

Hadronic HH Limitations and Potential Improvements

John Alison

Carnegie Mellon University

PITT PACC Workshop: LHC physics for Run 3

Outline

Why *HH* ? Why hadronic *HH* ?

Experimental Challenges:

- Trigger
- Background Modeling

Themes from organizers:

- How do we design future analyses to fully utilize a doubled dataset, beyond statistics ?
- What lessons have been learned from Run 2 analyses ? How do we apply them to Run 3?
- What new SM measurements would you like to see ?
- How would you like to see measurements improved beyond the current state-of-the-art?
- How might we benefit the most by using new triggers or trigger techniques?
- How can novel ideas from ML be utilized in the analysis of data?

Emphasis on answering these.

Focus on what could be improved / Differences in approach.

Why HH?

HH production interesting because sensitive to λ Measuring λ important because it probes the shape of the Higgs potential Shape of potential gives relationship between λ and m_H and v

Just seeing HH is hard ... *real goal is to constrain* λ

Why HH?

HH production interesting because sensitive to λ Measuring λ important because it probes the shape of the Higgs potential Shape of potential gives relationship between λ and m_H and v

https://arxiv.org/abs/1910.00012

Why HH?

HH production interesting because sensitive to λ Measuring λ important because it probes the shape of the Higgs potential Shape of potential gives relationship between λ and m_H and v

https://arxiv.org/abs/1910.00012

Major experimental challenge in 4b and $bb\tau_h\tau_h$

Trigger	L1 Seed	L1 Rate	HLT Rate
4j35 (2 b-tags) (ATLAS)	4×J15	~3.5 kHz	~60 Hz
4j45 (3 b-tags) (CMS)	4xJ50 HT300	~2.5 kHz ~9 kHz	~30 Hz

(Rates scaled to $\mathcal{L} = 1.2 \times 10^{34} cm^{-2} s^{-1}$)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetTriggerPublicResults

* quoted at $\varepsilon \sim 50\%$

Trigger	L1 Seed	L1 Rate	HLT Rate
4j35 (2 b-tags) (ATLAS)	4×J40*	~3.2 kHz	~13 Hz
HT300 + 4j + 3b (75,60,45,40) (CMS)	HT280 + J70/55/40/35 4×J60	~10 kHz ~1 kHz	~10 Hz

* quoted at $\varepsilon \sim 50\%$

* quoted at $\varepsilon \sim 50\%$

Trigger	L1 Seed	L1 Rate	HLT Rate
4j35 (2 b-tags) (ATLAS)	4×J40*	~3.2 kHz	~13 Hz
HT300 + 4j + 3b (75,60,45,40) (CMS)	HT260* + J70/55/40/35 4×J60	~10 kHz ~1 kHz	~10 Hz

* quoted at $\varepsilon \sim 50\%$

* quoted at $\varepsilon \sim 50\%$

CPU for tracking was a major constraint

HT: (75) One of the primary limitations in the trigger is HLT CPU usage *b-jet triggers are among largest user of HLT CPU* Several major campaigns to reduce b-jet trigger CPU usage: *Implement 2-step tracking / PV finding: trk PT 1 GeV → 5 GeV** quoted at $\varepsilon \sim 50\%$

Efficiency of relative to 4-bjets 40 GeV

Efficiency of relative to 4-bjets 40 GeV

Trigger	L1 Seed	L1 Rate	HLT Rate
$2\tau + j$ 35/25 + 80 (ATLAS)	τ20(i) τ12(i) +J25	~6 kHz	~35 Hz
2τ 35 (CMS)	2×τ30(i)	~12 kHz	~40 Hz

Trigger	L1 Seed	L1 Rate	HLT Rate
$2\tau + j$ 35/25 + 80 (ATLAS)	τ35(i) τ20(i) +J50*	~6 kHz	~35 Hz
2τ 35 (CMS)	2×τ30(i)	~12 kHz	~40 Hz

* quoted at $\varepsilon \sim 50\%$

Trigger	L1 Seed	L1 Rate	HLT Rate
$2\tau + j$ 35/25 + 80 (ATLAS)	τ35(i) τ20(i) +J50*	~5 kHz	~60 Hz
2τ 35 (CMS)	2×τ32(i)	~10 kHz	~50 Hz

* quoted at $\varepsilon \sim 50\%$

Trigger	L1 Seed	L1 Rate	HLT Rate
$2\tau + j$ 35/25 + 80 (ATLAS)	τ35(i) τ20(i) +J50*	~6 kHz	~90 Hz
2τ 35 (CMS)	2×τ32(i)	~17 kHz	~60 Hz

* quoted at $\varepsilon \sim 50\%$

Neither experiment discusses the impact of the trigger on the Run 2 analyses

Neither experiment discusses the impact of the trigger on the Run 2 analyses

Neither experiment discusses the impact of the trigger on the Run 2 analyses

bbττ Trigger Acceptance

Neither experiment discusses the impact of the trigger on the Run 2 analyses

Trigger Upgrades

Upgrades critical to hadronic HH In many cases driving specs Keys: L1 jet thresholds / CPU b-tagging <u>Run-3</u>: Better L1 jets / GPU tracking mitigate CPU cost <u>Phase-2</u>: Tracking in trigger (40 MHz @ CMS)

http://cds.cern.ch/record/2714892

Trigger Upgrades

Upgrades critical to hadronic HH In many cases driving specs Keys: L1 jet thresholds / CPU b-tagging <u>Run-3</u>: Better L1 jets / GPU tracking mitigate CPU cost

Backgrounds

The other big challenge in 4b and $bb\tau\tau$

Will focus on 4b. Same comments apply (to a lesser extent) to bbττ.

4b Background

Background Model

Background Model

Use 2b events to model 4b background Correct $2b \rightarrow 4b$ kinematics with ABCD

Reasonable check of modeling in the variable used to set limits.

https://arxiv.org/abs/1804.06174

Validation becomes much harder when analyses become more sophisticated

https://arxiv.org/abs/1810.11854

Validation becomes much harder when analyses become more sophisticated

Validation becomes much harder when analyses become more sophisticated

Validation becomes much harder when analyses become more sophisticated

https://arxiv.org/pdf/1810.11854.pdf

50 Backgr

SM Standard Candles

ZZ and ZH obvious first steps in path to HH

$$\frac{4b}{\sigma(HH \to 4b)} \sim \frac{15 \cdot 10^3 \text{ fb } \times 0.15^2}{33 \text{ fb} \times 0.58^2} \sim 30$$
$$\frac{\sigma(ZH \to 4b)}{\sigma(HH \to 4b)} \sim \frac{15 \cdot 10^3 \text{ fb } \times 0.15 \times 0.58}{33 \text{ fb} \times 0.58^2} \sim 7$$

bbττ:

$$\frac{\sigma(ZZ \to bb\tau\tau)}{\sigma(HH \to bb\tau\tau)} \sim 55 \qquad \quad \frac{\sigma(ZH \to bb\tau\tau)}{\sigma(HH \to bb\tau\tau)} \sim 9$$

Good stress test of trigger / background techniques Known compare with known (measured) signals

Not all *HH* events are equal:

Low m_{HH} worth more, harder to trigger

Hadronic analyses will be key to constraining $\boldsymbol{\lambda}$

Trigger:

- Need to live on L1 turn-ons / Avoid HT if possible
- HLT CPU often biggest limitation

Background modeling:

- Need to validate background in region most relevant
- Exacerbated by sophisticated ML classifier
- Need new approaches to explicitly check underlying assumptions

Measuring ZZ/ZH in 4b and bbtt serve as ultimate dry-run for HH

References

HH Whitepaper: https://arxiv.org/abs/1910.00012

<u>ATLAS</u>

4b: https://arxiv.org/abs/1804.06174 bbtt: https://arxiv.org/abs/1808.00336 HH Combination: https://arxiv.org/abs/1906.02025 Phase 2 HLT TDR: https://cds.cern.ch/record/2285584 HH Projections: https://cds.cern.ch/record/2652727 Jet Trigger: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetTriggerPublicResults_

<u>CMS</u>

- 4b: <u>https://arxiv.org/abs/1810.11854</u> bbττ: <u>https://arxiv.org/abs/1707.00350</u> Phase 2 L1 TDR: <u>http://cds.cern.ch/record/2714892</u> HH combination: <u>https://arxiv.org/abs/1811.09689</u>
- L1 Run 2: https://arxiv.org/abs/2006.10165

Backup

EXPERIMENT

Per-jet efficiency for jets with nearby jets

bbττ Triggers 2016 Trigger Efficiency ATLAS Simulation Preliminar Trigger L1 Seed 0.8 $\varepsilon \sim 50\%$ at $\sim 20 \text{ GeV}$ 0.6 $\tau 20(i) \tau 12(i)$ $2\tau + j$ 1-prong tau +J2535/25 + 800.4 Level 1 (ATLAS) HLT tau25 medium 0.2 HLT tau25 medium HLT tau25 medium $2 \times \tau 30(i)$ $2\tau 35$ 50 100 150 (CMS)

(Rates scaled to $\mathcal{L} = 1.2 \times 10^{34} cm^{-2} s^{-1}$)

 $\Delta R(\tau, \tau)$

bbtt Triggers 2016

(Rates scaled to $\mathcal{L} = 1.2 \times 10^{34} cm^{-2} s^{-1}$)

hh Production in SM

Higgs potential:

$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$$

Expanding about minimum: $V(\phi) \rightarrow V(v+h)$

- Shape of potential gives relationship between λ_{hhh} and m_h , v
- Measuring λ_{hhh} important because it probes the shape of the Higgs potential
- *hh* production interesting because it measures λ_{hhh}

246 GeV

 $\frac{\mu}{\sqrt{2}} \equiv v$