Improving theory predictions for SM processes

Jonas M. Lindert

UK Research and Innovation

PITT PACC Workshop: LHC physics for Run 3
7th April 21

Improving theory predictions for SM processes ...to help to discover new physics in Run 3

What lessons have been learned from Run 2 analyses?

How to apply these lessons to Run 3?

The success of the SM

Overall extremely good experiment-theory agreement

Goal: go differential

The need for precision in tails

- In case new physics is heavy: expect small deviations in tails of distributions
- → good control on theory necessary!

- Dark Matter particles produced at the LHC leave the detectors unobserved: signature missing transverse energy
- large irreducible SM backgrounds
- → good control on theory necessary!

Theoretical Predictions for the LHC

Hard (perturbative) scattering process:

$$d\sigma = d\sigma_{LO} + \alpha_S d\sigma_{NLO} + \alpha_{EW} d\sigma_{NLOEW} + \alpha_S \alpha_{EW} d\sigma_{NNLOQCDxEW} + \alpha_S^2 d\sigma_{NNLO} + \alpha_{EW}^2 d\sigma_{NNLOEW} + \alpha_S \alpha_{EW} d\sigma_{NNLOQCDxEW}$$

NLO QCD (standard in NLOPS MC's):

- O(10-100%) corrections with respect to LO
- often not covered by LO scale variations
- opening up of new channels / phase space

NNLO QCD (known for pretty much all $2\rightarrow 2$ SM processes)

- O(1-10%) corrections with respect to NLO QCD
- remaining uncertainty: O(1%)

NLO EW (available at fixed-order for any SM process):

- •O(1%) inclusive corrections
- •O(10%) negative corrections at large energies due to Sudakov logs

Relevance of EW higher-order corrections

Numerically
$$\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2) \Rightarrow \boxed{\text{NLO EW} \sim \text{NNLO QCD}}$$

Possible large (negative) enhancement due to soft/collinear logs from virtual EW gauge bosons:

 $\delta \mathcal{M}_{\mathrm{LL+NLL}}^{\mathrm{1-loop}} = \frac{\alpha}{4\pi} \sum_{k=1}^{n} \left\{ \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{\pm}} \boldsymbol{I}^{a}(k) \boldsymbol{I}^{\bar{a}}(l) \ln^{2} \frac{\hat{s}_{kl}}{M^{2}} + \gamma^{\mathrm{ew}}(k) \ln \frac{\hat{s}}{M^{2}} \right\} \mathcal{M}_{0}$

 \rightarrow overall large effect in the tails of distributions: p_T , m_{inv} , H_T ,... (relevant for BSM searches!)

Convergence of the perturbative expansion: inclusive Higgs

- → Error estimate at LO largely underestimated!
- → N3LO ~ 2 LO
- → Higher-orders are crucial for reliable predictions and precision tests of Higgs properties

Convergence of the perturbative expansion: inclusive Higgs up to N3LO

→ At this level: crucial to investigate any possible uncertainty beyond naive scale variations

Convergence of the perturbative expansion: V+jets @ NNLO

[JML et. al.: 1705.04664]

$$\frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{QCD}}^{(V)} = \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{LOQCD}}^{(V)} + \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{NLOQCD}}^{(V)} + \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{NNLOQCD}}^{(V)}$$

$$\mu_0 = \frac{1}{2} \left(\sqrt{p_{\mathrm{T},\ell^+\ell^-}^2 + m_{\ell^+\ell^-}^2} + \sum_{i \in \{q,g,\gamma\}} |p_{\mathrm{T},i}| \right)$$

this is a 'good' scale for V+jets

- at large pTV: HT'/2 ≈ pTV
- modest higher-order corrections
- sufficient convergence

scale uncertainties due to 7-pt variations:

O(20%) uncertainties at LO
O(10%) uncertainties at NLO
O(5%) uncertainties at NNLO

with minor shape variations.

This level of precision for V+jets allows to boost the sensitivity of MET+X searches.

MET+X searches

Allows to access a broad range of BSM hypotheses

experimental signal:

irreducible SM backgrounds:

$$pp \rightarrow Z(\rightarrow v\overline{v}) + jets \implies MET + jets$$
 $pp \rightarrow W(\rightarrow |v|) + jets \implies MET + jets (lepton lost)$
 $\downarrow V + jets$

Determine V+jets DM backgrounds

- hardly any systematics (just QED dressing)
 fairly large data samples at large pT
- very precise at low pT
- but: limited statistics at large pT

- systematics from transfer factors

- for 500 GeV < pTV < 1000 GeV: background statistics will be at 1% level
- this level of precision is theoretically possible @ NNLO QCD + NNLO EW

Improving MET+X searches with precision

 $\kappa_{\mathrm{EW}} \pm \delta^{(1)} \kappa_{\mathrm{EW}}$

 $p_{T,V}$ [GeV]

Combined uncertainties on V+jets ratios

The Zoo of MET+X searches

The Zoo of MET+X searches: backgrounds

NNLO QCD + NLO EW for VV: pTV2

[M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; 1912.00068]

- moderate QCD corrections
 - ▶NNLO/NLO QCD very small at large pTV2
 - ►NNLO QCD uncertainty: few percent
- •NLO EW/LO=-(50-60)% @ I TeV

NNLO QCD + NLO EW for VV: pTV2

[M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; 1912.00068]

- •moderate QCD corrections
 - NNLO/NLO QCD very small at large pTV2
 - NNLO QCD uncertainty: few percent
- •NLO EW/LO=-(50-60)% @ I TeV

$$\begin{split} \mathrm{d}\sigma_{\mathrm{NNLO\,QCD+EW}} &= \mathrm{d}\sigma_{\mathrm{LO}} \left(1 + \delta_{\mathrm{QCD}} + \delta_{\mathrm{EW}} \right) + \mathrm{d}\sigma_{\mathrm{LO}}^{gg} \\ \mathrm{d}\sigma_{\mathrm{NNLO\,QCD\times EW}} &= \mathrm{d}\sigma_{\mathrm{LO}} \left(1 + \delta_{\mathrm{QCD}} \right) \left(1 + \delta_{\mathrm{EW}} \right) + \mathrm{d}\sigma_{\mathrm{LO}}^{gg} \\ &= \mathrm{d}\sigma_{\mathrm{NNLO\,QCD+EW}} + \mathrm{d}\sigma_{\mathrm{LO}} \delta_{\mathrm{QCD}} \, \delta_{\mathrm{EW}} \end{split}$$

- •difference very conservative upper bound on $\mathcal{O}(\alpha_S \alpha)$
- •multiplicative/factorised combination clearly superior (EW Sudakov logs x soft QCD)
- •dominant uncertainty at large pTV2: $\mathcal{O}(\alpha^2) \sim \alpha_{\mathrm{w}}^2 \log^4(Q^2/M_W^2)$

Estimate: $\frac{1}{2}\delta_{\mathrm{EW}}^2$

Giant QCD K-factors and EW corrections: pTVI

Giant QCD K-factors and EW corrections: pTVI

- NLO QCD/LO=2-5! ("giant K-factor" [Rubin, Salam, Sapeta, 10])
- •at large pTVI:VV phase-space is dominated by V+jet (w/ soft V radiation)

$$\longrightarrow \frac{d\sigma^{V(V)j}}{d\sigma_{VV}^{\text{LO}}} \propto \alpha_{\text{S}} \log^2 \left(\frac{Q^2}{M_W^2}\right) \simeq 3 \quad \text{at} \quad Q = 1 \text{ TeV}$$

- •NNLO / NLO QCD moderate and NNLO uncert. 5-10%
- NLO EVV/LO=-(40-50)%
- Very large difference ${
 m d}\sigma_{
 m NNLO\,QCD+EW}$ vs. ${
 m d}\sigma_{
 m NNLO\,QCD imes EW}$
- Problems:
 - I. In additive combination dominant Vj topology does not receive any EW corrections
- 2. In multiplicative combination EW correction for VV is applied to Vj hard process
- Pragmatic solution: take average as nominal and spread as uncertainty
- Rigorous solution: merge VVj incl. EW corrections with VV retaining NNLO QCD + EW

First steps in this direction: NLO QCD + EW_{virt} in Sherpa's MEPS@NLO [Bräuer, et. al. '20, <u>2005.12128</u>] 20

NNLO QCD + NLO QCDgg + NLO EW vs. data

Very good data vs. theory agreement

•gg@NLOQCD + PS now available!

NNLO QCD + PS

[D. Lombardi, M. Wiesemann, G. Zanderighi; 2103.12077]

- Very small PS corrections for inclusive observables.
- •Inclusion mandatory for (jet) exclusive observables

Rare EW processes

Note: severe QCD background to VBS signatures + interference:

$$d\sigma = d\sigma(\alpha_S^2 \alpha^4) + d\sigma(\alpha_S \alpha^5) + d\sigma(\alpha^6) + \dots$$

QCD-background

interference

VBS-signal

Note: severe QCD background to VBS signatures + interference:

$$d\sigma = d\sigma(\alpha_S^2 \alpha^4) + d\sigma(\alpha_S \alpha^5) + d\sigma(\alpha^6) + \dots$$

QCD-background

interference

VBS-signal

$$\cdots + d\sigma(\alpha_S^3 \alpha^4) + d\sigma(\alpha_S^2 \alpha^5) + d\sigma(\alpha_S \alpha^6) + \sigma(\alpha^7)$$
 NLO

Note: severe QCD background to VBS signatures + interference:

Note: severe QCD background to VBS signatures + interference:

⇒separation meaningless at NLO

VBS-@ full NLO

WW full NLO: [Biedermann, Denner, Pellen '16+'17]

WZ-EW NLO QCD+EW: [Denner, Dittmaier, Maierhöfer, Pellen, Schwan, 19]

ZZ-EW NLO QCD+EW: [Denner, Franken, Pellen, Schmidt, '20]

- •2 → 6 particles at NLO EW!
- highly challenging computation!

•NLO corrections dominated by α^7 :

Order	$\mathcal{O}(\alpha^7)$	$\mathcal{O}(lpha_{ m s}lpha^6)$	$\mathcal{O}(lpha_{ m s}^2lpha^5)$	$\mathcal{O}(\alpha_{ m s}^3 lpha^4)$	Sum
$\delta\sigma_{ m NLO}$ [fb]	-0.2169(3)	-0.0568(5)	-0.00032(13)	-0.0063(4)	-0.2804(7)
$\delta \sigma_{ m NLO}/\sigma_{ m LO}$ [%]	-13.2	-3.5	0.0	-0.4	-17.1

with $M_{\rm jj} > 500 \,{\rm GeV}, \; p_{\rm T,j} > 30 \,{\rm GeV}, \; p_{\rm T,\ell} > 20 \,{\rm GeV},$

LO:
$$\mathcal{O}(\alpha^6)$$
 σ^{LO} [fb] $\sigma^{\text{NLO}}_{\text{EW}}$ [fb] δ_{EW} [%] NLO: $\mathcal{O}(\alpha^7)$ 1.5348(2) 1.2895(6) -16.0

 VERY large inclusive EW corrections (dominated by Sudakov logs)

VBS-W+W+@full NLO

[Biedermann, Denner, Pellen '16+'17]

 VERY large EW corrections (dominated by Sudakov logs)

LO:
$$\mathcal{O}(\alpha^6)$$
 σ^{LO} [fb] $\sigma^{\text{NLO}}_{\text{EW}}$ [fb] δ_{EW} [%] NLO: $\mathcal{O}(\alpha^7)$ 1.5348(2) 1.2895(6) -16.0

Leading logarithm approximation [Denner, Pozzorini; hep-ph/0010201]

$$\begin{split} \sigma_{\rm LL} &= \sigma_{\rm LO} \left[1 - \frac{\alpha}{4\pi} 4 C_{\rm W}^{\rm ew} \log^2 \left(\frac{Q^2}{M_{\rm W}^2} \right) + \frac{\alpha}{4\pi} 2 b_{\rm W}^{\rm ew} \log \left(\frac{Q^2}{M_{\rm W}^2} \right) \right] \\ &= -16\% \ \ \text{(!)} \end{split}$$
 For $Q = \langle m_{4\ell} \rangle \sim 390 \, \text{GeV}$

 $\langle m_{4\ell} \rangle$ larger for VBS (massive *t*-channel NB: $\langle m_{4\ell} \rangle \sim 250 \, \text{GeV}$ for $q \bar{q} \to \text{W}^+ \text{W}^+$

→ Large NLO EW corrections: intrinsic feature of VBS at the LHC

Rare top processes

- Motivation:
- Constraining top-quark flavour violation [1804.05598]
- Constraining qqtt operators [1708.05928]
- Higgs width and top quark Yukawa coupling [1602.01934]

[Frederix, Pagani, Zaro; '17]

$$\Sigma_{\text{LO}}^{t\bar{t}t\bar{t}}(\alpha_s, \alpha) = \alpha_s^4 \Sigma_{4,0}^{t\bar{t}t\bar{t}} + \alpha_s^3 \alpha \Sigma_{4,1}^{t\bar{t}t\bar{t}} + \alpha_s^2 \alpha^2 \Sigma_{4,2}^{t\bar{t}t\bar{t}} + \alpha_s^3 \alpha \Sigma_{4,3}^{t\bar{t}t\bar{t}} + \alpha^4 \Sigma_{4,4}^{t\bar{t}t\bar{t}}$$

$$\equiv \Sigma_{\text{LO}_1} + \Sigma_{\text{LO}_2} + \Sigma_{\text{LO}_3} + \Sigma_{\text{LO}_4} + \Sigma_{\text{LO}_5}.$$

$$\Sigma_{\text{NLO}}^{t\bar{t}t\bar{t}}(\alpha_s, \alpha) = \alpha_s^5 \Sigma_{5,0}^{t\bar{t}t\bar{t}} + \alpha_s^4 \alpha^1 \Sigma_{5,1}^{t\bar{t}t\bar{t}} + \alpha_s^3 \alpha^2 \Sigma_{5,2}^{t\bar{t}t\bar{t}} + \alpha_s^2 \alpha^3 \Sigma_{5,3}^{t\bar{t}t\bar{t}} + \alpha_s^1 \alpha^4 \Sigma_{5,4}^{t\bar{t}t\bar{t}} + \alpha^5 \Sigma_{5,5}^{t\bar{t}t\bar{t}}$$

$$\equiv \Sigma_{\text{NLO}_1} + \Sigma_{\text{NLO}_2} + \Sigma_{\text{NLO}_3} + \Sigma_{\text{NLO}_4} + \Sigma_{\text{NLO}_5} + \Sigma_{\text{NLO}_6}.$$

- Sizeable (accidental) cancellation between different LO and NLO orders
- calculation of only part of the complete-NLO results would be misleading
- cancellation could be spiked by BSM effects

g 700

Precision for the highest multiplicities

[Denner, Lang, Pellen `20]

 $pp \to 2\ell 2\nu b \bar b b \bar b$ @ NLO QCD

- Thorough understanding of theory systematics in this channel crucial for ttH measurements where H->bb
- ttbb receives sizeable QCD corrections
- Very important confirmation of (ttbb) double pole approximation

Taming ttH backgrounds

Taming ttH backgrounds

[Bevilacqua, Czakon, Papadopoulos, Pittau, Worek '09] [Bredenstein, Denner, Dittmaier, Pozzorini '10]

background

- in principle this process can be calculated out of the box at NLO+PS: NLO reduces scale uncertainties from 80% to 20-30%
- \rightarrow However: notoriously difficult multi-scale problem: ET_t, ET_t, ET_b, ET_b
- → Large shower effects, in particular from double g→bb splittings
- → Large systematic uncertainties from parton shower matching

~20% in the signal region

Taming ttH backgrounds

- → in principle this process can be calculated out of the box at NLO+PS: NLO reduces scale uncertainties from 80% to 20-30%
- \rightarrow However: notoriously difficult multi-scale problem: ET_t, ET_t, ET_b, ET_b
- → Large shower effects, in particular from double g→bb splittings
- → Large systematic uncertainties from parton shower matching
- → Careful study required to understand these systematics

→Sherpa vs. POWHEG+PY8 (both in 4-FS) in very good agreement

Taming tTH backgrounds

▶ Shower variations

 \bullet α_S & $g \rightarrow b\overline{b}$ variations

hdamp & bzd variations

$$g_{\text{soft}}(\Phi_{\text{rad}}, h_{\text{damp}}, h_{\text{bzd}}) = \frac{h_{\text{damp}}^2}{h_{\text{damp}}^2 + k_T^2} \, \theta \Big(h_{\text{bzd}} B(\Phi_B) \otimes K_{\text{soft/coll}}(\Phi_{\text{rad}}) - R(\Phi_R) \Big)$$

→Intrinsic shower systematics in POWHEG+PY8/HW7 under very good control

Taming tTH backgrounds

- → Sizable differences between different generators: in particular in radiation/recoil spectrum
- → Without understanding their origin (physical or not?) we should not use MC differences as theory uncertainty!
- → Careful look inside the NLO+PS black-boxes necessary: ongoing within HXSWG!

The smoking gun

Study recoil observables: $\Delta\phi_{\mathrm{rec},X} = \Delta\phi\left(\vec{p}_{\mathrm{rec}},\vec{p}_{X}\right),$

$$ec{p}_{
m rec} = -\sum_{t,ar{t},b_1,b_2} ec{p}_i,$$

- leading top absorbs strong recoil form QCD radiation
- NLOPS enhancement of recoil well consistent with **ttbbj at NLO** (nontrivial!)

The smoking gun

Study recoil observables: $\Delta \phi_{\mathrm{rec},X} = \Delta \phi \left(\vec{p}_{\mathrm{rec}}, \vec{p}_{X} \right)$,

- leading top absorbs strong recoil form QCD radiation
- NLOPS enhancement of recoil well consistent with ttbbj at NLO (nontrivial!)

[Buccioni, Pozzorini, Zoller, 1907.13624]

Azimuthal correlation $\Delta \phi_{rec,b_1}$ between recoil and 1st b-jet

- leading bottom gets strong UNPHYSICAL recoil in LO+PY8
- unphysical since no evidence of recoil in ttbb, ttbbj, or PWG+PY8 at NLO
- unphysical recoil strongly suppressed only by Powheg / attenuated by MC@NLO matching (MG and Sherpa)

Conclusions

- SM is in excellent shape
- High-precision (Theo + Exp) allows to push limits to unprecedented levels
- NNLO QCD + NLO EW is the new standard: VV,V+jets, dijets, tt, HV,VBF
- Use ratios for theory X exp background improvements
- Explore the unknown: tail, tails, tails!!

Developments relevant for Run-3 analyses

- NNLO QCD + PS
- PS matching and multi-jet merging @ NLO QCD+EW
- open the NLO PS black boxes (benchmark against NNLO or NLO multijet computations)
 NNLO QCDxEW & NNLO EW uncertainty estimates

precision for Run-3

Backup

inclusive V: MEPS@NLO QCD+EWvirt

[S. Kallweit, JML, P. Maierhöfer, M. Schönherr, S. Pozzorini, 'I 4+' I 5]

- ▶ Bases on Sherpa's standard MEPS@NLO
- ▶ Stable NLO QCD+EW predictions in all of the phase-space...
- ...including Parton-Shower effects.
- ► Can directly be used by the experimental collaborations
- ▶ p_{T,V} : MEPS@NLO QCD+EW in agreement with QCDxEW (fixed-order)
- ▶ p_{T,j}:
- merging ensures stable results (dijet topology at LO)
- compensation between negative Sudakov and LO mix

How to correlate QCD uncertainties across processes?

consider Z+jet / W+jet $p_{T,V}$ -ratio @ LO uncorrelated treatment yields O(40%) uncertainties

consider Z+jet / W+jet $p_{T,V}$ -ratio @ LO

uncorrelated treatment yields O(40%) uncertainties

correlated treatment yields tiny O(<~ 1%) uncertainties

How to correlate QCD uncertainties across processes?

consider Z+jet / W+jet $p_{T,V}$ -ratio @ LO

uncorrelated treatment yields O(40%) uncertainties

correlated treatment yields tiny O(<~ 1%) uncertainties

check against NLO QCD!

NLO QCD corrections remarkably flat in Z+jet / W+jet ratio!

→ supports correlated treatment of uncertainties!

How to correlate QCD uncertainties across processes?

consider Z+jet / W+jet $p_{T,V}$ -ratio @ LO

uncorrelated treatment yields O(40%) uncertainties

correlated treatment yields tiny O(<~ 1%) uncertainties

check against NLO QCD!

NLO QCD corrections remarkably flat in Z+jet / W+jet ratio!

→ supports correlated treatment of uncertainties!

Also holds for higher jet-multiplicities

→ indication of correlation also in higher-order corrections beyond NLO!

How to correlate these uncertainties across processes?

take scale uncertainties as fully correlated:
 NLO QCD uncertainties cancel at the <~ | % level

How to correlate these uncertainties across processes?

- take scale uncertainties as fully correlated:
 NLO QCD uncertainties cancel at the <~ | % level
- introduce process correlation uncertainty based on K-factor difference: $\delta K_{\rm NLO} = K_{\rm NLO}^V K_{\rm NLO}^Z$ \rightarrow effectively degrades precision of last calculated order

How to correlate these uncertainties across processes?

- take scale uncertainties as fully correlated:
 NLO QCD uncertainties cancel at the <~ | % level
- introduce process correlation uncertainty based on K-factor difference: $\delta K_{\rm NLO} = K_{\rm NLO}^V K_{\rm NLO}^Z K_{\rm NLO}^Z$ introduce process correlation uncertainty based on K-factor difference: $\delta K_{\rm NLO} = K_{\rm NLO}^V K_{\rm NLO}^Z$

check against NNLO QCD!

How to correlate these uncertainties across processes?

- take scale uncertainties as fully correlated:
 NLO QCD uncertainties cancel at the <~ | % level
- introduce process correlation uncertainty based on K-factor difference: $\delta K_{({\rm N}){
 m NLO}} = K_{({\rm N}){
 m NLO}}^V K_{({\rm N}){
 m NLO}}^Z$ \rightarrow effectively degrades precision of last calculated order

Uncertainty estimates at NNLO QCD

Pure EW uncertainties

Large EW corrections dominated by Sudakov logs

Pure EW uncertainties

Large EW corrections dominated by Sudakov logs

Uncertainty estimate of (N)NLO EW from naive exponentiation x 2:

$$\delta^{(1)} \kappa_{\rm EW} \simeq \frac{2}{k!} \left(\kappa_{\rm NLO,EW} \right)^k$$
 (correlated)

check against two-loop Sudakov logs

[Kühn, Kulesza, Pozzorini, Schulze; 05-07]

+ additional uncertainties for hard non-log NNLO EW effects (uncorrelated)

Mixed QCD-EW uncertainties

Given QCD and EW corrections are sizeable, also mixed QCD-EW uncertainties of relative $\mathcal{O}(\alpha\alpha_s)$ have to be considered.

Additive combination

$$\sigma_{\mathrm{QCD+EW}}^{\mathrm{NLO}} = \sigma^{\mathrm{LO}} + \delta\sigma_{\mathrm{QCD}}^{\mathrm{NLO}} + \delta\sigma_{\mathrm{EW}}^{\mathrm{NLO}}$$
 (no $\mathcal{O}(\alpha\alpha_s)$ contributions)

Multiplicative combination

$$\sigma_{\mathrm{QCD} \times \mathrm{EW}}^{\mathrm{NLO}} = \sigma_{\mathrm{QCD}}^{\mathrm{NLO}} \left(1 + \frac{\delta \sigma_{\mathrm{EW}}^{\mathrm{NLO}}}{\sigma^{\mathrm{LO}}} \right)$$

(try to capture some $\mathcal{O}(\alpha\alpha_s)$ contributions, e.g. EW Sudakov logs × soft QCD)

Difference between these two approaches indicates size of missing mixed EW-OCD corrections.

$$K_{\mathrm{QCD}\otimes\mathrm{EW}}-K_{\mathrm{QCD}\oplus\mathrm{EW}}\sim10\%$$
 at 1 TeV

Too conservative!?

For dominant Sudakov EW logarithms factorization should be exact!

Mixed QCD-EW uncertainties

Bold estimate:

Consider real $\mathcal{O}(\alpha\alpha_s)$ correction to V+jet

$$\simeq$$
 NLO EW to V+2jets

and we observe

$$\left. \frac{\mathrm{d}\sigma_{\mathrm{NLO\,EW}}}{\mathrm{d}\sigma_{\mathrm{LO}}} \right|_{V+2\mathrm{jet}} - \left. \frac{\mathrm{d}\sigma_{\mathrm{NLO\,EW}}}{\mathrm{d}\sigma_{\mathrm{LO}}} \right|_{V+1\mathrm{jet}} \lesssim 1\%$$

strong support for

- factorization
- multiplicative QCD x EW combination

Estimate of non-factorising contributions

(correlated)

$$\delta K_{\text{mix}}^{(V)}(x) = 0.1 \left[K_{\text{TH},\oplus}^{(V)}(x,\vec{\mu}_0) - K_{\text{TH},\otimes}^{(V)}(x,\vec{\mu}_0) \right]$$

(tuned to cover above difference of EW K-factors)

Top-free W+W- definitions

+40% NLO +400% NNLO

Huge Wt and $t\bar{t}$ contamination from $W^+W^-\dot{b}$ and $W^+W^-b\bar{b}$

- intimately connected with W^+W^- through $g \to b \bar b$ singularities
- top subtraction tricky and not unique \Rightarrow theoretical ambiguity in $\sigma_{WW}^{({
 m N}){
 m NLO}}!$

Definition A: veto b-quark emissions in 4F scheme $(m_b > 0)$

• $\Rightarrow \ln(m_b/M_W)$ terms might jeopardize NNLO accuracy!

Definition B: top-resonance fit in 5F-scheme ($m_b = 0$)

$$\lim_{\xi_t \to 0} \sigma_{\text{full}}^{5F}(\xi_t \Gamma_t) = \xi_t^{-2} \left[\sigma_{t\bar{t}}^{5F} + \xi_t \, \sigma_{Wt}^{5F} + \xi_t^2 \, \sigma_{W^+W^-}^{5F} \right]$$

 \Rightarrow for inclusive $\sigma_{WW}^{\mathrm{NNLO}}$ only 1–2% ambiguity (A vs B)

Relevant issue for percent-precision tests of W^+W^- physics! ... Relation to $\sigma_{WW}^{\rm EXP}$?

Origin of these differences

 origin: different shower-induced bins migrations across b-jets cuts

anti-
$$k_t$$
, $R = 0.4$
cuts: $p_T > 25$ GeV, $\eta < 2.5$