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Jets at the LHC
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• A little bit of science 

• Machine learning and high energy “jets” 

• Applications of ML4Jets 
✦ CNN’s for “pileup” noise 
✦ GANs for simulation 
✦ Weak supervision and learning from data

When quarks or gluons are
produced during a collision…

They “shower”
into more gluons and quarks…

Which hadronize into 
stable (or unstable particles)

This is a jet!

Image credit: B. Nachman 

Need to measure 
not just a single particle,
but hundreds per event

(mostly pions,
2/3 charged, 1/3 neutral)

https://bnachman.web.cern.ch/bnachman/Talks.html
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The Hadronic Challenge
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Measuring jets is a huge challenge: resolution is clearly reduced compared 
to other types of final states!

But the high branching ratio of the Higgs and possible new physics to jets 
still makes jets critical for searches and measurements

And new ideas can have a big impact!
NB: not covering jet substructure (though there’s a lot of ML there!)— see Petr’s talk

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2013-05/
http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-18-016/index.html
https://indico.cern.ch/event/1007936/contributions/4232574/attachments/2222721/3764259/Maksimovic_pittpacc_2021.pdf
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• Three main effects:

1. Pileup (won’t talk much 
about this today)

2. Fluctuations in 
fragmentation/
hadronization/etc. (will 
mention briefly)

3. Fluctuations in individual 
particle showers (focus 
of my talk)

Why is Jet Resolution So Bad?
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and electrons. Electrons create many events in matter by ionisation and bremsstrahlung, and
photons are able to penetrate quite far through material before they lose energy. The second
type, hadronic showers, is caused by hadronic particles (baryons and mesons: protons, neutrons,
pions, kaons, etc) that are made of quarks - and strong nuclear forces are involved into those
interactions. The hadronic showers are characterised by ionisation and interactions between
incident particles and nuclei of the material. Hadronic showers are complex, as many reactions
take place and many di↵erent particles are produced, and it is essential to use sophisticated
modelling packages such as Geant4 [20] to understand hadronic showers.

Figure 2. The di↵erent character of electromagnetic(gamma) and hadronic showers [19].

Some of the interactions of note can be summarised as follows:

(i) High energy gamma photons (⇠ 10 � 50 MeV) readily liberate neutrons via GDR
photonuclear processes [21].

(ii) Inelastic scattering of high energy (100s MeV and GeV) neutrons in shielding produces
secondary hadrons (mostly neutrons).

(iii) Fast neutrons are readily scattered through gaps, light materials, down guide tubes and
pipework. The scattering “reflectivity” of most materials to fast neutrons is between 40
and 60 %.

(iv) The mean free path, and the tenth value (amount of shielding to reduce the fast neutron
flux by a factor of ten) can be quite large at spallation source energies. Typically, 1 metre of
concrete is needed to attenuate a GeV neutron flux by a factor of 10. Where reactors may be
able to shield with a few tens of cm of material, at higher energies these thicknesses can prove
to be insu�cient with dramatic results, since these in turn can be readily reflected (point
iii), generate secondary neutrons 10s–100s of metres from the escape point and potentially
inside other instruments (point ii) after they have escaped.

Point i, and particularly point ii above, generate showers that produce neutrons. The primary
and secondary neutrons can travel large distances, and lose energy in the instrument shielding,
generating more secondaries in the process. Because the count rates can be quite low, and
because the primaries are of such high energy compared to thermal neutron energies, it is not
straightforward to measure the primary radiation intensity with most thermal neutron detectors,
making it di�cult to identify the primary source. Once the neutrons lose enough energy into
the keV – 1 MeV region, the resonances in steel make steel shielding far less e↵ective. Where
the primaries are escaping seems to vary from facility to facility, so it is important to consider
potential accelerator, accelerator-to-target, target, beamline sources. Moreover, the beamline
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• A little bit of science 

• Machine learning and high energy “jets” 

• Applications of ML4Jets 
✦ CNN’s for “pileup” noise 
✦ GANs for simulation 
✦ Weak supervision and learning from data Wigmans



M. Swiatlowski (TRIUMF) April 9, 2021

Differences in Fragmentation
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• A little bit of science 

• Machine learning and high energy “jets” 

• Applications of ML4Jets 
✦ CNN’s for “pileup” noise 
✦ GANs for simulation 
✦ Weak supervision and learning from data

CMS b-jet DNN
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ATLAS GSC Correction

Individual particle showers fluctuate, but
so do the jets themselves:  the number

of hadrons can vary, the types of hadrons, 
and so on…

Lots of techniques, both with and without
machine learning, can correct for some

of these fluctuations and improve resolution

https://arxiv.org/pdf/1912.06046.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2018-05/
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Calorimetry at the LHC
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However, different
particles interact with 

the calorimeter differently: 
 decay to , while 

are stable and interact directly
π0 γγ π±

ATLAS’s and CMS’s 
calorimeters built to 

measure particles within jets: 
record energy and location 
of interactions/depositions
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Calorimeters and Showers
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Our calorimeters are calibrated 
to the EM scale: EM showers 

(from ) are measured ‘correctly’e, γ, π0

Hadrons can also interact with 
nuclei: no way to measure this 

energy in ATLAS/CMS!

Every shower is unique: huge
resolution penalty from variations

Resolution is good: 
all showers are ‘similar’
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Hadronic Reconstruction, Today
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One way to improve: use inner-detector tracks 
to measure hadrons whenever possible: 

significantly improved resolution in many cases!
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Calorimeter
Tracker

https://arxiv.org/abs/1706.04965
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2015-09/
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Hadronic Reconstruction, Tomorrow
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Di Bello et al

Kieseler 

Pata et al 

CMS HGCal 

ML has improved jet calibration already…

Can we also 
improve jet 
inputs with 

ML?

https://arxiv.org/pdf/2003.08863.pdf
https://arxiv.org/pdf/2002.03605.pdf
https://arxiv.org/pdf/2101.08578.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/12/01/C01042/pdf
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Calorimeter-Only 
Pion Reconstruction
With Deep Learning
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ATLAS-PHYS-PUB-2020-018

Apologies for focusing on a single, biased example!

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-018/
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Calorimeter-Only Calibrations
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1. Classify topo-clusters as “EM-
like” or “Hadronic-like”

2. Apply a calibration 
appropriate for EM or 

Hadronic pions

Traditionally, ATLAS has used the “Local Cell Weighting” 
technique for calorimeter-only jet reconstruction

Features used are quite simple: 
depth and density. 

Can we do more with the high 
granularity calorimeter 

information?

D
ep

th
:

Density:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2014-07/
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Average Pions
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Here, compare and  in the first layer of the calorimeter:
use simulated samples of pure ’s

π0 π±

π
See expected differences:  are ‘broader’π±

Treat energy in each ‘cell’ of topocluster as pixel intensity
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Calorimeter Layers
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Different calorimeter layers have different granularity

Here, show  in first three calorimeter layersπ+

Three additional layers also available

Can consider these as ‘RGB channels’ in NNs
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Differences Between Pions
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By just subtracting  from  images, can already visualize
differences between EM and hadronic showers

π+ π0

Can deep learning classifiers use this information?
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Classification

15
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Architectures
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Three general classes
of NN architecture studied 

DNN: Large, deep networks
with cells as direct inputs

CNN: use convolutions to 
extract useful features from 

different portions of the image

DenseNet: 
Industry-designed, 
sophisticated CNN 
with information 

propagation
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Classification ROC
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Classifier Correlation:π0
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Here, calculate the correlation coefficient 
between each pixel and the classifier

Can visualize (very roughly) what the CNN is learning

Can see the physics we expected from the images!
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Energy Regressions
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Understanding Calibrations
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narrow distributions
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Correcting π+
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At ‘EM’ scale, can see
energy reconstruction issues for

hadronic particles, like π+

Energy is missed due to 
non-measured nuclear interactions

Feature-based method
corrects for this: see 

‘correct’ energy scale for
wide range of true energy, but

over-compensation at low energy
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Regression Architectures
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Comparing Results
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Conclusions
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Conclusions
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Machine learning has already
had a huge impact on jet 

calibrations and jet tagging

The next frontier is low-level
inputs to jets: can we use our 

exquisite detector granularity
to help jets catch up to other

final states?

Better resolution can 
enable better physics at the LHC

Particularly exciting given upgrades
(Phase 1 and Phase 2) for both exp.!

Can this be a big upgrade for Run 3?
When can this go into the trigger?

depth segmentation 
• SiPM readout allows increased number of channels which can be 

exploited to increase depth segmentation in HB/HE 
 
 
 
 
 
 
 
 
 

• more robust against radiation damage to inner scintillator layers 
• suppress effects of soft pileup particles which are absorbed in 

inner layers 
• use inner layer to trigger on MIPs for calibration of calorimeter 

3/20/2014 Ulrich Heintz - ACES 2014 11 

CMS Phase 1 HCal Upgrade

https://indico.cern.ch/event/287628/contributions/1640950/attachments/535370/738140/Heintz_ACES2014.pdf
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Thank you!
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• Also show the CNN (best architecture) performance in bins of energy

• And compare to LC in bins of energy

• Results are encouraging: good performance over all energies!

• Factor of 100x improvement for 10-50 GeV π0 rejection!

Binned Performance
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• So far, evaluated only in pure samples

• Can also mix charged and neutral pions in 2:1 ratio to mimic jets

• Apply classifier at ~95% π+ efficiency, and then apply chosen regression

• Good performance! Better median and resolution than defaults

Combining in a Mixed Sample
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Comparing Results
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Scale goal: get close to 1

DNN outperforms
default, and ‘feature-based’

correction!

Resolution goal: get close to 0

DNN again outperforms
other methods
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