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QML in HEP

Today we’'ll discuss

1) A brief review of important
concepts in QC/QML

2) How QML can be used in
HEP through examples
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Abstract. Machine learning has been used in high energy physics for a long time,
primarily at the analysis level with supervised classification. Quantum computing
was postulated in the early 1980s as way to perform computations that would not
be tractable with a classical computer. With the advent of noisy intermediate-scale
quantum computing devices, more quantum algorithms are being developed with the
aim at exploiting the capacity of the hardware for machine learning applications. An
interesting question is whether there are ways to apply quantum machine learning to
High Energy Physics. This paper reviews the first generation of ideas that use quantum
machine learning on problems in high energy physics and provide an outlook on future
applications.
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Overview:

Quantum Computing

Classical bit:
2 states
[transistor on/off]

0 0

Ten bits = 210 (1,024])
combinations of 0s and 1s

Can represent 1 number
between 0 and 1,023.

QUBIT: Measurement:
Many possible states Yield outcome 0 or 1,
due to superpositions probability depends on latitude
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Represent 0 and 1
at the same time

10 qubits encode all 1,024 a2+ b1 =1
numbers simultaneously.
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Overview:

Quantum Computing
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CLASSICAL Logic gate QUANTUM Quantum logic gate
Classical logic gate: Quantum logic gate:
Operates on single bits Operate on entire superposition state of all qubits
Output 0 or 1 Transforms into another superposition state encoding all numbers



Overview:

Quantum Computing

Quantum computing:
All possibilities analysed at the same time, but must be repeated several times
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https://www.nature.com/articles/543S2a

Overview:

Quantum Computing

This is really great, unfortunately we're no where near large universal gate model quantum computers
e | 0oss of coherence due to noise, adding qubits difficult, nearest-neighbour interaction only, error correction
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Overview:

Quantum Computing

This is really great, unfortunately we're no where near large universal gate model quantum computers
e | 0ss of coherence due to noise, adding qubits difficult, nearest-neighbour interaction only, error correction

Variational circuits (NISQ algorithms)

Fixed size quantum circuits that depend on free
parameters 0
e [ngredients: Preparation of fixed initial state, quantum
circuit U(8), and measurement of observable.
e Parameters can be optimised for specific task.
e Expectation value define cost
e Trained by classical optimisation algorithm
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Overview:

Quantum Computing

This is really great, unfortunately we're no where near large universal gate model quantum computers
e | 0oss of coherence due to noise, adding qubits difficult, nearest-neighbour interaction only, error correction

NISQ algorithms - Variational circuits

Fixed size quantum circuits with variable parameters 0
e Consists of fixed initial state, quantum circuit U(8),
and measurement of observable.
e Parameters can be optimised for specific task.
e Typically expectation value f(8) = (0|U(6)BU(6)|0)
define cost
e Trained by classical optimisation algorithm

Quantum annealing

Solve optimisation problems by finding lowest energy
state( minimum point over large number of variables)
e Formulate problem as objective function (Ising, QUBO]
e Fach state represented as energy level, simulated and
lowest energy result obtained
e | ess affected by noise, but also less flexible
e Trainable bias(external field) and weights (coupler]
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Overview:
Trainable variational circuits

X
/ ™ 0,1,0,0,

0) Rot(Z) - A /

0) Vi Vo = \

0) 1 Rot(0) - — 0.3 — "dog"
\ /

f(6) = (0|U'(6)BU(6)|0)

Rot(x): Encode input, e.g rotate qubit of angle x
Rot(8): Trainable parameters
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Overview:

Trainable guantum annealers

Want to find lowest energy state of final Hamiltonian of system (Similar to Ising model):

Hp = En: Jijo; 0% + En: h;o;
i=1

2,7=1
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Overview:

Trainable guantum annealers

Want to find lowest energy state of final Hamiltonian of system (Similar to Ising model):

mn n
_ e ARl L A Z
Lowest energy st?te of‘tr.us IS Isolutlon. Hp = E Jijo'i 0 + E hio'i
Includes weights” and biases P

2,7=1

Greatly simplified if initialising Hamiltonian in simple ground state, and evolving it slowly

H, — ZUf all qubits in superposition state of 0 and 1
1=1

e Quantum adiabatic theorem: If the system begins close to an eigenstate, it remains close to an eigenstate
e Measuring final state solves optimisation
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Overview:
Trainable guantum annealers

Want to find lowest energy state of final Hamiltonian of system (Similar to Ising model):

Lowest-energy state of this is solution! [, — E JZ]()'ZO'Z—|— E hg

Includes ‘weights’ and ‘biases’ i

Greatly simplified if initialising Hamiltonian in simple ground state, and evolving it slowly

_ z”:ggc all qubits in superposition state of 0 and 1

e Quantum adiabatic theorem: If the system begins close to an eigenstate, it remains close to an eigenstate

e Measuring final state solves optimisation

To express problem to enable solution by minimization, formulate objective function (mathematical
expression of system energy).

e sing model or QUBO ‘weights” n ‘biases’

e | ow energy states == good solutions mln E E JZ]$Z$] -+ E h;x;

1,7=1
Quantum annealers for

training, or as samplers?
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APPLICATIONS
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Applications:
Quantum Annealing

Higgs boson Other Standard Model (SM) processes

Di-photon event classification with quantum adiabatic machine learning (QAML)



Applications:
Quantum Annealing

Higgs boson Other Standard Model (SM) processes

Di-photon event classification with quantum adiabatic machine learning (QAML)

e Quantum annealing optimisation to find best linear combination of ‘weak classifiers’
e From 36 weak classifiers ci(x,), build one strong classifier from linear combination

with trainable ‘classifier weights’, w
e Key: How to formulate objective function so that best w's are found

n=36 n=36
1,7=1 1=1

Cij =S _ci(z)ei(z,) Ci = D . Ci(Tr)yr



Applications:
Quantum Annealing

Higgs boson Other Standard Model (SM) processes

Di-photon event classification with quantum adiabatic machine learning (QAML)

e Quantum annealing optimisation to find best linear combination of ‘weak classifiers’

e From 36 weak classifiers ci(x,), build one strong classifier from linear combination

with trainable ‘classifier weights’, w
e Key: How to formulate objective function so that best w's are found. QUBO

n=36 n=36
1,7=1 1=1

Cij =S _ci(z)ei(z,) Ci = D . Ci(T7)yr

AUROC

0.66-

0.64 -

0.62 -

0.60+

0.58-

0.56-

1 — QA
— SA

---- DNN

XGB

0.54 -

01 1 5 10 15 20
Size of training dataset (10°)
Also describes QAML Zooming
[extend binary linear combination to

continuous by running iteratively)



Applications - Quantum Annealing:
Classification in cosmology with qRBM

Quantum annealers as sampling engines? Demonstrated in galaxy classification problem |

Recall: Restricted Bolzmann Machines

e Two-layer [visible and hidden) stochastic generative models

e Gradient ascent in log(prob) that Boltzmann machine would generate observed data when sampling from equilibrium

Multiple Inputs
visible hidden activation
layer layer function
X
+b » / =
X
input +b » / =a
X
+b » _/ =a
X
w; ..wWw

Reconstruction

visible hidden
these biases are{av |ayer Iayer 1
r=b+
<+ 3
reconstructions r=b+
are the new a
output
P r=b+
a
r=b+
Wi .. W,

weights are the same
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Applications - Quantum Annealing:

Classification in cosmology with qRBM

Quantum annealers as sampling engines? Demonstrated in galaxy classification problem |

Recall: Restricted Bolzmann Machines

e Two-layer [visible and hidden) stochastic generative models
e Gradient ascent in log(prob) that Boltzmann machine would generate observed data when sampling from equilibrium

e Boltmann machines are Ising models

e Tunable couplings between qubits — graph connection weights
Sampling from graph configuration — natural part of annealing

input

Multiple Inputs
visible hidden activation
layer layer function
X
+b » / =
X
+b + / =a
X
+b » _/ =a
X
w; .. W

these biases are new

reconstructions

are the new

output
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Applications - Quantum Circuit:
Quantum GNNs for particle track repo

Speed-up tracking with Graph Neural Networks
e [nput network: encodes hit information as node features
e Edge network: outputs edge features
e Node network: calculates hidden node features

Hits in detector

A graph
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In principle

+HEMS Expsrinient akbHE -CERN
Datarecorded: ErbOct 26:02:068-572018 CEST
Run/Events825309 1244518
Eyptsectionst

ORI rassiig 219291650
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Applications - Quantum Circuit:
Quantum GNNs for particle track repo

Replace edge network by quantum Edge network through CNOT gates

and rotation (Ry) w-C
. . q()o _' Ry '_' Ry | o
Reimplement classical GNN as qGNN 0447 (83759 H
e Networks are qo, RI_JRP_en RO 000000000

(3.0657) (3.8027)  (0.22455)

e Datapoints: encoded as parameters of Ry gates

e Trainable parameters: Angles of rotations on Bloch sphere.
Starts with randomly initialised parameters, which Ry gates rotate
according to parameter's value s- ()

— y — y L )
q02 (19484) (5.6672)

H o e .
O -— .Y — y _:I ::— y \ |:— .Y —
qYs (0.20081) (2.8988) &0 (0.089270) B (0.92561)

. . . . 0. H-EO— O
e CNOT gate is used to introduce correlation between qubits so that G H T osssr
: ‘R, Ry}
values are not independent. 05 = et
e At the end of the circuit, there i1s a measurement of a single quit 0

Proof-of-priniciple. Achieve slightly lower accuracy than classical,
power would be in potential speedup!
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Applications - Quantum Circuit:

Quantum GNNs for particle track repo
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Applications - Quantum Circuit:
Classification with Variational Quantum Circuits

Variational Quantum Algorithms for Machine Learning
e Map input data to exponentially large quantum state space to enhance ability to find

optimal solution, then the usual  py(E) + (2(Z)[WT(0)M, W (0)|D(F))
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FINAL REMARKS
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Final remark on Quantum Data

QML on datasets of quantum states?

e Rather than processing classical signal in photonic sensors, direct them into QC and
apply variational circuit trained to extract state information

e Simulate HEP experiment on Quantum Computer followed by QML algorithm to
analyse resulting quantum states
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Summary

Can achieve good accuracy on certain problems, but cannot evaluate whether quantum
speedups will be achieved

e My take-home: We know QML algorithms ‘work” for HEP problems, but the desired

gain in using them (to solve HEP ‘resource-problem’) is not yet clear and will probably
not be clear until we have large general QC's
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