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A. Boveia - Trigger Level Analysis in ATLAS, CHEP (2019)

W. Kalderon - Real-time analysis model in ATLAS, HSF/WLCG/0SG workshop (2019)

Trigger menu limitations during Run 2

Main menu limitations are L1 rate (multi-jet, taus, flavour physics), HLT CPU
(b-tagging of low-pT jets), and HLT rate (most triggers).

L1
Readout electronics set a hard limit of 100 kHz.
Peak rate ~95 kHz.

Strong production (multi-)jet and flavour-physics triggers would quickly
saturate this, without additional requirements (e.g. single-jet pr thresholds)

HLT CPU
Processing power of HLT farm sets hard limit on what reconstruction can be run
Typically: pre-selection then offline-like (but speed-optimized) reconstruction

In particular, tracking is not performed for jet triggers (and for low-pr b-jet
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A. Boveia - Trigger Level Analysis in ATLAS, CHEP (2019)

Why bother with “low p;” jet data?

Summarv plots from the ATLAS Exotic physics group
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—— Boosted dijet + ISR

36.11b"
Phys. Lett. B 788 (2019) 316

— Boosted di-b + ISR

80.5 fb
ATLAS-CONF-2018-052

— Dijet + ISR

79.8&76.61b "
Phys. Lett. B 795 (2019) 56

Di-b + ISR

79.8& 76.6b '
Phys. Lett. B 795 (2019) 56

bb resonance
24.3836.11b "
Phys. Rev. D 98 (2018) 032016

tt resonance

36.11b

Eur. Phys. J. C 78 (2018) 565
Dijet

37.0fb "

Phys. Rev. D 96, 052004 (2017)

Dijet angular
37.0f6 "
Phys. Rev. D 96, 052004 (2017)

Two-body resonances are a historically
fruitful search channel (J/psi, Z, Higgs)
and a key component of the ATLAS
search program. They are well-covered
for most types of decays.

However, the HLT threshold for the single
jet trigger (440 GeV) constrains dijet
searches to the region mjj>~ 1.5 TeV (~2x
pT).

The electroweak-TeV scale is special! The
W, Z, Higgs, and top are all found there.
We must study it as thoroughly as we can.
Not even SM-like couplings (few * 0.01)
are reached by the most sensitive search.

With a variety of alternate triggering
strategies or more narrowly targeted
searches, ATLAS can cover a wider range
of dijet masses, but with much less
statistical power than the full data would
allow.

We have to do better!
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Low-mass resonances and dark matter: a simplified picture
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A. Boveia - Trigger Level Analysis in ATLAS, CHEP (2019)

Trigger-level analysis

To generically probe the entire range of EW-TeV dijet resonances with the full statistical power L1 reconstruction
of the data, we need to work around all three trigger limitations (L1, HLT CPU, HLT rate).

L1 event filtering

This can only be done within the trigger itself, i.e. trigger-level analysis (TLA).

~3 kHz
Difference between L1 and HLT thresholds (200-440 GeV, shown earlier) suggests a first HLT reconstruction
step for Run 2: improve (already good) and analyze the HLT jet reconstruction at the L1A
rate; throw out the full data.
This technique also employed at LHCb (turbo stream) and CMS (data scouting).
~0-025kHz

TLA stream records only HLT objects (jet four-vectors, jet ID and calibration variables, etc.)

for specific L1A.
Search for new physics ~3 kHz

Throw out other information (e.g. no tracking information kept in Run 2,
but 0.5% of full event size.)

TriggerOperationPublicResults

35 30 TriggerOperationPublicResults
= ATLAS Trigger Operation Calibration T ATLAS Trigger Operation
V3o HLT stream bandwidths mmm Trigger-level analysis = HLT stream rates
= ~"| pp data, September 2018, Vs=13 TeV mmm B-physics and LS @ 25f pp data, September 2018, vs=13 TeV
= I Main physics o
-g 25K oo ExpreZsy E -_— Trigger:level analysis
'g mmm Other physics 8 20 == B-RhySICS .and =
H o Main physics
2.0k kT = Express
5 - mm Other physics
> 15} akid
o 15 i’ mmm  Monitoring
8 OR Calibration
= 10+
T 1.0
0.5} 5
0.0 0

19:00
Time [h:m]

09:00 11:00 13:00 15:00 17:00 09:00 11:00 13:00 15:00 17:00 19:00 6



https://indico.cern.ch/event/773049/contributions/3474303/attachments/1938074/3212450/20191105-tla.pdf

A. Boveia - Trigger Level Analysis in ATLAS, CHEP (2019)

TLA results from first 1/4 of Run 2

PRL 121 081801 1 Summary plots from the ATLAS Exotic physics group
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Analysis of two mass ranges with different L1 triggers (75 & 100 GeV) and different angular (y*) cuts.
Factor of 2-5x improvement in coupling limits (roughly 1-2 orders of magnitude in cross section).
Does not yet use strategies for other trigger limitations.

Watch for improved results with the full Run 2 dataset!
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Even weaker-coupled resonances: motivations

Current set of dijet resonance searches don’t yet reach
=2 T > T T T T CaGatal
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No reason to stop searching now:

- Many Z-like models are still viable and motivated 0.1
(see e.g. https://arxiv.org/abs/1807.02503 for “evolved DM simplified model Z’s ”)
- Ifaresonance is found, theories will appear

(think of what happened for the 750 GeV diphoton excess) 0.04 :
0.03; collider constraints ~ -«-- pre-LHC constraints
o o o _ ) . _ from direct searches == ATLAS Dijet+ISR/TLA )
TLA remains a flagship analysis for low-mass Z’s: 0.02f a1 vector DM mediator decaying © quarks
- Extremely high statistics — great to test robust solutions B ey e
L — et ] Al 00— 300 70
- But luminosity scaling is not fast, and we're still L1-limited... 200 300 1000

m,. [GeV]

— in Run-3, we need to be more creative with triggers/TLA objects & topologies!
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A. Boveia - Trigger Level Analysis in ATLAS, CHEP (2019)
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A. Boveia - Trigger Level Analysis in ATLAS, CHEP (2019)

Trigger-level analysis in Run 2

L1 rate remains most significant limitation
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C. Dodglioni - Reduced data formats & real-time analysis, ECHEP Workshop (2019)

Challenges for current/future TLA

e Physics objects used for TLA need to be identified, reconstructed and calibrated as
well as possible — what does this mean for analysis models?
e Risk of turning storage limitations into CPU limitations?
e Lack of information may reduce performance / signal discrimination
e Difficult (not impossible) to calibrate ATLAS & CMS physics objects "in real time”:
e Quasi-online calibration already happens in ATLAS/CMS for certain things (e.g.
luminosity, beamspot, cells)
e Some calibration steps depend on the presence of rare objects — limited statistics
e MC statistics will never be enough for final analysis

e Forces to think about alternative solutions!
e Background estimation techniques need to be data-driven & robust

Your event numbers may overflow as some runs collect more events than MAX_INT
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Conclusions

There is a lot of potential in trigger and non-standard workflows to probe
uncovered phase space and non-standard signatures - for dark matter and more!

= Trigger Level Ana|y5i5: reconstruct objects in real-time to save smaller events
- Di-object resonances - Z’ or dark photons or [insert your favourite model here]

= Pa rtial eve nt bu | Id | ng: keep regions with full detector information alongside trigger level analysis
- Dark sector signatures involving jets (& already used for muons)

- Delayed Stream: save lower threshold triggers and reconstruct full events during a long shutdown
- Has beenused in 2012 for hadronic signatures including resonance searches

Work ongoing to improve on Run-2 results, beyond luminosity gains:

- Better online calibration (benefits entire physics program) for lower pT TLA objects
- More specialized reconstruction algorithms
- More TLA objects in addition to jets
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A. Boveia - Trigger Level Analysis in ATLAS, CHEP (2019)

Overview of ATLAS trigger system during Run-2

The trigger system for ATLAS during Run 2 consisted of a L1 hardware system
(accepting 100 kHz) and an HLT software system (accepting ~1 kHz of physics
triggers).

Along with other upgrades to the L1 system, it also featured a L1Topo processor
(allowing topological algorithms such as selection on angular distance between
two L1 jets) and an upgraded CTP (providing e.g. more room for topo- and
analysis-specific L1 items).

ATLAS Trigger Operation
HLT Output Bandwidth
pp Data June 2017, Vs = 13 TeV
© Main Physics (full EB)
@ B-physics and LS (full EB)
@ Express (full EB)
@ Other Physics (full EB)
@ Trigger Level Analysis (partial EB)
Detector Calibration (partial EB)

ATLAS Trigger Operation
HLT Stream Rates (incl. overlap)
pp Data June 2017, Vs = 13 TeV

® Main Physics (full EB)

@ B-physics and LS (full EB)

@ Express (full EB)

@ Other Physics (full EB)

@ Trigger Level Analysis (partial EB)
Detector Calibration (partial EB)

@ Detector Monitoring (partial EB)

1 MB/event.
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Y
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ApprovedPlotsDAQO

ATLAS trigger menu largely driven by inclusive triggers generically useful to
many analyses and recorded in a “main” stream. Average 1 kHz and 1 MB/event.

Additional flavour physics streams: dedicated triggers, can use delayed/custom
reconstruction, or partial-event readout (e.g. only subdetectors in 1.5X1.5 area
around a track satisfying pre-selection). Non-PE stream averages 200 Hz and

Trigger-Level Analysis stream: stores HLT reconstruction only. Discussed in this
talk. Recorded up to 26 kHz peak rate at an average 5 kB/event.

In 2018, 32 streams total: about half with full event information, half with partial
event building (PEB).
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The usual problem :
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Who to contact for suggestions on The Best Trigger for you: your group’s trigger liaisons, Trigger menu (W. Kalderon and M. Owen)



E. Tolley's talk, March P&P week

Trigger Level Analysis & Partial Event building: why?

My analysis is limited by HLT and | have relatively simple objects/backgrounds
-use TLA, see e.g. Phys. Rev. Lett. 121,081801 (2018)

Nice feature of TLA: helping improve performance of HLT
objects, which benefits everyone in ATLAS!
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Who to contact: your group’s trigger liaisons, Trigger menu (W. Kalderon and M. Owen), code writers (TJ Khoo, R. Bielski, CD, A.Boveia), the TLA team


https://indico.cern.ch/event/894635/contributions/3792409/attachments/2010549/3359177/TLA_PnPweek_27Mar20.pdf

E. Tolley's talk, March P&P week

Trigger Level Analysis & Partial Event building: why?

My analysis is limited by HLT and | have relatively simple objects/backgrounds
-use TLA, see e.g. Phys. Rev. Lett. 121,081801 (2018)

My analysis is limited by HLT and | have more

complicated objects (but not too many)

- use TLA + Partial Event Building to look into region of
interests and reconstruct complex objects later, while
keeping a small enough event size

Adapted from H. Russell's poster



https://indico.cern.ch/event/894635/contributions/3792409/attachments/2010549/3359177/TLA_PnPweek_27Mar20.pdf

E. Tolley's talk, March P&P week

Trigger Level Analysis & Partial Event building: why?

My analysis is limited by HLT and | have relatively simple objects/backgrounds
-use TLA, see e.g. Phys. Rev. Lett. 121,081801 (2018)

My analysis is limited by HLT and | have more complicated objects (but not too many)
- use TLA + Partial Event Building to look into region of interests

| have a TLA going and | am sure I'll discover something
-use TLA + PEB to keep more raw data behind the objects

My analysis is limited by HLT but | need the full event

(and | don’'t mind when | get it)
- use delayed stream (see earlier slides)



https://indico.cern.ch/event/894635/contributions/3792409/attachments/2010549/3359177/TLA_PnPweek_27Mar20.pdf

Simplified diagram from 2015 talk:
Real-time data analysis in ATLAS, CMS
and LHCb

- When do you need the data reconstructed?

Delayed data analysis

A Note: Apart from small samples for

Time to testing and calibration, Run-2 TLA CMS ATLAS
effectively has been treated as a .
access delayed stream and processed in Data Parking | | Delayed Stream
data — bulk at the end of data taking . .
" Standard data analysis HEP Software Foundation + Institut Pascal
for ATLAS/OMS/LHCE organized a cross-experiment discussion on PEB -
i Partial Event Buildin ory details are here.
analysis 8 Fully reconstructed data sory
Monitoring
ATLAS
TAg Data Analysis
— ATLAS/CMS/LHCb
Real-time analysis Express stream
LHCb ATLAS/CMS
Turbo Stream || Data Scouting

>
_ Data complexity

Who to contact: Trigger menu, W. Kalderon and M. Owen, TLA team for experience


https://indico.cern.ch/event/395374/contributions/939905/attachments/1185975/1719379/20151113_RealTimeAnalysisLHC-4.pdf
https://indico.cern.ch/event/395374/contributions/939905/attachments/1185975/1719379/20151113_RealTimeAnalysisLHC-4.pdf
https://docs.google.com/presentation/d/1pAQWRg00tBQ-Im9ZYEvC5-meZLTMfz_1MKp1dlbLPVE/edit?usp=sharing

Overcoming limitations

L1 to HLT limited by:

- detector readout (prior to L1) ——) Thisis a hard limit: need to have a suitable L1 for any
alternative workflow

- network bandwidth
HLT to offline storage rate limited by:
- network bandwidth Write less than the whole event:

£ . — - Trigger objects only (Trigger Level Analysis, or TLA)
- storage for written events - Customize raw datain regions of interest (PEB)
- CPUin HLT farm needed torun | Keep raw information and reconstruct later at Tier-O
reconstruction of trigger objects (normally done for full events, a reason for doing PEB)

-CPUat Tier-0 neeC.IEd torun > Save the RAW data and delay the reconstruction:
prompt reconstruction of events - Delayed stream (can also do with PEB

Note: coordination needed to avoid “breaking the
bank” (nothing is completely resource-free!)

Who to contact: Trigger menu, W. Kalderon and M. Owen, TLA team for experience



