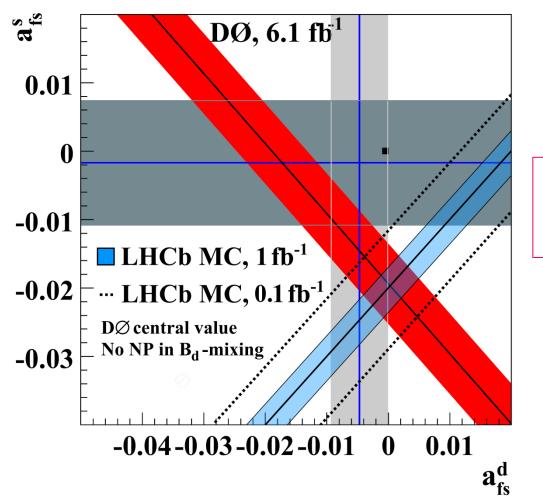




CERN-THESIS-2009-001

- LHC is a pp-collider, not a pp-collider
- LHCb is in the forward region
  - Can't measure the same thing as DØ
  - Need a clever new method

(inclusive) 
$$\left( A^b \sim \frac{a^s_{fs} + a^d_{fs}}{2} \rightarrow -(2.0 \pm 0.3) \times 10^{-4} [S.M.] \right)$$


Subtract two asymmetries to cancel main systematics

LHCb  
(subtraction) 
$$\Delta A_{fs} = \frac{a_{fs}^s - a_{fs}^d}{2} \rightarrow (2.1 \pm 0.3) \times 10^{-4} [S.M.]$$





#### ➤ LHCb measurement cuts at right-angles to DØ



NB: This is MC, scaled to real data including an <u>estimate</u> of systematics...





- > 2010 was a fantastic year for LHCb
- Semileptonics provide a excellent probe of the SM
  - Broad physics program
  - Already competitive with only ~37 pb<sup>-1</sup>
- Already with 2010 data:
  - bb cross-section, re-discovery of  $B_d$  mixing
  - Measurement of  $B_s^0 \rightarrow D_{s1,2}^{*\pm} \mu^{\mp} \nu X^0$
- Many other results in progress!
- > In 2011 we expect  $1 \text{ fb}^{-1}$ :
  - Form factors and V<sub>(u/c)b</sub>
  - B-mixing including ∆A<sub>fs</sub>







#### Backups are often required





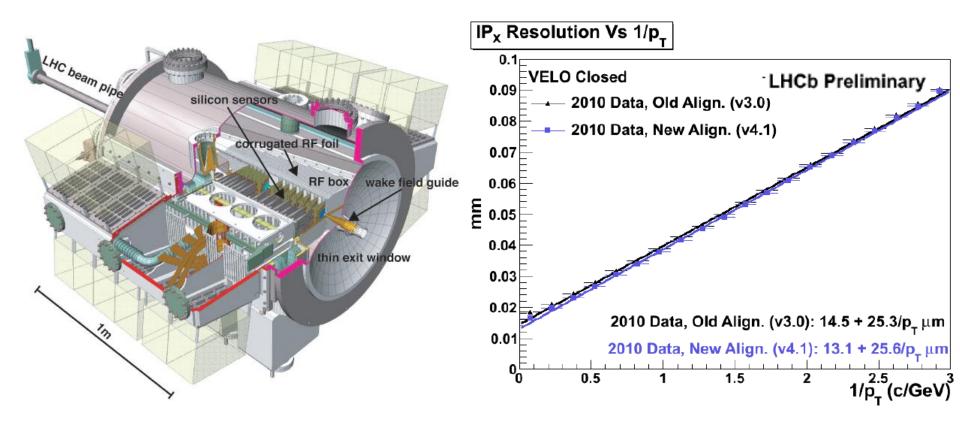


- Thanks to the LHC and the rest of the LHCb collaboration
- Specifically extra thanks to my colleagues:
  - Marina Artuso, Phillip Urquijo, Kim Vervink, Liming Zhang for direct contributions to this talk





#### > Theory predicts SL widths:

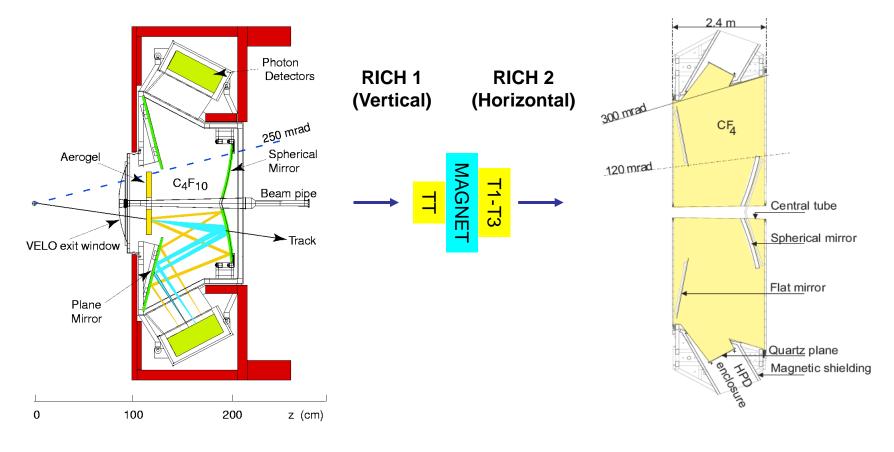

- D<sup>(\*)\*</sup> : D ~ 3 : 1
- arXiv:1003.5576



# **Being Timely**

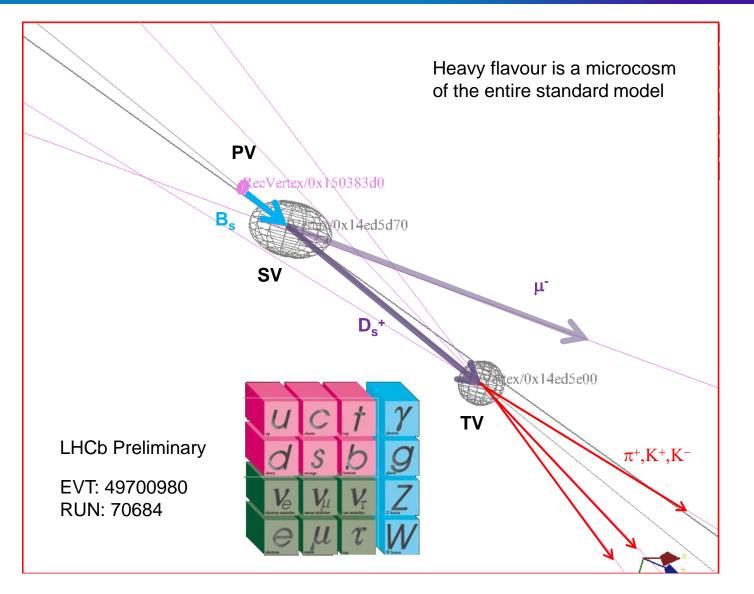


#### Proper Time: LHCb Velo precise down to ~50 fs






# **Being Precise**

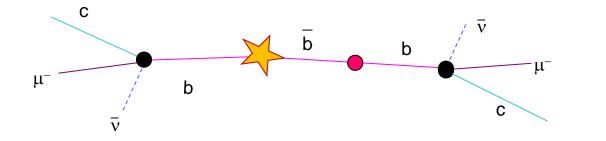



- Particle ID: separation handled by dedicated subdetectors
- Two RICHes, Calorimetry and Muon system





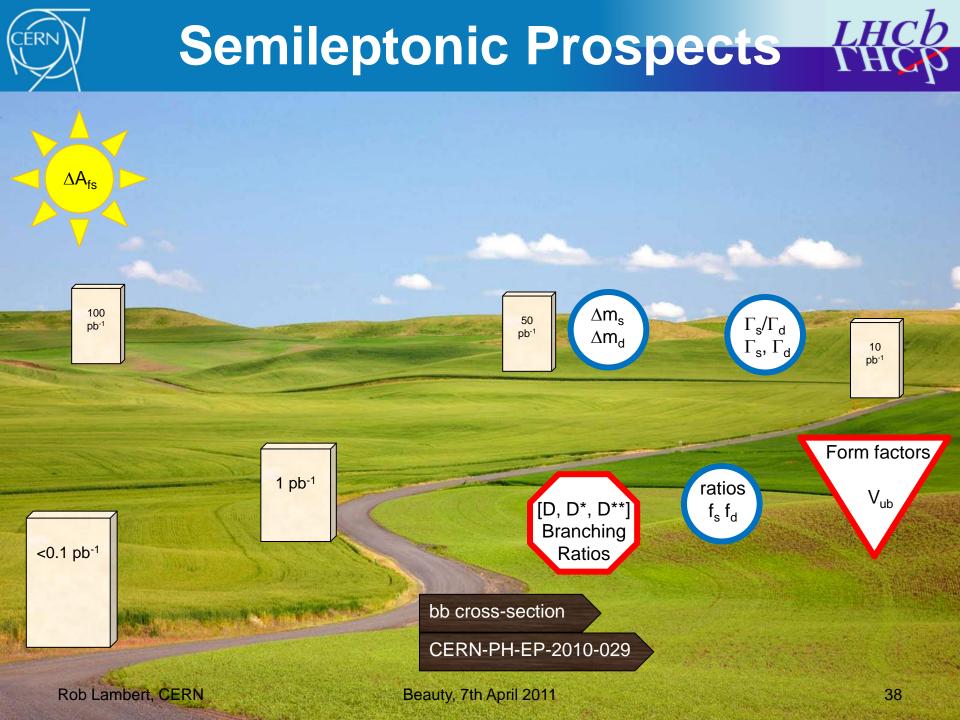
### **Reach of Semileptonics**









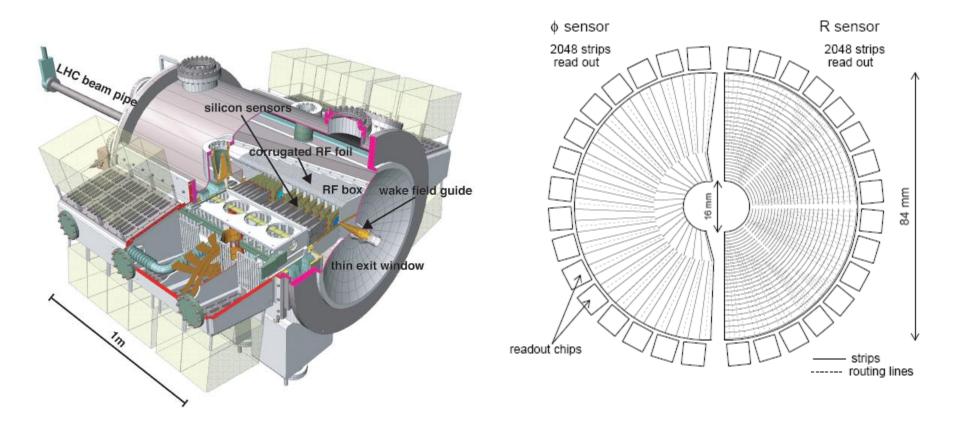


- Very difficult measurement
- > Observe  $N(\mu^+\mu^+) \neq N(\mu^-\mu^-)$
- Flavour-specific asymmetry from B<sup>0</sup>-mixing in the SM:



CP asymmetry in mixing, a<sub>fs</sub>

> In the standard model a<sub>fs</sub> is almost negligible

$$A^{b} \approx \frac{a_{fs}^{s} + a_{fs}^{d}}{2}$$
  $SM = (-2.0 \pm 0.3) \times 10^{-4}$   $D\emptyset \approx (-1 \pm 0.3)\%$ 

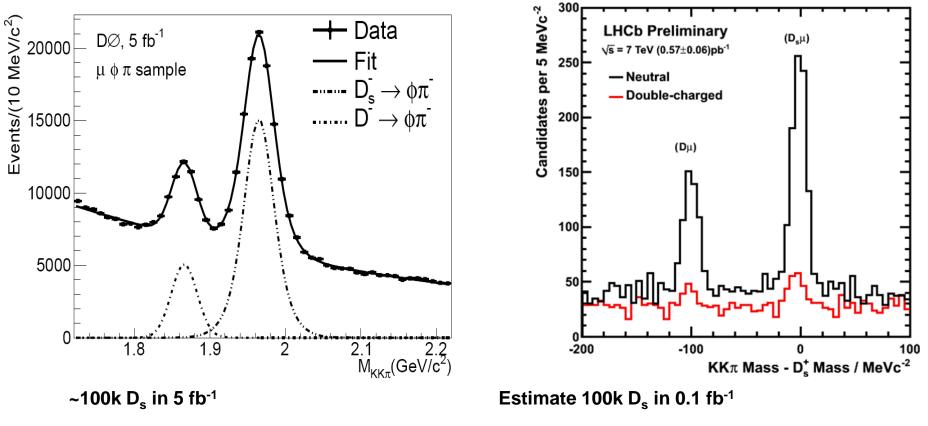





## **Being Timely**



#### Proper Time: LHCb Velo precise down to ~50 fs



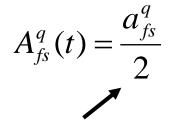



## **Being Exclusive**



- > Our forte: exclusive, reconstructed, *b*-decays
- In particular, time-dependent measurements






#### The simple formula

$$A_{fs}^{q}(t) = \frac{\Gamma(f) - \Gamma(\bar{f})}{\Gamma(f) + \Gamma(\bar{f})}$$

 $\left(rac{a_{fs}^q}{2}
ight)$ 

 $\left| \frac{\cos(\Delta m_q t)}{\cosh(\Delta \Gamma_q t/2)} \right|$ 



**10**<sup>-3</sup> -> **10** <sup>-5</sup>





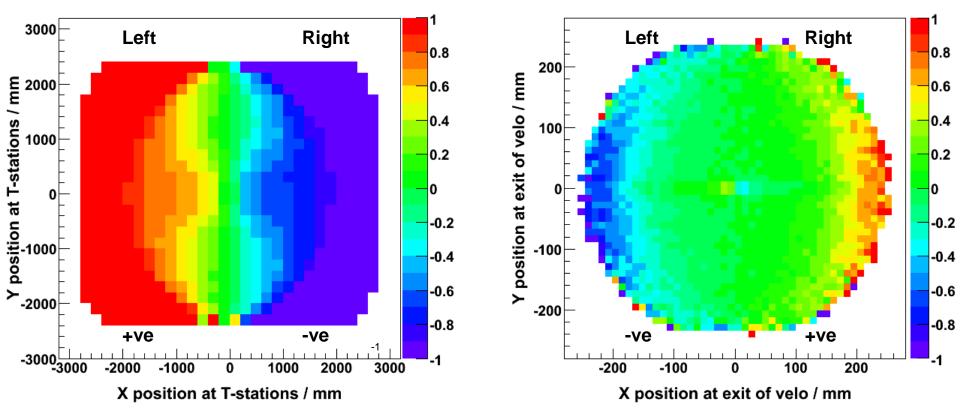
$$A_{fs}^{q}(t) = \frac{\Gamma(f) - \Gamma(\bar{f})}{\Gamma(f) + \Gamma(\bar{f})}$$

$$A_{fs}^{q}(t) = \frac{a_{fs}^{q}}{2} - \frac{\delta_{c}^{q}}{2} - \left(\frac{a_{fs}^{q}}{2} + \frac{\delta_{p}^{q}}{2}\right) \frac{\cos(\Delta m_{q}t)}{\cosh(\Delta \Gamma_{q}t/2)} + \frac{\delta_{b}^{q}}{2} \left(\frac{B}{S}\right)^{q}$$

$$10^{-3} - 10^{-5} - 10^{-2} - 10^{-2} - 10^{-2} - 10^{-2} - 10^{-2} - 10^{-2} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3$$

Polluting asymmetries are much larger than a<sub>fs</sub>

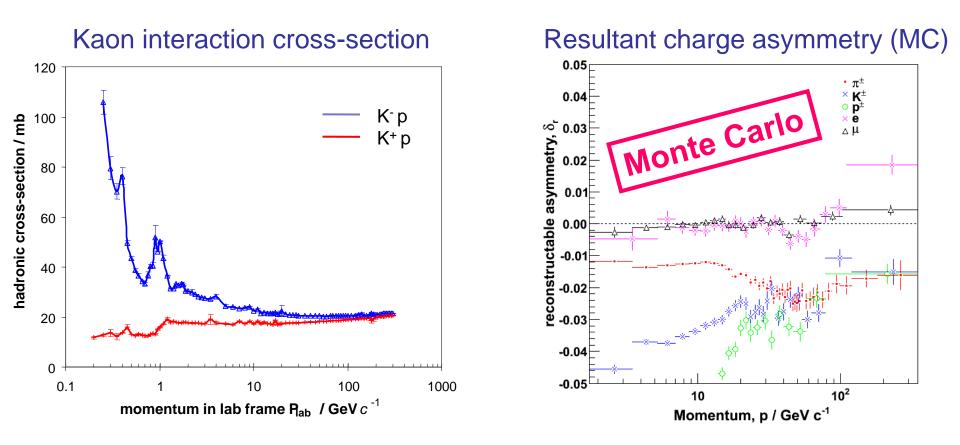
- Detector asymmetry  $\delta_c \sim (10^{-2})$
- Production asymmetry  $\delta_p \sim (10^{-2})$
- Background asymmetry  $\delta_{b} \sim (10^{-3})$


 $\delta_c = \frac{\varepsilon(f_i)}{\varepsilon(f_i)} - 1$ 

 $\delta_p = \frac{N(\bar{I}_0)}{N(\bar{I}_0)} - 1$ 

 $\delta_b = \frac{\overline{B} / \overline{S}}{B / S} - 1$ 



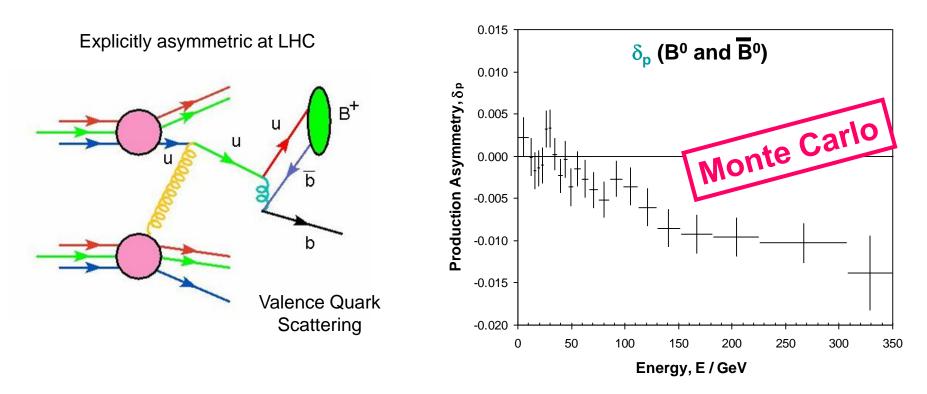

#### Asymmetry from Long Muon Tracks Reconstructed in MC



- Magnet divides +/- charge, allowing +/- asymmetry
- > by reversing magnet in D0:  $\delta_c$  reduced from 3% -> ~0.1%

Rob Lambert, CERN






- > Matter detector  $\rightarrow$  hadronic interactions are asymmetric
- Dominant systematic at order 1%

Rob Lambert, CERN



# **Production Asymmetry, δ<sub>p</sub>** *LHCb*



> LHC is a proton-proton collider: not CP-symmetric

- > LHCb is at high rapidity where production asymm. are largest
- $\succ$  There is never a simple control channel to measure  $\delta_{p}$

Rob Lambert, CERN





> Take  $B_s/B_d$  with the same final states ( $f = KK\pi \mu$ )

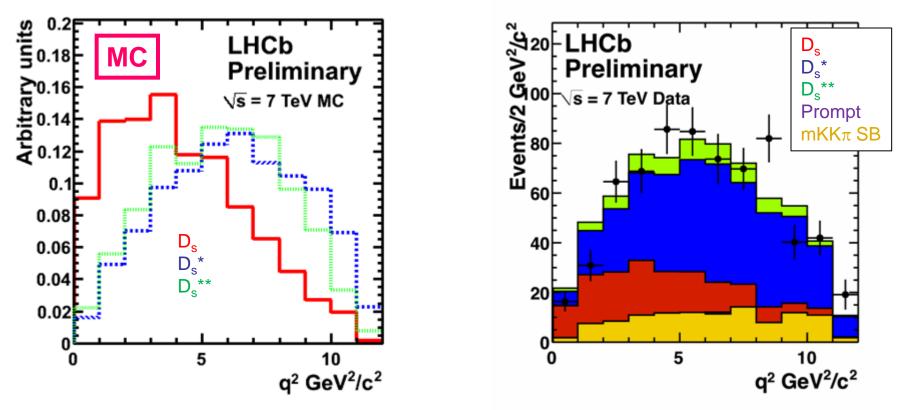
$$\Gamma(f) = Ne^{-\Gamma t} \left[ (1+x_1) \cosh\left(\frac{\Delta\Gamma t}{2}\right) + (x_2+x_3) \cos(\Delta m t) \right]$$
  
$$\Gamma(\bar{f}) = Ne^{-\Gamma t} \left[ (1-x_1) \cosh\left(\frac{\Delta\Gamma t}{2}\right) + (x_2-x_3) \cos(\Delta m t) \right]$$

where:  $x_1 = A_c + a_{fs}$   $x_2 = 2A_cA_p$   $x_3 = 2A_p - a_{fs}$ 

- > All production asymmetry is in  $x_2/x_3$ , just throw it away
- Measure the difference between B<sub>s</sub> and B<sub>d</sub>

$$\Delta A_{fs}^{s,d} = \frac{x_1^s - x_1^d}{2} = \frac{a_{fs}^s - a_{fs}^d}{2}$$

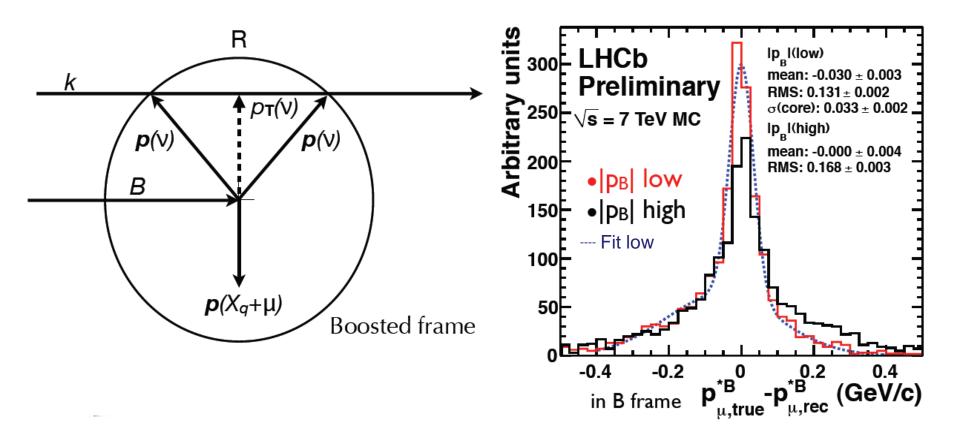
$$SM = (+2.5^{+0.5}_{-0.6}) \times 10^{-4}$$






Choose a set of form-factors for the LHCb MC (HQET2/ISGW2)

cb


Set the relative branching ratios from D/D\*/D\*\*, ~2.5:~6:~1



> 0.8 pb<sup>-1</sup> examined so far, should become powerful in 50 pb<sup>-1</sup>



- Use kinematics to calculate the neutrino momentum
  - Two ambiguous solutions, the lower momentum has lower error







# Flavour-specific asymmetry

... a smoking gun for new physics??







- 1. pp-interactions within a symmetric experiment
- 2. Correct all experimental biases (magnets, mis-id ...)
- 3. Observe  $N(\mu^+\mu^+) \neq N(\mu^-\mu^-)$
- 4. In the SM, the favoured way to make charge asymmetry is if:  $b\overline{b} \longrightarrow \mu^+ \mu^+ \neq b\overline{b} \longrightarrow \mu^- \mu^-$
- 5. Which comes from B<sup>0</sup>-mixing:

 $b\overline{b} \Rightarrow \overline{B}{}^{0}B^{0} \sim \overline{B}{}^{0}\overline{B}{}^{0} \rightarrow \mu^{+}\mu^{+}X \quad \neq \quad b\overline{b} \Rightarrow \overline{B}{}^{0}B^{0} \sim B^{0}B^{0} \rightarrow \mu^{-}\mu^{-}X$ 

#### > In the standard model it is almost negligible

$$A^{b} \approx \frac{a_{fs}^{s} + a_{fs}^{d}}{2}$$
  $SM = (-2.0 \pm 0.3) \times 10^{-4}$   $D\emptyset \approx (-1 \pm 0.3)\%$ 

Rob Lambert, CERN





- $\succ$  a<sub>fs</sub> is very sensitive to new physics (NP) even if:
  - Tree-level processes are SM-dominated
  - SM flavour structure
  - Unitary CKM
- With very weird scenarios (like leptoquarks)
  - Probe NP mixing, interference and/or decays
- Usual formula is modified:

$$a^{SM} \approx \operatorname{Im}\left\{\frac{\Gamma_{12}^{SM}}{M_{12}^{SM}}\right\}$$





- $\succ$  a<sub>fs</sub> is very sensitive to new physics (NP) even if:
  - Tree-level processes are SM-dominated
  - SM flavour structure
  - Unitary CKM
- With very weird scenarios (like leptoquarks)
  - Probe NP mixing, interference and/or decays
- $\succ$  If we allow a single NP phase in the mixing  $\Theta$

$$a^{NP} \approx \operatorname{Im}\left\{\frac{\Gamma_{12}^{SM}}{M_{12}^{SM}}\right\} \cos\Theta - \operatorname{Re}\left\{\frac{\Gamma_{12}^{SM}}{M_{12}^{SM}}\right\} \sin\Theta$$





- $\succ$  a<sub>fs</sub> is very sensitive to new physics (NP) even if:
  - Tree-level processes are SM-dominated
  - SM flavour structure
  - Unitary CKM
- With very weird scenarios (like leptoquarks)
  - Probe NP mixing, interference and/or decays
- $\succ$  If we allow a single NP phase in the mixing  $\Theta$ 
  - (first part is just the SM value)

$$a^{NP} \approx a_{fs}^{SM} \cos \Theta - \operatorname{Re}\left\{\frac{\Gamma_{12}^{SM}}{M_{12}^{SM}}\right\} \sin \Theta$$





- $\succ$  a<sub>fs</sub> is very sensitive to new physics (NP) even if:
  - Tree-level processes are SM-dominated
  - SM flavour structure
  - Unitary CKM
- With very weird scenarios (like leptoquarks)
  - Probe NP mixing, interference and/or decays
- $\succ$  If we allow a single NP phase in the mixing  $\Theta$ 
  - (first part is just the SM value)

 $a^{NP} \approx 2.1 \times 10^{-5} \cos \Theta + 4.0 \times 10^{-3} \sin \Theta$ 

Up to 200-times the SM!!! [[[ ... still... < DØ measurement ]]]</p>





## Flavour-specific asymmetry

At LHCb



- > At the LHC we have extra complications in the measurement
- $\succ$  Polluting asymmetries, which are all much larger than  $a_{fs}$ 
  - Production asymmetry  $\delta_p \sim (10^{-2})$
  - Detector asymmetry  $\delta_c \sim (10^{-2})$
  - Background asymmetry  $\delta_{b} \sim (10^{-3})$
- > Use a, time-dependent, untagged, simultaneous fit to  $B_s+B_d$
- Subtract two asymmetries to eliminate detector component

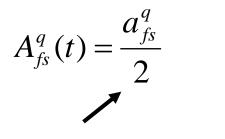
$$\Delta A_{fs} = \frac{a_{fs}^s - a_{fs}^d}{2} = (2.1 \pm 0.3) \times 10^{-4}$$



- > At the LHC we have extra complications in the measurement
- $\succ$  Polluting asymmetries, which are all much larger than  $a_{fs}$ 
  - Production asymmetry  $\delta_p \sim (10^{-2})$
  - Detector asymmetry  $\delta_c \sim (10^{-2})$
  - Background asymmetry  $\delta_{b} \sim (10^{-3})$
- > Use a, time-dependent, untagged, simultaneous fit to  $B_s+B_d$
- Subtract two asymmetries to eliminate detector component

$$\Delta A_{fs} = \frac{a_{fs}^{s} - a_{fs}^{d}}{2} = (2.1 \pm 0.3) \times 10^{-4}$$

$$\text{NB: D} \qquad \left( A^{b} \sim \frac{a_{fs}^{s} + a_{fs}^{d}}{2} \sim -(2.0 \pm 0.3) \times 10^{-4} \right)$$


Rob Lambert, CERN



#### The simple formula

$$A_{fs}^{q}(t) = \frac{\Gamma(f) - \Gamma(\bar{f})}{\Gamma(f) + \Gamma(\bar{f})}$$

 $-\left(\frac{a_{fs}^{q}}{2}\right) \frac{\cos(\Delta m_{q}t)}{\cosh(\Delta \Gamma_{q}t/2)}$ 



**10**<sup>-3</sup> -> **10** <sup>-5</sup>





$$A_{fs}^{q}(t) = \frac{\Gamma(f) - \Gamma(\bar{f})}{\Gamma(f) + \Gamma(\bar{f})}$$

$$A_{fs}^{q}(t) = \frac{a_{fs}^{q}}{2} - \frac{\delta_{c}^{q}}{2} - \left(\frac{a_{fs}^{q}}{2} + \frac{\delta_{p}^{q}}{2}\right) \frac{\cos(\Delta m_{q}t)}{\cosh(\Delta \Gamma_{q}t/2)} + \frac{\delta_{b}^{q}}{2} \left(\frac{B}{S}\right)^{q}$$

$$10^{-3} - 10^{-5} - 10^{-2} - 10^{-2} - 10^{-2} - 10^{-2} - 10^{-2} - 10^{-2} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3} - 10^{-3$$

Polluting asymmetries are much larger than a<sub>fs</sub>

- Detector asymmetry  $\delta_c \sim (10^{-2})$
- Production asymmetry  $\delta_p \sim (10^{-2})$
- Background asymmetry  $\delta_{b} \sim (10^{-3})$

 $\delta_c = \frac{\varepsilon(f_i)}{\varepsilon(f_i)} - 1$ 

 $\delta_p = \frac{N(\bar{I}_0)}{N(\bar{I}_0)} - 1$ 

 $\delta_b = \frac{\overline{B} / \overline{S}}{B / S} - 1$ 







> We measure time-dependent decay rates:

$$\Gamma(f) = Ne^{-\Gamma t} (1 + A_c) \left[ (1 + A_{fs}) \cosh\left(\frac{\Delta\Gamma t}{2}\right) + (2A_p - A_{fs}) \cos(\Delta m t) \right]$$
$$\rightarrow Ne^{-\Gamma t} \left[ (1 + A_c + A_{fs}) \cosh\left(\frac{\Delta\Gamma t}{2}\right) + (2A_p - A_{fs} + 2A_pA_c) \cos(\Delta m t) \right]$$
$$\Gamma(\bar{f}) \rightarrow Ne^{-\Gamma t} \left[ (1 - A_c - A_{fs}) \cosh\left(\frac{\Delta\Gamma t}{2}\right) + (A_{fs} - 2A_p + 2A_pA_c) \cos(\Delta m t) \right]$$

A<sub>c</sub>, A<sub>p</sub> and A<sub>fs</sub> are correlated and cannot be separately fitted
 First, reparameterise





> Just to make it easier to see what we're doing...

$$\Gamma(f) = Ne^{-\Gamma t} \left[ (1+x_1) \cosh\left(\frac{\Delta\Gamma t}{2}\right) + (x_2+x_3) \cos(\Delta m t) \right]$$
  
$$\Gamma(\bar{f}) = Ne^{-\Gamma t} \left[ (1-x_1) \cosh\left(\frac{\Delta\Gamma t}{2}\right) + (x_2-x_3) \cos(\Delta m t) \right]$$

where:  $x_1 = A_c + a_{fs}$   $x_2 = 2A_cA_p$   $x_3 = 2A_p - a_{fs}$ 

- production asymmetry is an *initial state asymmetry*
- > Changes the mixing amplitude, <u>does not</u> change the physics
- $\succ$  Fit for x<sub>1</sub> independently, which now only has detector asym





> Take  $B_s/B_d$  with the same final states ( $f = KK\pi \mu$ )

$$\Gamma(f) = Ne^{-\Gamma t} \left[ (1+x_1) \cosh\left(\frac{\Delta\Gamma t}{2}\right) + (x_2+x_3) \cos(\Delta m t) \right]$$
  
$$\Gamma(\bar{f}) = Ne^{-\Gamma t} \left[ (1-x_1) \cosh\left(\frac{\Delta\Gamma t}{2}\right) + (x_2-x_3) \cos(\Delta m t) \right]$$

where:  $x_1 = A_c + a_{fs}$   $x_2 = 2A_cA_p$   $x_3 = 2A_p - a_{fs}$ 

- > All production asymmetry is in  $x_2/x_3$ , just throw it away
- Measure the difference between B<sub>s</sub> and B<sub>d</sub>

$$\Delta A_{fs}^{s,d} = \frac{x_1^s - x_1^d}{2} = \frac{a_{fs}^s - a_{fs}^d}{2}$$

$$SM = \left( +2.5_{-0.6}^{+0.5} \right) \times 10^{-4}$$



## Projections



- > MC sensitivities, Real data yields and systematics
  - $\succ$  0.1 fb<sup>-1</sup> σ~5x10<sup>-3</sup> ... First result (2011)
  - > 1.0 fb<sup>-1</sup>  $\sigma$ ~2x10<sup>-3</sup> ... 5 $\sigma$  observation? (2012/2013)