CMS Scouting And Dark Matter Searches

Jakob Salfeld-Nebgen April 8th, 2021

Intro

٠

- Initially CMS Scouting and Parking came as a "siblings":
 - Scout for new signatures, reconstruct parked data once new signature found
 - ☆ CMS Scouting introduced 2011
- Active development and further improvements over the years
 - Included additional Level-1 triggers and good reconstruction quality (Particle Flow)
- Basic concept: reconstruct events in High-Level Trigger compute farm instead of offline computing resources

Improves greatly BSM phase-space coverage and is cheaper (less resources)

- ATLAS and LHCb have similar workflows (Trigger-Level Analysis, Turbostream)
- This gives access to as much as 100 times higher rates at the LHC multipurpose experiments with thresholds applied at the Level-1 trigger rather than High-level trigger
- For Run 3 and Phase 2 these concepts become important to increase discovery potential and overcome the constantly increasing luminosity doubling time

A Note on Dark Matter

- Direct searches for dark matter involve missing transverse energy signatures in the pp collisions
- Theories explaining dark matter usually involve additional particles, and the coupling to the SM is established via a mediator
 - => Can generically look for visible decay signatures of mediators

 \Leftrightarrow There is obviously a large theory space suggesting many signatures

Portal Framework covers many phenomenological consequences and possibilities; can be used as a guideline what signatures to explore experimentally at low masses

Portal	Coupling
Dark Photon, A_{μ}	$-rac{\epsilon}{2\cos heta_W}F'_{\mu u}B^{\mu u}$
Dark Higgs, S	$(\mu S + \lambda S^2) H^{\dagger} H$
Axion, a	$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu},\ \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu},\ \frac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$
Sterile Neutrino, ${\cal N}$	$y_N LHN$

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{DS}} + \mathcal{L}_{\mathrm{Portal}}$$

Dark Sectors Workshop FIPs

PBC (BSM report)

Scouting Physics Potential

- The light BSM phenomenology is well developed for experiments other than the LHC
- Will need effort to map out physics potential of low-pT physics with multipurpose detector at LHC

٠

Dark Sectors Workshop FIPs PBC (BSM report)

CMS Scouting Run 2

L1-Trigger	

Scouting Path	L1 trigger requirements
	$2\mu, p_T > 15/7 \text{ GeV}$
	$3\mu, p_T > 5/3/3~{ m GeV}$
Muon CaloScouting	$2\mu, { m OS}, p_T > 4.5 { m GeV}, \eta < 2, 7 < m(2\mu) < 18 { m GeV}$
	2μ , OS, $p_T > 0$ GeV, $ \eta < 1.5, \Delta R < 1.4$
	2μ , OS, $p_T > 4.5 \text{ GeV}, \eta < 2.5, \Delta R < 1.2$
	$1 \text{ jet}, p_T > 180 \text{ GeV}$
H_T Calo/PF-Scouting	2 jets, $p_T > 30$ GeV, $ \eta < 2.5$, $m(2j) > 300$ GeV, $\Delta \eta < 1.5$
	$H_T > 360 \text{ GeV}$

Loose Cuts	
at HLT	

Scouting Path	Selection	Rate [kHz]	Proc. Time [ms]
Muon Calo-Scouting (2017–2018)	$(2\mu, p_T > 3 \text{ GeV})$	2.7	350
H_T Calo–Scouting (2016–2018)	$(H_T > 250 \text{ GeV})$	3	160
H_T PF–Scouting (2016–2018)	$(H_T > 410 \text{ GeV})$	0.7	1200
H_T PF–Scouting (2016–2018)	$(H_T > 410 \text{ GeV})$	0.7	1200

Scouting Dataset	# events	dataset size	average size per event
Muon Calo–Scouting (2017–2018)	14.4 B	$56~\mathrm{TB}$	3.9 kB
H_T Calo–Scouting (2016–2018)	37.7 B	$78 \ { m TB}$	$2.1 \mathrm{~kB}$
H_T PF–Scouting (2016–2018)	7.7 B	66 TB	8.6 kB

Event Content

CMS Scouting event content differed for the scouting triggers

PF-Scouting

•

Calo-Scouting

1-10 kB per event

Physics Object	Event Content	
Event based	ho (average energy density) PF/Calo MET p_T , ϕ	
Calo Jets $(p_T > 20 \text{ GeV}, \eta < 3)$	p_T, η, ϕ, m Hadronic energy-fraction in HB, HE, HF EM energy-fraction in EB, EE, HF jet-area (AK4)	
PF Jets [25] $(p_T > 20 \text{ GeV}, \eta < 3)$	p_T, η, ϕ, m $\pi^0, \pi^+, e, \gamma, \mu$ sum of energies $\pi^0, \pi^+, e, \gamma, \mu$ multiplicities index in PF-Candidate collection	
PF Candidates [25] $(p_T > 0.6 \text{ GeV}))$	p_T, η, ϕ, m pdgId, index in vertex collection	
Verices (also displaced dimuon)	$egin{array}{llllllllllllllllllllllllllllllllllll$	
Tracks around Muons p_T, η, ϕ , charge $dz, dxy, \lambda, q/p$, diagonal of covariance matrix		
Muons [29] $p_T, \eta, \phi, m, \text{ charge}$ $\text{track: ndof, } \chi^2, \text{ dz, dxy, } \lambda, q/p$ $\text{relative isolation: } (\Delta R < 0.3) \text{ ECAL, HCAL, Tracks}$ $\text{ID: } \# \text{ SiPixel hits, } \# \text{ SiStrip hits, } \# \text{ muon chamber h}$		
Electrons [27]	p_T , η , ϕ , m , charge relative isolation: ($\Delta R < 0.3$) ECAL, HCAL, Tracks ID: H/E , $\sigma_{i\eta i\eta}$, dxy, dz, $(\frac{1}{E} - \frac{1}{p})$, missing hits, $\Delta \phi_{in}$, $\Delta \eta_{in}$	in
Photons [27]	$p_T, \eta, \phi, m, \text{charge}$ relative isolation: ($\Delta R < 0.3$) ECAL, HCAL ID: $H/E, \sigma_{i\eta i\eta}$	

CMS Scouting Analyses

For now 7 published results based on CMS Scouting program

More analyses in the pipeline, datasets can be explored further

identifier	Title
<u>EXO-11-094</u>	Search for Narrow Resonances using the Dijet Mass Spectrum in pp Collisions at sqrt s of 7 TeV
<u>EXO-14-005</u>	Search for narrow resonances in dijet final states at 8 TeV using data scouting
<u>EXO-16-032</u>	Search for dijet resonances in proton-proton collisions at sqrt(s) = 13 TeV and constraints on dark matter and other models
<u>EXO-16-056</u>	Search for narrow and broad dijet resonances in proton-proton collisions at 13 TeV and constraints on dark matter mediators and other new particles
<u>EXO-17-030</u>	Search for pair-produced three-jet resonances in proton-proton collisions at 13 TeV
EXO-19-004	Search for dijet resonances using events with three jets in proton-proton collisions at 13 TeV
<u>EXO-19-018</u>	Search for a narrow resonance lighter than 200 GeV decaying to a pair of muons in proton-proton collisions at 13 TeV

And 2 technical notes

•

identifier	Title
DP-2012-022	Data Parking and Data Scouting at the CMS Experiment
<u>DP-2018-055</u>	HLT Dimuon Invariant Mass Distributions in 2017 and 2018

Inclusive Di-Jet Resonance

Jet energy scale of Scouting calorimeter jets to offline reconstructed jet

•

- Dedicated Calibration Stream
- For resonances at 2 TeV, the detector resolution is ~20% worse in Scouting (Calo-Jets)

8

Inclusive Di-Jet Resonance

Dijet mass spectrum is fitted with analytic function to extract knowledge about any signs for a resonance

- Projections into the dark matter mass vs mediator plane performed
- **Full Run 2 analyses in progress**

 $\Omega_c h^2 \ge 0.12$

2000

1500

2500

3000

m_{DM} [GeV]

1600

1400

1200

1000

800

600

400

200

°ò

500

CMS

Vector mediator & Dirac DM

1000

g_{DM} = 1.0

g_ = 0.25

Particle Flow Scouting

CMS-EXO-17-030

- A search for pair produced tri-jet resonances as e.g. predicted by Supersymmetric Models
- Full Run 2 dataset being analysed
- Detailed jet substructure studies being performed

•

•

Leptonic Mediator Decays

Invariant mass spectrum per L1-Trigger as collected with Scouting

Events/GeV × Prescale

CMS DP-2018/055

CMS Dark Photon Search

CMS performed a search for a narrow dimuon resonance at 13 TeV

~ 100 fb-1 was collected with the Scouting trigger

- The dimuon invariant resolution is 1-2%, depending on pseudo rapidity
 - In Scouting, the resolution is roughly 10% worse, impact on sensitivity ~3%
- · Interpreted in Dark Photon model, cross section scales with ϵ^2

High-Mass Future Projections

Low Mass Dimuon Scouting

Exploitation of mass below 10 GeV not yet published

Expect good sensitivity in particular for displaced (< 10cm) dimuon decays

CMS B-Parking 1

Run-2 (2018) B-Parking: more data targeting studies of b-meson decays

- Keep the full RAW event content, park and reconstruct data once resources are available
- ▶ Information: <u>R. Bainbridge</u>, <u>CMS DPS</u>
- Main target: B->K(*)II

•

Full RAW CMS detector readout is stored and reconstructed

Settings	Peak <i>£</i> inst [10 ³⁴ cm ⁻² s ⁻¹]	L1 µ p⊤ threshold [GeV]	HLT µ p⊤ threshold [GeV]	HLT μ IP _{sig} threshold	Trigger purity [%]	Peak rate [kHz]
1	1.7	12	12	6	92	1.5
2	1.5	10	9	6	87	2.8
3	1.3	9	9	5	86	3.0
4	1.1	8	8	5	83	3.7
5	0.9	7	7	4	59	5.4

CMS B-Parking 2

Data exploration started

•

•

- Expect first publication soon
- Dataset can find many applications also for BSM searches

Expected yields

Mode	N ₂₀₁₈	f_B	B	
(Generic b hadr	ons		
$B^0_{ m d}$	$4.0 imes 10^9$	0.4	1.0	
B^{\pm}	$4.0 imes 10^9$	0.4	1.0	
B_{s}	$1.2 imes 10^9$	0.1	1.0	
b baryons	$1.2 imes 10^9$	0.1	1.0	
B_{c}	$1.0 imes 10^7$	0.001	1.0	
Total	$1.0 imes 10^{10}$	1.0	1.0	
Events for R_K and R_{K^*} analyses				
$B^0 \rightarrow K^* \ell^+ \ell^-$	2600	0.4	$6.6 imes10^{-7}$	
$B^{\pm} \rightarrow K^{\pm} \ell^+ \ell^-$	1800	0.4	4.5×10^{-7}	

CMS B-Parking 3

•

- B-Parking offers excellent search possibilities for displaced signatures too
- Note: scouting also includes displaced dimuon signatures; to be compared

For Run 3 2022 - 2024 could aim for high-rate O(10) kHz Particle Flow Scouting Stream with GPU accelerated reconstruction

Can also target recent model agnostic Bump Hunt search strategies ANODE, CWoLa <u>arxiv:1708.02949</u>, <u>arxiv:2001.04990</u>, auto encoders

	HLT Threshold	L1 Threshold	L1[kHz]
(non) Isolated di-photon	pT>30/22, M>60GeV	pT>(25/12) 22/12 GeV (eta <2.5)	3
(non) Isolated di-muon	pT>17/8 GeV, M>3.8	pT>15/7 GeV or pT>0 + DR/M/Eta cuts	3
Single jet	pT>500 GeV	pT>180 GeV	1
НТ	HT>1050 GeV	HT>360 GeV	3
(non) isolated photon	pT>(200) 110 GeV eta <1.476	pT>(60) [28+Iso+ eta <2.1]	13
MET	MHT/MET > 200 GeV	Etmiss >100 GeV	1

Full list of L1 thresholds in backup

18

For Run 3 2022 - 2024 could aim for high-rate O(10) kHz Particle Flow

Scouting Stream with GPU accelerated reconstruction

Pixel tracking was successfully ported to GPU, Particle Flow with pixel tracks developed, <u>al</u> expect further speed up and Particle Flow porting to GPU

arxiv:2008.13461

Preliminary Particle Flow reconstruction using CMS patatrack pixel tracks results in good performance

Further refinements ongoing, also dedicated checks resolving detailed jet substructure, flavour and tau tagging performance needed

Preliminary Particle Flow reconstruction using CMS patatrack pixel tracks results in good performance

Further refinements ongoing, also dedicated checks resolving detailed jet substructure, flavour and tau tagging performance needed

Scouting Physics Potential

- The light BSM phenomenology is well developed for experiments other than the LHC
- Will need effort to map out physics potential of low-pT physics with multipurpose detector at LHC

Summary

٠

٠

• Scouting program offers discovery potential at the LHC beyond the \sqrt{L} -limitation for high mass searches in Run 3 and Phase 2

Gives in principle access to 100 kHz instead of 1-2 kHz

- CMS Parking data-taking program also greatly improved, target to run this scheme as well in Run 3
 - Refined and accelerated reconstruction techniques using heterogenous computing architectures offer new possibilities for high-rate high-fidelity event reconstruction and thus new phase-space to explore
 - Active development happening in CMS Collaboration, target high-speed Particle Flow implementation for Run 3
 - Note that for Phase 2, L1 scouting would enable access to full LHC collision rate, simplified tracking at 40 MHz would enable good-fidelity event reconstruction
 - Program will benefit from well defined use case and benchmark models
- Personal recommendation: Include/use Level-1 trigger thresholds (or even no thresholds at all) for phenomenological studies targeting low-mass/pT physics at LHC in the future

Additional Material

L1 thresholds (CERN-EP-2020-065)

Table 2: List of the most used unprescaled Level-1 trigger algorithms (seeds) during Run 2 and their requirements.

4.1 1.1		
Algorithm	Requirements ($p_{\rm T}$, $E_{\rm T}$, $m_{\mu\mu}$, and $m_{\rm jj}$ in GeV)	
Muons		
Single μ	$p_{\rm T} > 22 \&$ light quality	
Double μ	$p_{\rm T} > 15.7$ & Medium quality	
Double μ	$p_{\rm T} > 15.5 \&$ light quality	
Double μ	$p_{\rm T} > 8,8 $ in the second seco	
Double μ + mass	$p_{\rm T} > 4.5 \& \eta < 2.0 \&$ light quality & 0.5 & $m_{\mu\mu} > 7$	
Double $\mu + \Delta R$	$p_{\rm T} > 4$ & fight quality & OS & $\Delta K < 1.2$	
Double $\mu + \Delta K$	$p_{\rm T} > 0 \text{cm} \eta < 1.5 \text{cm}$ light quality & OS & $\Delta K < 1.4$	
Double $\mu + b\lambda$	$p_{\rm T} > 0 \ll \eta < 1.4 \ll$ Medium quality & Non-colliding DA	
Triple μ	$p_{\rm T} > 3,3,3$ & Medium quality $n_{\rm T} > 3,3,3$ & Tight quality	
Triple μ	$p_{\rm T} > 5.5.5 \text{s}$ fight quality $n_{\rm T} > 5.35.25 \text{s}$ Med gual two μ OS is $n_{\rm T} > 5.25 \text{s}$ 5 $< m_{\rm T} < 17$	
Triple μ + mass	$p_{\rm T} > 5, 5.5, 2.5 \ \text{a tried. qual., two } \mu \ OS \ \text{a } p_{\rm T} > 5, 2.5 \ \text{a } S < m_{\mu\mu} < 17$	
Inple μ + mass	There μ any qual, two $\mu \propto p_T > 5,5 \propto$ fight qual $\propto 0.5 \propto m_{\mu\mu} < 9$	
Electrons / photons	(e/γ)	
Single e/γ	$p_{\rm T} > 60$	
Single e/γ	$p_{\rm T} > 36 \& \eta < 2.5$	
Single e/γ	$p_{\rm T} > 28 \& \eta < 2.5 \&$ Loose isolation	
Double e/γ	$p_{\rm T} > 25, 12 \& \eta < 2.5$	
Double e/γ	$p_{\rm T} > 22, 12 \& \eta < 2.5 \&$ Loose isolation	
Triple e/γ	$p_{\rm T} > 18, 17, 8 \& \eta < 2.5$	
Triple e/ γ	$p_{\rm T} > 16, 16, 16 \& \eta < 2.5$	
Tau leptons ($ au$)		
Single $ au$	$p_{ m T} > 120 \; \& \; \eta < 2.1$	
Double $ au$	$p_{ m T}>$ 32 & $ \eta <$ 2.1 & Isolation	
Iets		
Single jet	$p_{_{ m T}} > 180$	
Single jet + BX	$p_{\rm T} > 43 \& \eta < 2.5 \&$ Non-colliding BX	
Double jet	$p_{ m T} > 150 \ \& \ \eta < 2.5$	
Double jet + $\Delta \eta$	$p_{ m T} > 112 \ \& \ \eta < 2.3 \ \& \ \Delta \eta < 1.6$	
Double jet + mass	$p_{\rm T} > 110, 35$; two jets $p_{\rm T} > 35 \& m_{\rm ij} > 620$	
Double jet + mass	$p_{\rm T} > 30 \& \eta < 2.5 \& \Delta \eta < 1.5 \& m_{\rm ii} > 300$	
Triple jet	$p_{\rm T} > 95,75,65$; two jets $p_{\rm T} > 75,65$ & $ \eta < 2.5$	
Eneron sums		
Emiss	$E^{\text{miss}} > 100$ (Vector sum of n_{π} of calorimeter denosity with $ u < 5.0$)	
T H	$H_{\rm T} > 360$ (Scalar sum of $n_{\rm T}$ of all jets with $n_{\rm T} > 30$ and $ n < 2.5$)	
E _T	$E_T > 2000$ (Scalar sum of p_T of calorimeter deposits with $ n < 5.0$)	
Terms used	$2_1 \times 2_0 = 0$ (could built of p_T of culor interference in the $ \eta < 0.0$)	
Tight quality: muons with hits in at least 3 different muon stations		
Medium quality: muons with hits in at least 2 different muon stations		
The "non-colliding BX" requirement selects beam-empty events.		
$\Delta R \equiv ((\Delta \phi)^2 + (\Delta \eta)^2)^{1/2}$, and phi is the azimuthal angle in radians.		
OS: Opposite Sign (of electric charge).		
$E_{\rm T}$: Scalar sum of $p_{\rm T}$ of calorimeter deposits.		
$H_{\rm T}$: Scalar sum of $p_{\rm T}$ of jets.		

Isolation and loose isolation: The isolation requires an upper limit on the transverse cal-

Table 3: List of the most used cross object unprescaled Level-1 trigger algorithms (seeds) during Run 2 and their corresponding requirements.

Algorithm	Requirements
	$(p_{\rm T}, E_{\rm T}, m_{\mu\mu}, \text{and } m_{\rm ii} \text{ in GeV})$
Two objects	
Single μ + Single e / γ	$p_{\rm T}(\mu) > 20$ & Tight quality(μ) & $p_{\rm T}({\rm e}/\gamma) > 10$ & $ \eta({\rm e}/\gamma) < 2.5$
Single μ + Single e/ γ	$p_{\rm T}(\mu) > 7$ & Tight quality(μ) & $p_{\rm T}({\rm e}/\gamma) > 20$ & $ \eta({\rm e}/\gamma) < 2.5$
Single μ +	$p_{\mathrm{T}}(\mu) > 18$ & $ \eta(\mu) < 2.1$ & Tight quality (μ) &
Single $ au$	$p_{ m T}(au) > 24$ & $ \eta(au) < 2.1$
Single $\mu + H_{\rm T}$	$p_{\rm T}(\mu) > 6$ & Tight quality(μ) & $H_{\rm T} > 240$
Single e / γ +	$p_{\rm T}({\rm e}/\gamma) > 22 \& \eta({\rm e}/\gamma) < 2.1 \&$ Loose isolation(e/ γ) &
Single τ	$p_{\rm T}(\tau) > 26 \& \eta(\tau) < 2.1 \& \text{Isolation}(\tau) \& \Delta R > 0.3$
Single e/γ +	$p_{\rm T}({\rm e}/\gamma) > 28 \& \eta({\rm e}/\gamma) < 2.1 \& \text{Loose isolation}({\rm e}/\gamma) \&$
Single jet	$p_{\rm T}({ m jet}) > 34 \& \eta({ m jet}) < 2.5 \& \Delta R > 0.3$
Single e / γ + $H_{\rm T}$	$p_{\rm T}({\rm e}/\gamma) > 26 \& \eta({\rm e}/\gamma) < 2.1 \&$ Loose isolation(e/ γ) & $H_{\rm T} > 100$
Single τ + $E_{\rm T}^{\rm miss}$	$p_{\mathrm{T}}(au) > 40$ & $ \eta(au) < 2.1$ & $E_{\mathrm{T}}^{\mathrm{miss}} > 90$
Single jet + \tilde{E}_{T}^{miss}	$p_{ m T}({ m jet}) > 140$ & $ \eta({ m jet}) < 2.5$ & $E_{ m T}^{ m miss} > 80$
Three objects	
Single μ	$p_{\mathrm{T}}(\mu) > 12$ & $ \eta(\mu) < 2.3$ & Tight quality(μ) &
Double jet + ΔR	$p_{\rm T}({ m jet}) > 40 \& \Delta \eta({ m jet},{ m jet}) < 1.6 \& \eta({ m jet}) < 2.3 \& \Delta R(\mu,{ m jet}) < 0.4$
Single μ +	$p_{\mathrm{T}}(\mu) > 3$ & $ \eta(\mu) < 1.5$ & Tight quality (μ) &
Single jet + $E_{\rm T}^{\rm miss}$	$p_{ m T}({ m jet}) > 100 \ \& \left \eta({ m jet}) ight < 2.5 \ \& E_{ m T}^{ m miss} > 40$
Double $\mu + H_{\rm T}$	$p_{\mathrm{T}}(\mu) > 3$ & Tight quality (μ) & $H_{\mathrm{T}} > 220$
Double μ +	$p_{\mathrm{T}}(\mu) > 0$ & Medium quality(μ) & $\Delta R(\mu, \mu) < 1.6$ &
Single jet + ΔR	$p_{ m T}({ m jet}) > 90 \ \& \ \eta({ m jet}) < 2.5 \ \& \ \Delta R(\mu,{ m jet}) < 0.8$
Double μ + Single e / γ	$p_{\mathrm{T}}(\mu) > 5$ & Tight quality(μ) & $p_{\mathrm{T}}(\mathrm{e}/\gamma) > 9$ & $ \eta(\mathrm{e}/\gamma) < 2.5$
Double e / γ + Single μ	$p_{ m T}({ m e}/\gamma)>$ 12 & $ \eta({ m e}/\gamma) <$ 2.5 & $p_{ m T}(\mu)>$ 6 & Tight quality(μ)
Double $e/\gamma + H_T$	$p_{ m T}({ m e}/\gamma) > 8$ & $ \eta({ m e}/\gamma) < 2.5$ & $H_{ m T} > 300$
Four objects	
Double μ + Double e/ γ	$p_{\rm T}(\mu) > 3$ & Medium quality(μ) & OS(μ) & $p_{\rm T}({\rm e}/\gamma) > 7.5$
Double μ + Double e/ γ	$p_{\mathrm{T}}(\mu) > 5$ & Medium quality(μ) & OS(μ) & $p_{\mathrm{T}}(\mathrm{e}/\gamma) > 3$
Five objects	
Double $\mu + E_T^{miss} +$	$p_{ m T}(\mu) > 3$ & Tight quality(μ) & $E_{ m T}^{ m miss} > 50$ &
Single jet OR	$(p_{\rm T}({ m jet}) > 60 \& \eta({ m jet}) < 2.5) { m OR}$
Double jet	$(p_{ m T}({ m jet})>40$ & $ \eta({ m jet}) <$ 2.5)
$H_{\rm T}$ + Quad jet	$H_{ m T}>320\ \&\ p_{ m T}({ m jet})>70,55,40,40\ \&\ \eta({ m jet}) <2.4$