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QML in  HEP

Today we’ll discuss 

1) A brief review of important 
concepts in QC/QML 

2) How QML can be used in 
HEP through examples 
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Overv iew:   
Quantum Comput ing

Classical bit:  
2 states  

(transistor on/off)

QUBIT:  
Many possible states 

 due to superpositions

Measurement:  
Yield outcome 0 or 1, 

probability depends on latitude

Ten bits = 210 (1,024) 
combinations of 0s and 1s 

 
Can represent 1 number 

between 0 and 1,023.

Represent 0 and 1  
at the same time 

10 qubits encode all 1,024  
numbers simultaneously. 
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QUANTUM LEAPS, BIT BY BIT
The promises of quantum computation are unique — and so are the challenges. Progress in 
physics, mathematics, computer science and engineering have brought quantum computers 
to a point where they start to challenge their classical counterparts. By Andreas Trabesinger; 
illustration by Visual Science.

BITS VERSUS QUBITS
In classical computing, information is encoded in bits as a string of 1s and 0s. Ten bits gives 210 or 1,024 
combinations of 0s and 1s, which can represent one number between 0 and 1,023. By contrast, a qubit 
can represent both 0 and 1 at the same time (superposition), so 10 qubits can encode all 1,024 numbers 
simultaneously. Qubits can be created from several physical systems with distinct quantum states. Manipulate 
these systems using lasers or microwaves and it is possible to create quantum superpositions of the two or 
more states. Join many qubits together and a huge amount of information can be encoded.

A classical computer operates on single bits, deriving an outcome that is either a 1 or 0. By contrast, a 
quantum computer takes the entire superposition state of all the qubits and transforms it into another 
superposition state that still encodes all numbers. During these operations the quantum system has 
to be protected against perturbance to avoid unwanted changes to the quantum state, which lead to 
errors or loss of quantum superposition.

An algorithm is a string of operations performed to solve 
a problem. Quantum algorithms can take advantage of 
the parallelism afforded by the superposition of states. 
This means that all possibilities are analysed at the 
same time, instead of individually — analogous to being 
able to scan all your business cards at once to look for 
a name. The quantum algorithm (known as Grover’s 
algorithm) gives each card a probability of being ‘right’. 
After several iterations, the cumulative probability of 
the target card will be higher than the others. Even if the 
algorithm has to be run several times, it is much quicker 
than classical searching. And the larger the database, 
the bigger the advantage. 

PERFORMING OPERATIONS
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Classical logic gate: 
Operates on single bits 

Output 0 or 1

Quantum logic gate: 
 Operate on entire superposition state of all qubits 

 Transforms into another superposition state encoding all numbers
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Quantum computing:  
All possibilities analysed at the same time, but must be repeated several times 

 

Classical computing: Each possibility individually 
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Nature 
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https://www.nature.com/articles/543S2a
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This is really great, unfortunately we’re no where near large universal gate model quantum computers 

• Loss of coherence due to noise, adding qubits difficult, nearest-neighbour interaction only, error correction 
 
 
 
 

https://www.nature.com/articles/543S2a
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This is really great, unfortunately we’re no where near large universal gate model quantum computers 

• Loss of coherence due to noise, adding qubits difficult, nearest-neighbour interaction only, error correction 
 
 
 
 

Variational circuits (NISQ algorithms) 

Fixed size quantum circuits that depend on free 
parameters θ 

• Ingredients: Preparation of fixed initial state, quantum 
circuit U(θ), and measurement of observable. 

• Parameters can be optimised for specific task. 
• Expectation value                                             define cost 
• Trained by classical optimisation algorithm 

 
 

f(θ) = ⟨0 |U†(θ)B̂U(θ) |0⟩

https://www.nature.com/articles/543S2a
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Quantum Comput ing
This is really great, unfortunately we’re no where near large universal gate model quantum computers 

• Loss of coherence due to noise, adding qubits difficult, nearest-neighbour interaction only, error correction 
 
 
 
 

NISQ algorithms - Variational circuits 

Fixed size quantum circuits with variable parameters θ 
• Consists of fixed initial state, quantum circuit U(θ), 

and measurement of observable. 
• Parameters can be optimised for specific task. 
• Typically expectation value 

 define cost 
• Trained by classical optimisation algorithm 

 
 

Quantum annealing 

Solve optimisation problems by finding lowest energy 
state( minimum point over large number of variables) 

• Formulate problem as objective function (Ising, QUBO) 
• Each state represented as energy level, simulated and 

lowest energy result obtained 
• Less affected by noise, but also less flexible 
• Trainable bias(external field) and weights (coupler) 

https://www.nature.com/articles/543S2a
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with the input features and individual parameters. For instance, in most circuit-based

quantum computers we have control over the rotation angle of qubits. Assuming for

now that x is a single scalar, we can therefore rotate one qubit by an angle of exactly

x to encode the input§. Using the same strategy for a parameter ✓, considered to be

a scalar as well for now, we can rotate another (or the same) qubit by an angle ✓.

Physically, there is no di↵erence in how the inputs and free parameters are treated, but

there are profound conceptual di↵erences; see for example [47]. These rotations can be

performed as part of a larger quantum algorithm that consists of other gates, and which

is described by an overall unitary U(x, ✓) that depends on the input and parameter (see

Figure 1). The crux is that now the expectation value of the circuit with respect to an

observable M is formally given by

fq(x, ✓) =
⌦
0
��U(x, ✓)†MU(x, ✓)

�� 0
↵
,

and can be interpreted as the prediction of x. In short, the quantum circuit is used as

a machine learning model.

Figure 1. Simplified example of a variational quantum circuit used for classification.
A feature x from the input data is loaded into the circuit by associating it with the
angle of a rotation gate. The angle ✓ of another rotation gate is used as a variable
parameter that can be trained to adjust the circuit. The three qubits are represented in
the standard circuit notation as wires, and gates are represented by symbols acting on
the wires. The unitaries V1 and V2 summarise arbitrary quantum operations applied
to the qubits. The first qubit is measured in the end, and an expectation value is
computed by averaging over measurement results. This expectation is interpreted as
the prediction of a quantum model.

Of course, the heart of machine learning is to adapt a model to data. The

circuit can be trained by adjusting the parameters ✓ by a classical optimization routine

that minimizes a standard cost function comparing predictions with the correct target

outputs, such as the mean square loss. Trainable circuits are also known as variational

or parametrized circuits (or sometimes, a bit misleadingly, as quantum neural networks),

and were initially proposed in the context of quantum chemistry [48]. The optimization

can be performed by using the quantum computer to evaluate fq(x, ✓) at di↵erent values

for ✓, and using a classical co-processor to find better candidates for the parameter

§ Note that x has to be rescaled to lie in the interval [0, 2⇡] for the encoding to be unique.

Rot(x): Encode input, e.g rotate qubit of angle x 
Rot(θ): Trainable parameters 
 
 

https://www.nature.com/articles/543S2a
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Want to find lowest energy state of final Hamiltonian of system (Similar to Ising model): 
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min
x

E(x) =
nX

i,j=1

Jijxixj +
nX

i=1

hixi (1)

where xi 2 {0, 1} and Jij and hi are real numbers defining the problem.

This general problem belongs to the complexity class NP-Hard, meaning that it

can probably not be solved exactly in polynomial time even by a quantum computer‡.

Quantum annealing is a heuristic proposed to approximate the solution of a QUBO

problem, or even solve it exactly when the input parameters Jij and hi have some

particular structures [35].

More precisely, solving a QUBO instance is equivalent to finding the ground-state

of the problem Hamiltonian

HP =
nX

i,j=1

Jij�
z

i
�
z

j
+

nX

i=1

hi�
z

i
(2)

where �z

i
is the Z-Pauli matrix applied to the ith qubit. Quantum annealing consists of

initializing the system in the ground-state of a simpler Hamiltonian, such as

HI =
nX

i=1

�
x

i
(3)

and slowly evolving the system from HI to HP during a total time T , for instance by

changing the Hamiltonian along the trajectory:

H(t) =

✓
1�

t

T

◆
HI +

t

T
HP (4)

The quantum adiabatic theorem tells us that if the transition between the two

Hamiltonians is ”slow enough”, the system will stay in the ground-state during the

whole trajectory, including at the end for our problem Hamiltonian. Measuring the

final state will therefore give us the solution to our QUBO problem. The main caveat

of this approach is that the maximum allowed speed of the evolution can fall rapidly

with the system size (sometimes exponentially low), removing any potential advantage

compared to classical algorithms. Knowing if a given problem (or class of problems)

can take advantage of quantum annealing is an open research question, which is why

research on quantum annealing applications has been driven largely by empirical studies.

Many optimization problems, including in machine learning, can be mapped to

a QUBO instance, making quantum annealing an attractive platform for quantum

machine learning, as developed in Section 3.2.

‡ While a proof is still to be found, complexity theorists believe that quantum computers will not lead
to exponential speed-ups for NP-Complete or NP-Hard problems

Lowest-energy state of this is solution! 
Includes ‘weights’ and ‘biases'

https://www.nature.com/articles/543S2a
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Want to find lowest energy state of final Hamiltonian of system (Similar to Ising model): 

 

Greatly simplified if initialising Hamiltonian in simple ground state, and evolving it slowly 
 
  

• Quantum adiabatic theorem: If the system begins close to an eigenstate, it remains close to an eigenstate 
• Measuring final state solves optimisation 
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all qubits in superposition state of 0 and 1

https://www.nature.com/articles/543S2a
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Want to find lowest energy state of final Hamiltonian of system (Similar to Ising model): 

 

Greatly simplified if initialising Hamiltonian in simple ground state, and evolving it slowly 
 
  

• Quantum adiabatic theorem: If the system begins close to an eigenstate, it remains close to an eigenstate 
• Measuring final state solves optimisation 

To express problem to enable solution by minimization, formulate objective function (mathematical 
expression of system energy). 

• Ising model or QUBO 
• Low energy states == good solutions 

Quantum annealers for  
training, or as samplers? 
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can probably not be solved exactly in polynomial time even by a quantum computer‡.

Quantum annealing is a heuristic proposed to approximate the solution of a QUBO

problem, or even solve it exactly when the input parameters Jij and hi have some

particular structures [35].

More precisely, solving a QUBO instance is equivalent to finding the ground-state

of the problem Hamiltonian
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where �z

i
is the Z-Pauli matrix applied to the ith qubit. Quantum annealing consists of

initializing the system in the ground-state of a simpler Hamiltonian, such as

HI =
nX

i=1

�
x

i
(3)

and slowly evolving the system from HI to HP during a total time T , for instance by

changing the Hamiltonian along the trajectory:

H(t) =

✓
1�

t

T

◆
HI +

t

T
HP (4)

The quantum adiabatic theorem tells us that if the transition between the two

Hamiltonians is ”slow enough”, the system will stay in the ground-state during the

whole trajectory, including at the end for our problem Hamiltonian. Measuring the

final state will therefore give us the solution to our QUBO problem. The main caveat

of this approach is that the maximum allowed speed of the evolution can fall rapidly

with the system size (sometimes exponentially low), removing any potential advantage

compared to classical algorithms. Knowing if a given problem (or class of problems)

can take advantage of quantum annealing is an open research question, which is why

research on quantum annealing applications has been driven largely by empirical studies.

Many optimization problems, including in machine learning, can be mapped to

a QUBO instance, making quantum annealing an attractive platform for quantum

machine learning, as developed in Section 3.2.

‡ While a proof is still to be found, complexity theorists believe that quantum computers will not lead
to exponential speed-ups for NP-Complete or NP-Hard problems
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Boltzmann Machines (RBMs), samples from a Gibbs distribution are required to find

better candidates for the parameters in every step. The intimate connections between

RBMs and Ising-type models in many-body physics (see also [60] which reveals this

connection through the language of tensor networks) suggest that quantum annealers,

which are based on interacting spins, can produce samples from such Gibbs distribution.

The details, especially when it comes to real hardware, are non-trivial, but successful

quantum-assisted training has been demonstrated for small applications [45]. An

important question raised as a result of this strategy was how samples from true quantum

distributions, such as the Ising model with a transverse field, can be used to train

quantum RBMs [61].

4. Quantum Annealing Applications

For quantum annealers, the two most common approaches to machine learning involve

mapping the problem into an optimization problem over the full dataset, and using the

quantum device as a sampling engine to solve a di�cult gradient calculation problem.

In this section, we review papers that provide examples of these paradigms, we refer the

reader to [62–64] for more in depth reading.

4.1. Di-photon Event Classification

The classification of collision events into signal or background categories is one of the

main tasks in particle physics, and a frequent application for machine learning. The

Higgs boson, until its discovery in 2012 [65, 66], was the missing piece of the standard

model. The authors of [62] propose the use of quantum annealing to classify events

between a Higgs decaying to a pair of photons and irreducible background events where

two uncorrelated photons are produced. To this end, eight high level features are

measured from the di-photon system. With a view to using the method proposed in [59]

— so called quantum adiabatic machine learning (QAML) — a list of weak classifiers

is computed from those eight features. Using the eight features and their products

as input, n = 36 weak classifiers (ci(x⌧ )) are computed. The weak classifiers assume

values in the range [�1, 1] — the signal being represented by positive values. A strong

classifier is then constructed from a binary linear combination of the weak classifiers

(with parameter wi 2 {0, 1} for each weak classifier index i).

The parameters wi are then determined by the optimization of a carefully crafted

QUBO

E(w) =
n=36X

i,j=1

Cijwiwj +
n=36X

i=1

2(�� Ci)wi (5)

where Cij =
P

⌧
ci(x⌧ )cj(x⌧ ) and Ci =

P
⌧
ci(x⌧ )y⌧ are computed from the values of

the weak classifiers in the training set and their category (ci(x⌧ ) and y⌧ respectively).

� is a parameter penalizing solutions for too many weak classifiers participating. As
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described in Section 2.2, the QUBO is transformed in a problem Hamiltonian HP (see

Eq. 2.2) with the change of variable �
z

i
 2wi � 1, and further embedded in a machine

Hamiltonian to be solved on the device. The set of parameters w
⇤
i
obtained through

this optimization defines an optimal strong classifier as constructed above.

The final performance of the strong classifier is compared with two classical machine

learning methods: boosted decision tree (BDT) and deep neural network (DNN). The

authors note that importance ranking can be obtained among the weak classifiers, by

varying the parameter �. The optimization is both run on the D-Wave 2X quantum

annealer system and performed with simulated annealing [67, 68] (SA) using variable

fractions of the training dataset. While SA is accurately finding the same ground

truth found by QA, it is unable to reproduce the excited states measured with QA.

Therefore the inclusion of the excited states in the construction of the strong classifier

with QA brings a slight, although not conclusive, di↵erence in performance compared

to the one derived with SA. SA and QA are typically on par, and not providing obvious

classification advantage over BDT and DNN (see Figure 2), although a slight advantage

with a small training dataset is noted.

Figure 2. Area under the ROC
curve (AUROC) of the strong
classifier optimized on quantum
annealer (QA) and simulated an-
nealing (SA), together with the
performance of boosted decision
tree (BDT) and deep neural net-
work (DNN) classifiers trained
on the input features [62].

Figure 3. Area under the
ROC curve (AUROC) of origi-
nal QAML method, the contin-
uous strong classifier optimized
on quantum annealer (QAML-Z)
and simulated annealing (SA-Z),
together with the performance
of a linear regression (LR) and
deep neural network (DNN) clas-
sifiers [63].

In [63], the binary linear combination (wi 2 {0, 1}) is extended to a continuous

linear combination (denoted µi 2 [0, 1] to avoid confusion) by running the optimization

in an iterative manner. In order to take advantage of the continuous weights, additional

weak classifiers, up to Nw in total, are derived from the existing ones. A new classifier

is obtained from an existing one by shifting its value by a multiple of a given predefined

Also describes QAML Zooming  
(extend binary linear combination to  
continuous by running iteratively) 
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Quantum annealers as sampling engines? Demonstrated in galaxy classification problem (arXiv:1911.06259 ) 

Recall: Restricted Bolzmann Machines 
• Two-layer (visible and hidden) stochastic generative models 
• Gradient ascent in log(prob) that Boltzmann machine would generate observed data when sampling from equilibrium 
• Boltmann machines are Ising models 
• Tunable couplings between qubits → graph connection weights 

Sampling from graph configuration → natural part of annealing 
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Speed-up tracking with Graph Neural Networks 
• Input network: encodes hit information as node features 
• Edge network: outputs edge features 
• Node network: calculates hidden node features 
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Quantum GNNs for  par t i c le  t rack  repo In principle

RealityHits in detector A graph

Node

Edge

https://indico.cern.ch/event/924283/contributions/4105329/attachments/2152250/3630590/encoder_asic_fastml2020.pdf


Replace edge network by quantum Edge network through CNOT gates 
and rotation (RY) 

 
Reimplement classical GNN as qGNN 

• Networks are tree tensor networks 
• Datapoints: encoded as parameters of Ry gates 
• Trainable parameters: Angles of rotations on Bloch sphere. 

Starts with randomly initialised parameters, which Ry gates rotate  
according to parameter’s value 

• CNOT gate is used to introduce correlation between qubits so that 
values are not independent.  

• At the end of the circuit, there is a measurement of a single quit 

Proof-of-priniciple. Achieve slightly lower accuracy than classical, 
power would be in potential speedup! 
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training outperformed the quantum, generative training. However, regardless of training

strategy, RBMs o↵ered a performance advantage for very small datasets that gradient

boosted trees and logistic regression tended to badly overfit. Furthermore, early in the

small dataset training runs, the quantum generative training outperformed the classical

discriminative training.

5. Quantum Circuit Applications

As introduced in Section 3.1, circuits with varying parameters can be optimized to

perform a specific task, e.g. classification. The parameters of these circuits can

be determined with gradient-based optimization method. The following papers are

following this approach for HEP specific classification tasks. We refer the reader

to [72–74] for more in-depth reading.

5.1. Quantum Graph Neural Networks for particle track reconstruction

Quantum computers promise to greatly speed-up search in large parameter spaces.

Charge particle tracking — tracking in short — is the task of associating sparse detector

measurements (a.k.a ”hits”) to the particle trajectory they belong to. Tracking is

the cornerstone of event reconstruction in particle physics. Because of their ability

to evaluate a very large number of states simultaneously, they may play an important

role in the future of track reconstruction in particle physics experiments. Reconstructing

particle trajectories with high accuracy will be one of the major challenges in the HL-

LHC experiments [75].

Increase in the expected number of simultaneous collisions and the high detector

occupancy will make tracking extremely demanding in terms of computing resources.

State-of-the-art algorithms rely, today, on a Kalman filter-based approach: they are

Figure 4. The Quantum Edge Network implemented as a Tree Tensor Network, a
hierarchical quantum classifier [76]. The architecture uses Ry rotation gates and CNOT
gates. A single output qubit is measured. [72]

https://arxiv.org/pdf/1804.03680.pdf
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Figure 5. QGNN performance. The validation loss (on the left) decreases smoothly.
Consistently, the validation accuracy (on the right) increases with the number of
iterations. Results are shown for two epochs corresponding to 2900 steps (1 epoch
= 1450 updates) [72]

robust and provide good physics performance, however they are expected to scale worse

than quadratically with the increasing number of simultaneous collisions [75]. The

high energy physics community is investigating several possibilities to speed up this

process [77–79] including deep learning-based techniques. For instance, introducing

an image-based interpretation of the detector data and using convolutional neural

networks can lead to high-accuracy results [80]. At the same time, a representation

based on space-points arranged in connected graphs could have an advantage given high

dimensionality and sparsity of the tracking data. The HEPtrkX project [80] followed

this approach and successfully developed a set of Graph Neural Networks (GNNs) to

perform hits and segments classification. In this approach, graphs of connected hits

are built, features of the graph nodes and edges are computed and, finally, relevant

hit connections are predicted. The dataset, designed for the TrackML challenge [81]

contains precise locations of hits, and the corresponding particles. The classical GNN

architecture consists of three networks organised in cascade: an input network encodes

the hits information as node features, an edge network outputs edge features, using the

start and end nodes, and a node network, that calculate hidden nodes features taking

into account all connected nodes on the previous and next layers. The edge and node

networks are applied iteratively after the input network (see [82] for more details). The

work in [72] represents an exploratory look at this GNN architecture from a quantum

computing perspective: it re-implements the input, edge and node networks as quantum

circuits.

In particular, the edge and node networks are implemented as tree tensor networks

(TTN) — hierarchical quantum classifiers originally designed to represent quantum

many body states described as high-order tensors [76]. The data points are encoded

(see Figure 4) as parameters of Ry rotation gates

Ry(✓) |0i = cos(✓/2) |0i+ sin(✓/2) |1i (12)



Variational Quantum Algorithms for Machine Learning 
• Map input data to exponentially large quantum state space to enhance ability to find 

optimal solution, then the usual  
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The TTN network consists of Ry rotations and CNOT gates (see Figure 4) and its

output is the measurement from a single qubit. The TTN has 11 parameters which

are the angles of rotations in Y direction on the Bloch sphere. These parameters are

optimized using the ADAM optimiser and a binary cross entropy loss function using

Pennylane [51] and Tensorflow [83]. The model is trained on 1450 subgraphs extracted

from the TrackML dataset.

Although preliminary, the obtained performance (see Figure 5) is promising: the

validation losses decrease smoothly and the accuracy increases with the number of

iterations. At convergence, the accuracy value is still lower than for the classical case.

This is, however, expected as the number of hidden features, and iteration are reduced

compared to the GNN, because of computation issues.

5.2. Classification Using Variational Quantum Circuits

The method used in [73] and [74] is based on variational quantum algorithms for

machine learning (VQML). The VQML approach exploits the mapping of input data to

an exponentially large quantum state space to enhance the ability to find an optimal

solution. The data encoding circuit U�(~x) maps the data ~x 2 ⌦ to the quantum state

|�(~x)i = U�(~x) |0i. The quantum state with encoded input data is processed by applying

quantum gates to create an ansatz state, which is then measured to produce the output.

The variational quantum circuit W (~✓) parameterized by ~✓ is applied [84]

W (~✓) = U
(l)
loc(✓l) Uent . . . U

(2)
loc (✓2) Uent U

(1)
loc (✓1) (13)

Figure 6. ROC curve of VQML
and BDT methods. With 800
events and 5 qubits, the VQML
have obtained very close perfor-
mance tothe one obtained us-
ing the classical machine learning
method BDT [73].

Figure 7. AUC with number
of iterations. Within the lim-
ited testing iterations,the perfor-
mance of the IBM Q quantum
computer is compatible with the
one from the quantum simula-
tor [73].
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The probability of outcome y is obtained through
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†(~✓)MyW (~✓)|�(~x)i (14)

whereas {My} is the binary measurement. The optimization process consists in learning
~✓ to minimize the loss quantified as a di↵erence between the predicted py(~x) and

the known classification label y. Di↵erent optimizers, such as COBYLA [85] and

SPSA [86,87], can be applied.

In [73], the authors made some promising progress by obtaining preliminary results

in the application of IBM quantum simulators and IBM Q quantum computer to ttH

(Higgs coupling to top quark pairs) data analysis. The authors have measured the AUC

(area under the ROC curve) with di↵erent numbers of events in the training dataset.

With 5 qubits and 800 events, the VQML have obtained very close performance to

the one obtained using the classical machine learning method BDT (see Figure 6).

A preliminary test was to perform VQML on the IBM Q quantum computer with 5

qubits, 100 training events and 100 test events. Within the limited testing iterations,

the performance of the IBM Q quantum computer is compatible with the one from

the quantum simulator, which reaches a performance similar to the BDT method with

enough iterations (see Figure 7).

In [74], the authors have attempted to use the VQML algorithm for the classification

of a new physics signal predicted in a theory of Supersymmetry. Two implementations

of the VQML algorithm are tested, the first one called Quantum Circuit Learning

(QCL) [88], which is used with the Qulacs simulator [89], and the second called

Variational Quantum Classification (VQC) [84], which is used with the QASM simulator

and real quantum computing devices. The QCL (VQC) uses the combination of RY

Figure 8. Average AUC values
as a function of the training
sample size for the BDT, DNN
and QCL algorithms with 3, 5
and 7 variables [74].

Figure 9. ROC curves in
the training and testing phases
of the VQC algorithm with 3
variables and the training sets
of 40 and 1,000 events, obtained
using QSM simulator [74].
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FINAL REMARKS

https://arxiv.org/abs/2005.08582


QML on datasets of quantum states? 

• Rather than processing classical signal in photonic sensors, direct them into QC and 
apply variational circuit trained to extract state information 

• Simulate HEP experiment on Quantum Computer followed by QML algorithm to 
analyse resulting quantum states 
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Fina l  remark  on  Quantum Data



Can achieve good accuracy on certain problems, but cannot evaluate whether quantum 
speedups will be achieved 

• My take-home: We know QML algorithms ‘work’ for HEP problems, but the desired 
gain in using them (to solve HEP ‘resource-problem’) is not yet clear and will probably 
not be clear until we have large general QC’s 
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Summary


