Carnegie

 Mellon
Hadronic HH
 Limitations and Potential Improvements

John Alison

Carnegie Mellon University

PITT PACC Workshop: LHC physics for Run 3

Outline

Why HH?

Why hadronic HH ?
Experimental Challenges:

- Trigger
- Background Modeling

Themes from organizers:

- How do we design future analyses to fully utilize a doubled dataset, beyond statistics?
- What lessons have been learned from Run 2 analyses? How do we apply them to Run 3?
- What new SM measurements would you like to see ?
- How would you like to see measurements improved beyond the current state-of-the-art?
- How might we benefit the most by using new triggers or trigger techniques?
- How can novel ideas from ML be utilized in the analysis of data?

Emphasis on answering these.
Focus on what could be improved / Differences in approach.

Why HH?

$H H$ production interesting because sensitive to λ
Measuring λ important because it probes the shape of the Higgs potential Shape of potential gives relationship between λ and mH and v

Just seeing HH is hard ... real goal is to constrain λ

Why HH?

$H H$ production interesting because sensitive to λ
Measuring λ important because it probes the shape of the Higgs potential Shape of potential gives relationship between λ and mH and v

HH Small in Standard Model.

https://arxiv.org/abs/1910.00012

Why HH?

$H H$ production interesting because sensitive to λ
Measuring λ important because it probes the shape of the Higgs potential Shape of potential gives relationship between λ and mH and v

Why Hadronic $H H$?

Why Hadronic HH?

Why Hadronic HH?

Why Hadronic HH ?

Why Hadronic HH?

Why Hadronic HH?

Why Hadronic HH?

Why Hadronic HH?

Phenomenologically rich set of final https://arxiv.ory/abs/ 19066.02025

Larger Br-h				ATLAS $\sqrt{\mathrm{s}}=13 \mathrm{TeV}, 27.5-36.1 \mathrm{fb}^{-1}$ $\sigma_{\mathrm{ggF}}^{\mathrm{SM}}(\mathrm{pp} \rightarrow \mathrm{HH})=33.5 \mathrm{fb}$									
$\begin{array} { c } { \text { Larger Br-h } } \\ { \text { decay } } \end{array} \mathrm { bb } \longdiv { 3 3 \% }$	- ,												
W/W 25\%				1			5 515						
https:/arxiv.org/abs/1808.00336													
Observed - 1σ			Expected $+1 \sigma$										
		49.9 20.5	(28.4	${ }_{39.5}^{96}$			$\begin{array}{lll}20.3 & 26 & 26\end{array}$						
Thad That	40.0	30.6		59	!	\%	120	7					
$\tau_{\text {had }} T_{\text {had }} \sigma / \sigma_{\text {SM }}$	16.4	12.5	17.4	24.2				30 170160					
$\sigma(H H \rightarrow b b \tau \tau)[f b]$	30.9	26.0	30.1	50									
Combination $\sigma / \sigma_{\mathrm{sm}}$	12.7	10.7	14.8			305	5						
L2							$\begin{array}{lll}98 & 10\end{array}$						
$\gamma \gamma$ 3e-3													
bb $\gamma \gamma$ - "solved" / but not enough bbbb - all hadronic bb $\tau \tau-\mathrm{bb} \tau_{\mathrm{h}} \tau_{\mathrm{h}}$ most important channel						10^{-7}							
bb WW gg $\tau \tau$ CC			ZZ	$\gamma \gamma \quad \mathrm{Z} \gamma$	$\mu \mu$	$\begin{aligned} & 10^{-8} \\ & \text { Rarer Br-h decay } \end{aligned}$							

Why Hadronic HH?

Phenomenologically rich set of final $\frac{\text { https://arxiv.org/abs/ } / 906.02025}{}$

Trigger
Major experimental challenge in 4 b and $\mathrm{bb} \tau_{\mathrm{h}} \tau_{\mathrm{h}}$

4b Triggers

ε wrt to signal region

4b Triggers 2016

Trigger	L1 Seed	L1 Rate	HLT Rate
$4 \mathrm{j} 35(\mathbf{2}$ b-tags) (ATLAS)	$4 \times \mathrm{J} 15$	$\sim 3.5 \mathrm{kHz}$	$\sim 60 \mathrm{~Hz}$
$4 \mathrm{j} 45(3 \mathrm{~b}$ b-tags) (CMS)	$4 \times \mathrm{x} 50$ $\mathrm{HT300}$	$\sim 2.5 \mathrm{kHz}$ $\sim 9 \mathrm{kHz}$	$\sim 30 \mathrm{~Hz}$

(Rates scaled to $\mathcal{L}=1.2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

4b Triggers 2016

Trigger	On plateau $\sim 65 \mathrm{GeV}$		
	50% at $\sim 40 \mathrm{GeV}$		
	L1 Seed	${ }^{0.6}$ \}	
$\underset{\text { (ATLAS) }}{4 \mathrm{j} 35(2 \mathrm{~b} \text {-tags) }}$	4×J15	$250+\frac{i x}{40}$	
$\begin{gathered} 4 \mathrm{j} 45 \text { (} 3 \mathrm{~b} \text {-tags) } \\ \text { (CMS) } \end{gathered}$	$4 x .50$ HT300	$\underset{\sim 9 \mathrm{kHz}}{\sim} \underset{\sim}{\sim 2.5 \mathrm{kHz}}$	$\sim 30 \mathrm{~Hz}$

(Rates scaled to $\mathcal{L}=1.2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

4b Triggers 2016

4b Triggers 2016

Trigger	L1 Seed	L1 Rate	HLT Rate
4j35 (2 b-tags) (ATLAS)	$4 \times \mathrm{J} 40^{*}$	$\sim 3 \mathrm{kHz}$	$\sim 40 \mathrm{~Hz}$
$4 \mathrm{j} 45(3 \mathrm{~b}-\mathrm{tags})$ (CMS)	$4 \times \mathrm{xJ} 50$ HT300	$\sim 2.5 \mathrm{kHz}$ $\sim 9 \mathrm{kHz}$	$\sim 30 \mathrm{~Hz}$

(Rates scaled to $\mathcal{L}=1.2 \times 10^{34} \mathrm{~cm}^{-2} s^{-1}$)

4b Triggers 2017

Trigger	L1 Seed	L1 Rate	HLT Rate
4j35 (2 b-tags) (ATLAS)	$4 \times \mathrm{J} 40^{*}$	$\sim 3.2 \mathrm{kHz}$	$\sim 13 \mathrm{~Hz}$
HT300 $+4 \mathrm{j}+3 \mathrm{~b}$ $(75,60,45,40)$ (CMS)	$\mathrm{HT} 280+$ $\mathrm{J} 70 / 55 / 40 / 35$ $4 \times \mathrm{J} 60$	$\sim 10 \mathrm{kHz}$ $\sim 1 \mathrm{kHz}$	$\sim 10 \mathrm{~Hz}$

(Rates scaled to $\mathcal{L}=1.7 \times 10^{34} \mathrm{~cm}^{-2} s^{-1}$)

4b Triggers 2017

(Rates scaled to $\mathcal{L}=1.7 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

4b Triggers 2017

Trigger	L1 Seed	L1 Rate	HLT Rate
4j35 (2 b-tags) (ATLAS)	$4 \times \mathrm{J} 40^{*}$	$\sim 3.2 \mathrm{kHz}$	$\sim 13 \mathrm{~Hz}$

HT300 $+4 \mathrm{j}+3 \mathrm{~b}$	$\mathrm{HT} 260^{*}+$	$\sim 10 \mathrm{kHz}$	
(75,60,45,40) (CMS)	$\mathrm{J} 70 / 55 / 40 / 35$	$\sim 10 \mathrm{~Hz}$	
$4 \times \mathrm{J} 60$	$\sim 1 \mathrm{kHz}$	~ 10	

(Rates scaled to $\mathcal{L}=1.7 \times 10^{34} \mathrm{~cm}^{-2} s^{-1}$)

4b Triggers 2018

Trigger	L1 Seed	L1 Rate	HLT Rate
4j35 (2 b-tags) (ATLAS)	$4 \times \mathrm{J} 40^{*}$	$\sim 3.2 \mathrm{kHz}$	$\sim 15 \mathrm{~Hz}$

HT330 $+4 \mathrm{j}+3 \mathrm{~b}$ $(75,60,45,40)$ $\mathrm{HT} 300^{*}+$ $($ CMS $)$	J70/55/40/35	$\sim 2.2 \mathrm{kHz}$	$\sim 12 \mathrm{~Hz}$

(Rates scaled to $\mathcal{L}=2.0 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

4b Triggers 2018

Trigger	L1 Seed	L1 Rate	HLT Rate
4j35 (2 b-tags) $($ ATLAS $)$	$4 \times \mathrm{J} 40^{*}$	$\sim 3.2 \mathrm{kHz}$	$\sim 15 \mathrm{~Hz}$

CPU for tracking was a major constraint

One of the primary limitations in the trigger is HLT CPU usage
b-jet triggers are among largest user of HLT CPU
Several major campaigns to reduce b-jet trigger CPU usage:
Implement 2-step tracking / PV finding: trk PT $1 \mathrm{GeV} \rightarrow 5 \mathrm{GeV}$

* quoted at $\varepsilon \sim 50 \%$

4b Trigger Acceptance

4b Trigger Acceptance

4b Trigger Acceptance

4b Trigger Acceptance

bbic Triggers 2016

Trigger	L1 Seed	L1 Rate	HLT Rate
$2 \tau+\mathbf{j}$ $\mathbf{3 5 / 2 5}+80$ (ATLAS)	$\tau 20(\mathrm{i}) \tau 12(\mathrm{i})$ +J 25	$\sim 6 \mathrm{kHz}$	$\sim 35 \mathrm{~Hz}$
$2 \tau 35$ (CMS)	$2 \times \tau 30(\mathrm{i})$	$\sim 12 \mathrm{kHz}$	$\sim 40 \mathrm{~Hz}$

(Rates scaled to $\mathcal{L}=1.2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

bbı兀 Triggers 2016

Trigger	L1 Seed	L1 Rate	HLT Rate
$2 \tau+\mathbf{j}$ $\mathbf{3 5 / 2 5}+80$ (ATLAS)	$\tau 35(\mathrm{i}) \tau 20(\mathrm{i})$ $+\mathrm{J} 50^{*}$	$\sim 6 \mathrm{kHz}$	$\sim 35 \mathrm{~Hz}$
$2 \tau 35$ (CMS)	$2 \times \tau 30(\mathrm{i})$	$\sim 12 \mathrm{kHz}$	$\sim 40 \mathrm{~Hz}$

bb τ Triggers 2017

Trigger	L1 Seed	L1 Rate	HLT Rate
$2 \tau+\mathbf{j}$ $\mathbf{3 5 / 2 5}+\mathbf{8 0}$ (ATLAS)	$\tau 35(\mathrm{i}) \tau 20(\mathrm{i})$ $+\mathrm{J} 50^{*}$	$\sim 5 \mathrm{kHz}$	$\sim 60 \mathrm{~Hz}$
$2 \tau 35$ (CMS)	$2 \times \tau 32(\mathrm{i})$	$\sim 10 \mathrm{kHz}$	$\sim 50 \mathrm{~Hz}$

(Rates scaled to $\mathcal{L}=1.7 \times 10^{34} \mathrm{~cm}^{-2} s^{-1}$)

bb τ Triggers 2018

Trigger	L1 Seed	L1 Rate	HLT Rate
$2 \tau+\mathbf{j}$ $35 / 25+80$ (ATLAS)	$\tau 35(\mathrm{i}) \tau 20(\mathrm{i})$ $+J 50^{*}$	$\sim 6 \mathrm{kHz}$	$\sim 90 \mathrm{~Hz}$
$2 \tau 35$ (CMS)	$2 \times \tau 32(\mathrm{i})$	$\sim 17 \mathrm{kHz}$	$\sim 60 \mathrm{~Hz}$

bbı兀 Trigger Acceptance

Neither experiment discusses the impact of the trigger on the Run 2 analyses

bbı兀 Trigger Acceptance

Neither experiment discusses the impact of the trigger on the Run 2 analyses

bbı兀 Trigger Acceptance

Neither experiment discusses the impact of the trigger on the Run 2 analyses

bb τ Trigger Acceptance

Neither experiment discusses the impact of the trigger on the Run 2 analyses

Take away:

- bb $\tau \tau$ using triggers optimized with $\mathrm{h} \rightarrow \tau \tau$ in mind
- Likely stand to gain (esp. low mнн) w/combined b\& τ)

L1: $2 \tau+2 \mathrm{j}$
HLT loose τ and loose b-tagging

- τ-ID first to lighten CPU cost of btagging

Can already be done in Run-3

Trigger Upgrades

Upgrades critical to hadronic HH In many cases driving specs Keys: L1 jet thresholds / CPU b-tagging
Run-3: Better L1 jets / GPU tracking mitigate CPU cost
Phase-2: Tracking in trigger (40 MHz @ CMS)
http://cds.cern.ch/record/2714892

Trigger Upgrades

Upgrades critical to hadronic HH In many cases driving specs Keys: L1 jet thresholds / CPU b-tagging
Run-3: Better L1 jets / GPU tracking mitigate CPU cost

Backgrounds

The other big challenge in 4 b and $\mathrm{bb} \tau \tau$
Will focus on 4 b .
Same comments apply (to a lesser extent) to bb $\tau \tau$.

4b Background

https://arxiv.org/abs/1804.06174

Background Model

Hemisphere library
filled in $1^{\text {st }}$ pass, queried on $2^{\text {nd }}$

Mixed Event

using replaced hemispheres

Background Model

Use 2 b events to model 4 b background Correct $2 \mathrm{~b} \rightarrow 4 \mathrm{~b}$ kinematics with ABCD

Sideband

Signal

$$
4 b \text { background }=\left(\frac{C}{A}\right) \times B
$$

Background Validation

Control Region

Signal Region

Reasonable check of modeling in the variable used to set limits.

Background Validation

Validation becomes much harder when analyses become more sophisticated

Signal Region

Background Validation

Validation becomes much harder when analyses become more sophisticated

Signal Region

Background Validation

Validation becomes much harder when analyses become more sophisticated

Signal Region

Background Validation

Validation becomes much harder when analyses become more sophisticated

https://arxiv.org/pdf/1810.11854.pdf

Potential Improvements

Sideband Signal

$\left.\left(\frac{C}{A}\right)\right|_{\text {Classifier }} \times\left. B \quad \stackrel{?}{=} \quad\left(\frac{B}{A}\right)\right|_{\text {От }} \times C$,

Potential Improvements

Potential Improvements

Potential Improvements

Sideband

EP-IT Data science seminars
PHYSTAT seminar: Optimal Transport With Applications to Background Modeling
by Larry Wasserman (Carnegie Mellon University)
鱼 Wednesday 28 Oct 2020, 15:00 \rightarrow 16:00 Europe/Zurich - CERN
https://indico.cern.ch/event/968985/
(paper in preparation)

SM Standard Candles

ZZ and ZH obvious first steps in path to HH

4b:

$$
\begin{aligned}
& \frac{\sigma(Z Z \rightarrow 4 b)}{\sigma(H H \rightarrow 4 b)} \sim \frac{15 \cdot 10^{3} \mathrm{fb} \times 0.15^{2}}{33 \mathrm{fb} \times 0.58^{2}} \sim 30 \\
& \frac{\sigma(Z H \rightarrow 4 b)}{\sigma(H H \rightarrow 4 b)} \sim \frac{15 \cdot 10^{3} \mathrm{fb} \times 0.15 \times 0.58}{33 \mathrm{fb} \times 0.58^{2}} \sim 7
\end{aligned}
$$

$b b \tau \tau$:

$$
\frac{\sigma(Z Z \rightarrow b b \tau \tau)}{\sigma(H H \rightarrow b b \tau \tau)} \sim 55 \quad \frac{\sigma(Z H \rightarrow b b \tau \tau)}{\sigma(H H \rightarrow b b \tau \tau)} \sim 9
$$

Good stress test of trigger / background techniques Known compare with known (measured) signals

Conclusions

Not all $H H$ events are equal:
Low mнн worth more, harder to trigger
Hadronic analyses will be key to constraining λ
Trigger:

- Need to live on L1 turn-ons / Avoid HT if possible
- HLT CPU often biggest limitation

Background modeling:

- Need to validate background in region most relevant
- Exacerbated by sophisticated ML classifier
- Need new approaches to explicitly check underlying assumptions

Measuring $Z Z / Z H$ in 4 b and bb $\tau \tau$ serve as ultimate dry-run for $H H$

References

HH Whitepaper: https://arxiv.org/abs/1910.00012

ATLAS

4b: https://arxiv.org/abs/1804.06174
bb $\tau \tau$: https://arxiv.org/abs/1808.00336
HH Combination: https://arxiv.org/abs/1906.02025
Phase 2 HLT TDR: https://cds.cern.ch/record/2285584
HH Projections: https://cds.cern.ch/record/2652727
Jet Trigger: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetTriggerPublicResults
CMS
4b: https://arxiv.org/abs/1810.11854
bb $\tau \tau$: https://arxiv.org/abs/1707.00350
Phase 2 L1 TDR: http://cds.cern.ch/record/2714892
HH combination: https://arxiv.org/abs/1811.09689
L1 Run 2: https://arxiv.org/abs/2006.10165

Carnegie Mellon
University

Backup

Carnegie Mellon University

Per-jet efficiency for jets with nearby jets

Carnegie Mellon
University

bbct Triggers 2016

(Rates scaled to $\mathcal{L}=1.2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

bbct Triggers 2016

(Rates scaled to $\mathcal{L}=1.2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

hh Production in SM

Higgs potential:

$$
V(\phi)=-\mu^{2} \phi^{2}+\lambda \phi^{4}
$$

Expanding about minimum: $\quad V(\phi) \rightarrow V(v+h)$

$$
\frac{\mu}{\sqrt{\lambda}} \equiv v \quad 246 \mathrm{GeV}
$$

$$
V=V_{0}+\lambda v^{2} h^{2}+\lambda v h^{3}+\frac{\lambda}{4} h^{4}
$$

$$
=V_{0}+\frac{1}{2} m_{h}^{2} h^{2}+\underbrace{\frac{m_{h}^{2}}{2 v^{2}}}_{\text {Higgs mass term }} v h^{\lambda_{h h h}^{3}}+\frac{1}{4} \frac{m_{h}^{2}}{2 v^{2}} h^{\lambda_{4 h}}
$$

- Shape of potential gives relationship between $\lambda_{h h h}$ and $\mathrm{m} h, v$

Standard Model:

$$
\lambda_{h h h}=\frac{m_{h}^{2}}{2 v^{2}}
$$

- Measuring $\lambda_{\text {thh }}$ important because it probes the shape of the Higgs potential
- $h h$ production interesting because it measures $\lambda_{h h h}$

