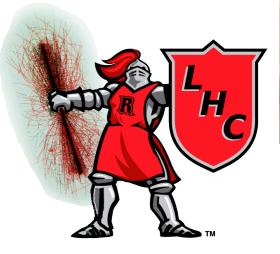
New Paradigms for New Physics Searches with Machine Learning

David Shih

April 9, 2021

Pitt PACC Workshop LHC Physics for Run 3



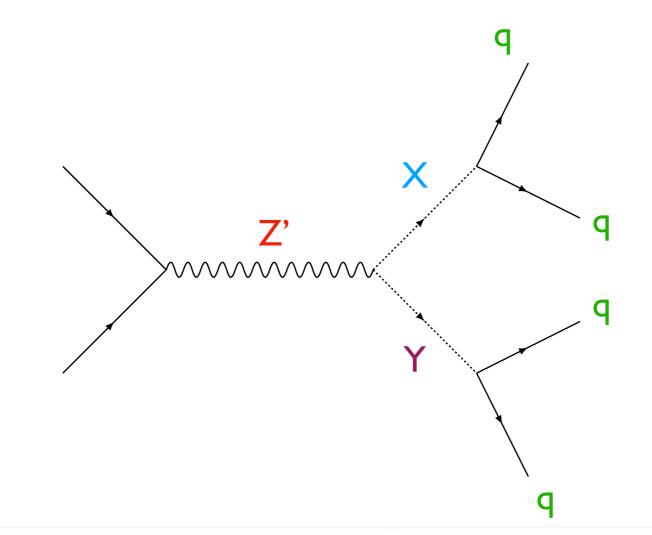
Where is the new physics??

Despite thousands of searches for new physics at the LHC, nothing but limits and null results so far.

What if new physics is hiding in the data but we haven't looked in the right places yet?

A Benchmark Example

LHC Olympics 2020 R&D Dataset https://doi.org/10.5281/zenodo.2629072



No explicit search at the LHC for this scenario!

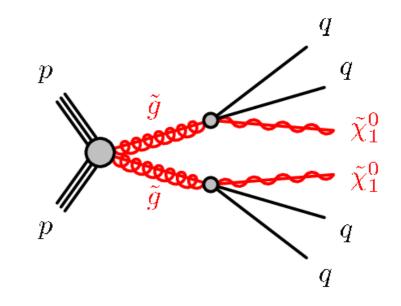
Could be hiding in the dijet resonance search at >5sigma significance!!

The most common approach Model specific searches

Most NP searches at the LHC are heavily optimized with specific signals in mind (SUSY, extra dimensions, ...)

ATLAS jets+MET 2010.14293

	BDT-GGd1	BDT-GGd2	BDT-GGd3	BDT-GGd4			
Nj	≥ 4						
$\Delta \phi(j_{1,2,(3)}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}$	> 0.4						
$\Delta \phi(j_{i>3}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}$	> 0.4						
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j})$	> 0.2						
$m_{\rm eff}$ [GeV]	> 1	400	> 800				
BDT score	> 0.97	> 0.94	> 0.94	> 0.87			
$\Delta m(\tilde{g}, \tilde{\chi}_1^0)$ [GeV]	1600–1900	1000-1400	600–1000	200–600			



Kinematic cuts (or BDTs) optimized using simulations of signal AND background.

The most common approach Model specific searches

Most NP searches at the LHC are heavily optimized with spe signals in mind (SUSY, extra dimensions, ...)

ATLAS jets+MET 2010.14293

signals i	n mind	(SUSY, e	extra dii	mensior	ns,)	g g g g g g	ype
ATLAS jets+MET	2010.1429	3			ic are	0	q
	BDT-GGd1	BDT-GGd2	BDT-GGd ²		HCar		q
Nj		2	4	the '		ġ	$\sim \tilde{v}_{1}^{0}$
$\Delta \phi(j_{1,2,(3)}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}$			~ at			Opposite	$\sim \chi_1$
$\Delta \phi(j_{i>3}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}$		rch	les			Ĩ	\sim $\tilde{\chi}_1^0$
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j})$	50	;ear			p''		\sum_{q}
m _{eff} [GeV]			> 8	300	-		
BDT sc		> 0.94	> 0.94	> 0.87			q
$\Delta m(\tilde{g}, \tilde{X})$	JUU-1900	1000–1400	600–1000	200–600			

Kinematic cuts (or BDTs) optimized using simulations of signal AND background.



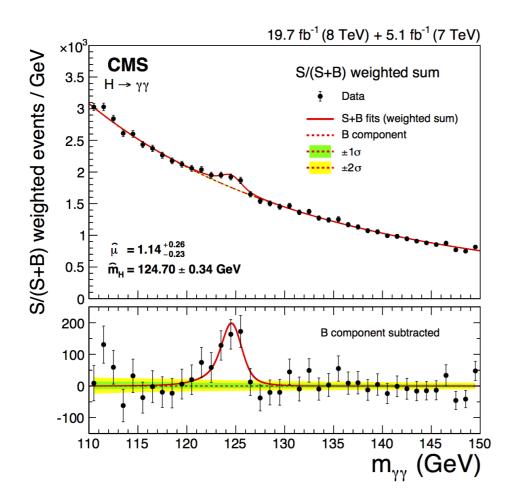
Of course, we should continue to perform these searches, because NP could always be right around the corner...

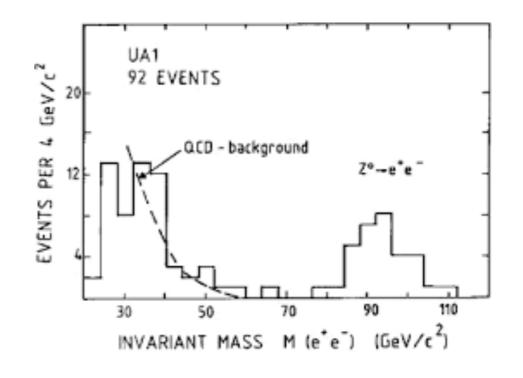
But we should also recognize that perhaps new physics is on a different street, or in a different building altogether...

Existing model-independent approaches *"the bump hunt"*

Idea: assume signal is localized in some feature (usually invariant mass) while background is smooth.

Interpolate from **sidebands** into **signal region**, search for an excess.





Existing model-independent approaches "the bump hunt"

Idea: assume signal is localized in some feature (usually invariant mass) while background is smooth.

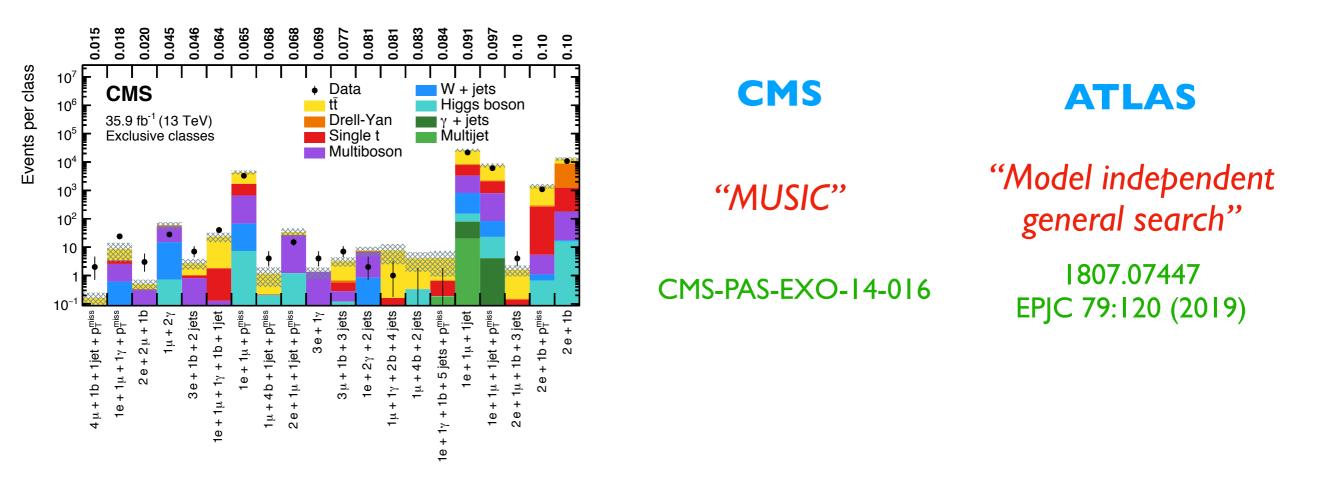
excess.

Interpolate from **sidebands** into **signal** re-

Classic method, used in many discoveries. ×10³ S/(S+B) weighted events / GeV CMS 3.5 $H \rightarrow \gamma\gamma$ 3 2.5 1.5 PER 1H EVENTS 0.5 24.70 ± 0.34 GeV 0 200 B component subtracted 100 70 90 110 30 50 0 INVARIANT MASS M (e'e') (GeV/c²) -100 110 115 120 125 130 135 140 145 150 m_{yy} (GeV)

Existing model-independent searches "the general search"

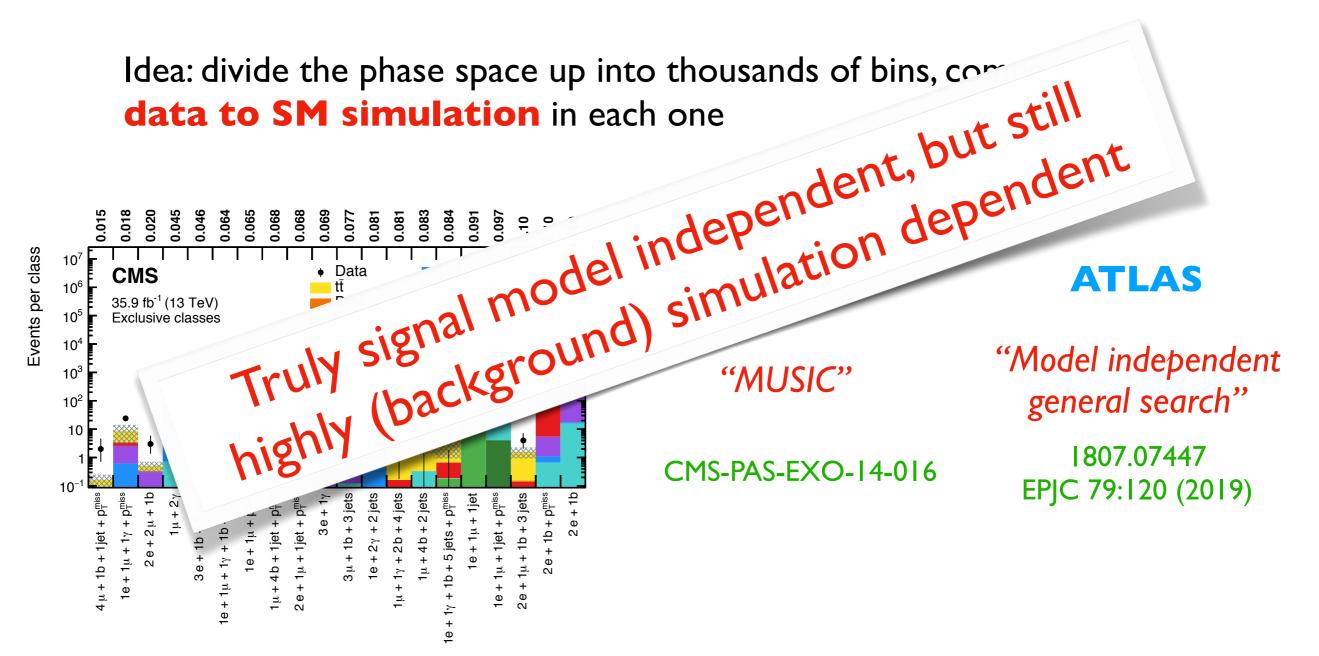
Idea: divide the phase space up into thousands of bins, compare data to SM simulation in each one



See also proposals by D'Agnolo, Wulzer et al (1806.02350, 1912.12155): train DNN on full phase space to distinguish data from background

Existing model-independent searches "the general search"

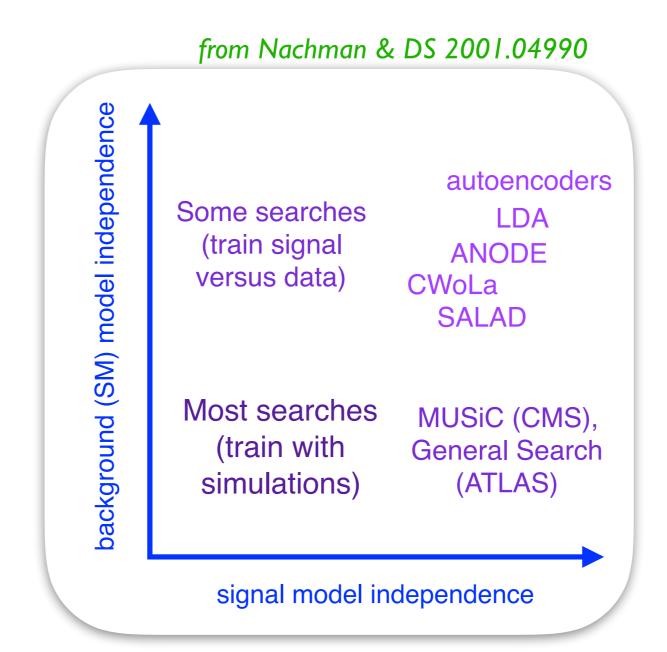




See also proposals by D'Agnolo, Wulzer et al (1806.02350, 1912.12155): train DNN on full phase space to distinguish data from background

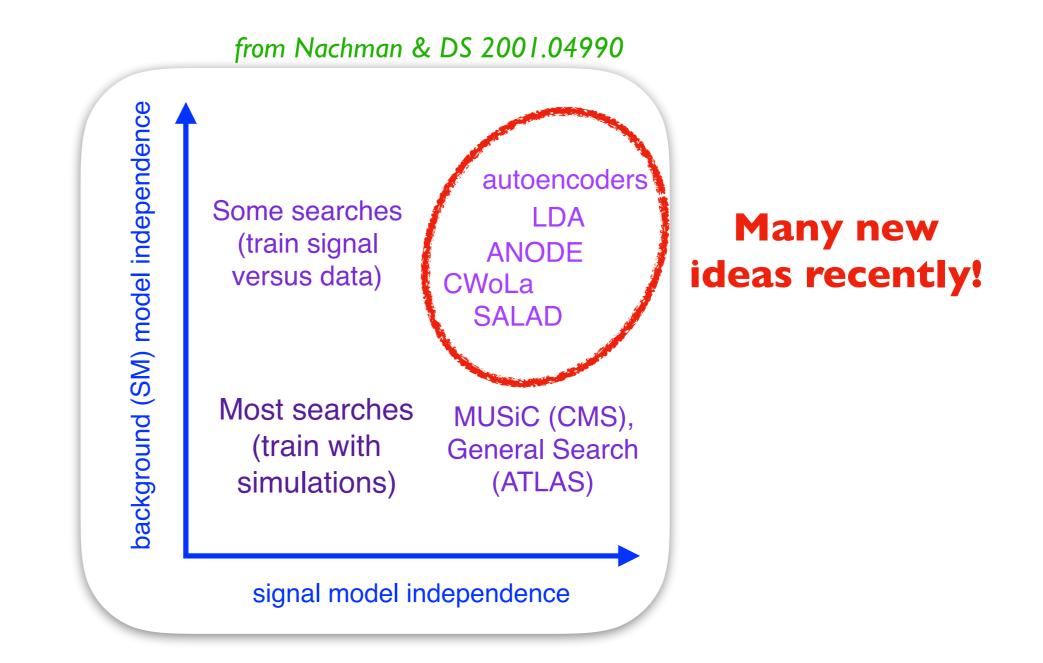
New paradigms for model-agnostic searches

Can advances in machine learning open up new avenues for model-independent searches?



New paradigms for model-agnostic searches

Can advances in machine learning open up new avenues for model-independent searches?



Many new approaches inspired by the LHC Olympics 2020 Data Challenge

1

2

3

4

The LHC Olympics 2020

A Community Challenge for Anomaly Detection in High Energy Physics

- ⁵ Gregor Kasieczka (ed),¹ Benjamin Nachman (ed),^{2,3} David Shih (ed),⁴ Oz Amram,⁵
- ⁶ Anders Andreassen,⁶ Kees Benkendorfer,^{2,7} Blaz Bortolato,⁸ Gustaaf Brooijmans,⁹
- ⁷ Florencia Canelli,¹⁰ Jack H. Collins,¹¹ Biwei Dai,¹² Felipe F. De Freitas,¹³ Barry M.
- ⁸ Dillon,^{8,14} Ioan-Mihail Dinu,⁵ Zhongtian Dong,¹⁵ Julien Donini,¹⁶ Javier Duarte,¹⁷ D.
- ⁹ A. Faroughy¹⁰ Julia Gonski,⁹ Philip Harris,¹⁸ Alan Kahn,⁹ Jernej F. Kamenik,^{8,19}
- ¹⁰ Charanjit K. Khosa,^{20,30} Patrick Komiske,²¹ Luc Le Pottier,^{2,22} Pablo
- ¹¹ Martín-Ramiro,^{2,23} Andrej Matevc,^{8,19} Eric Metodiev,²¹ Vinicius Mikuni,¹⁰ Inês
- ¹² Ochoa,²⁴ Sang Eon Park,¹⁸ Maurizio Pierini,²⁵ Dylan Rankin,¹⁸ Veronica Sanz,^{20,26}
- ¹³ Nilai Sarda,²⁷ Uroš Seljak,^{2,3,12} Aleks Smolkovic,⁸ George Stein,^{2,12} Cristina Mantilla
- ¹⁴ Suarez,⁵ Manuel Szewc,²⁸ Jesse Thaler,²¹ Steven Tsan,¹⁷ Silviu-Marian Udrescu,¹⁸
- $_{15}$ Louis Vaslin, 16 Jean-Roch Vlimant, 29 Daniel Williams, 9 Mikaeel Yunus 18

arxiv: 2101.08320

Many new approaches inspired by the LHC Olympics 2020 Data Challenge

In	divi	dual Approaches	9	
3	Uns	supervised	11	
	3.1	Anomalous Jet Identification via Variational Recurrent Neural Network	11	
	3.2	Anomaly Detection with Density Estimation	16	
	3.3	BuHuLaSpa: Bump Hunting in Latent Space	19	
	3.4	GAN-AE and BumpHunter	24	
	3.5	Gaussianizing Iterative Slicing (GIS): Unsupervised In-distribution Anomaly		
		Detection through Conditional Density Estimation	29	
	3.6	Latent Dirichlet Allocation	33	
	3.7	Particle Graph Autoencoders	38	
	3.8	Regularized Likelihoods	42	
	3.9	UCluster: Unsupervised Clustering	46	
4	Weakly Supervised			
	4.1	CWoLa Hunting	51	
	4.2	CWoLa and Autoencoders: Comparing Weak- and Unsupervised methods		
		for Resonant Anomaly Detection	55	
	4.3	Tag N' Train	60	
	4.4	Simulation Assisted Likelihood-free Anomaly Detection	63	
	4.5	Simulation-Assisted Decorrelation for Resonant Anomaly Detection	68	
5	(Se	mi)-Supervised	71	
	5.1	Deep Ensemble Anomaly Detection	71	
	5.2	Factorized Topic Modeling	77	
	5.3	QUAK: Quasi-Anomalous Knowledge for Anomaly Detection	81	
	5.4	Simple Supervised learning with LSTM layers	85	
6	\mathbf{Dis}	cussion	88	
	6.1	Overall Results	88	
	6.2	Overall Lessons Learned	89	

LHC Olympics 2020: Black Boxes

https://doi.org/10.5281/zenodo.3547721

In 2019, Gregor Kasieczka, Ben Nachman and I initiated the LHC Olympics 2020 Challenge.

It consisted of three "black boxes" of simulated data (bg dominated!):

- I million events each
- 4-vectors of every reconstructed particle (all hadronic) in the event
- Particle ID, charge, etc not included
- Single R=1 jet trigger pT>1.2 TeV

The goal of the challenge was for participants to analyze each box and

- I. Decide whether or not it contains new physics
- 2. Characterize the new physics, if it's there

LHC Olympics 2020: Black Boxes

https://doi.org/10.5281/zenodo.3547721

In 2019, Gregor Kasieczka, Ben Nachman and I initiated the LHC Olympics 2020 Challenge.

It consisted of three "black boxes" of simulated data // I million events each 4-vectors of 4-vectors of Stay tuned for Ben's talk to see what was in the boxes Stay tuned for Ben's talk to see what was interval Stay tuned for Ben's talk to see what was interval Stay tuned for Ben's talk to see what was interval Stay tuned for Ben's talk to see of the challenge and the outcome of the challenge and the Job Stay tuned for Ben's talk to see of the challenge and the outcome of the challenge and the outcome of the challenge and the outcome of the challenge

The goal of the challenge was for participants to analyze each box and

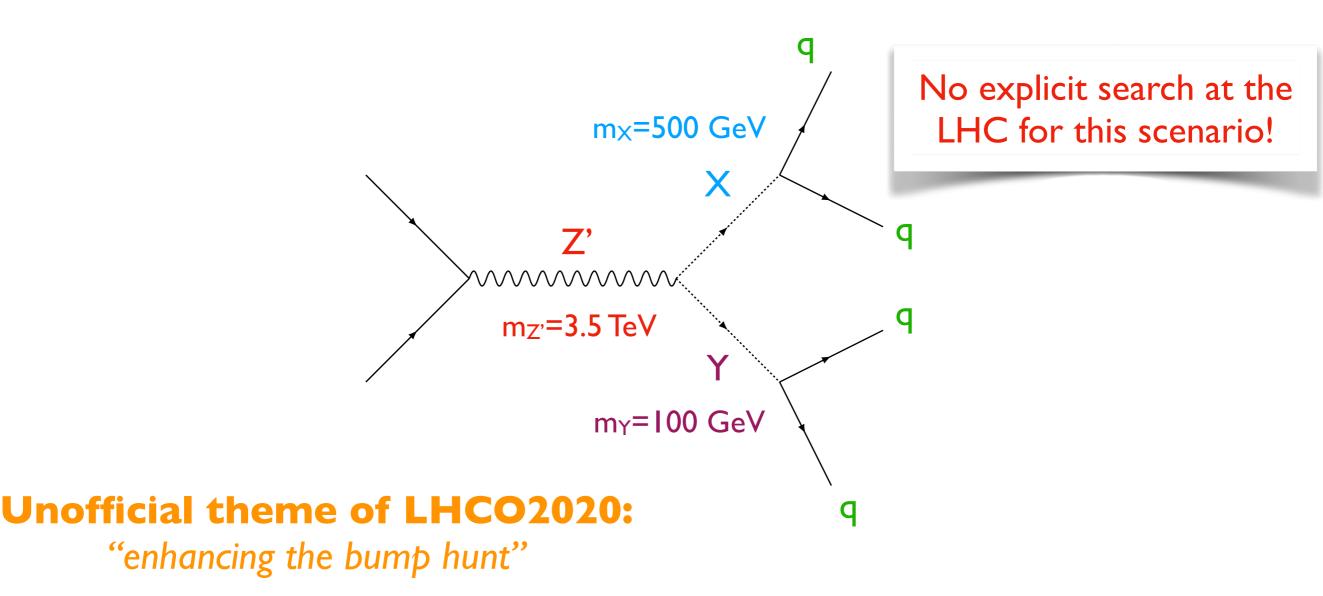
I. Decide whether or not it contains new physics

2. Characterize the new physics, if it's there

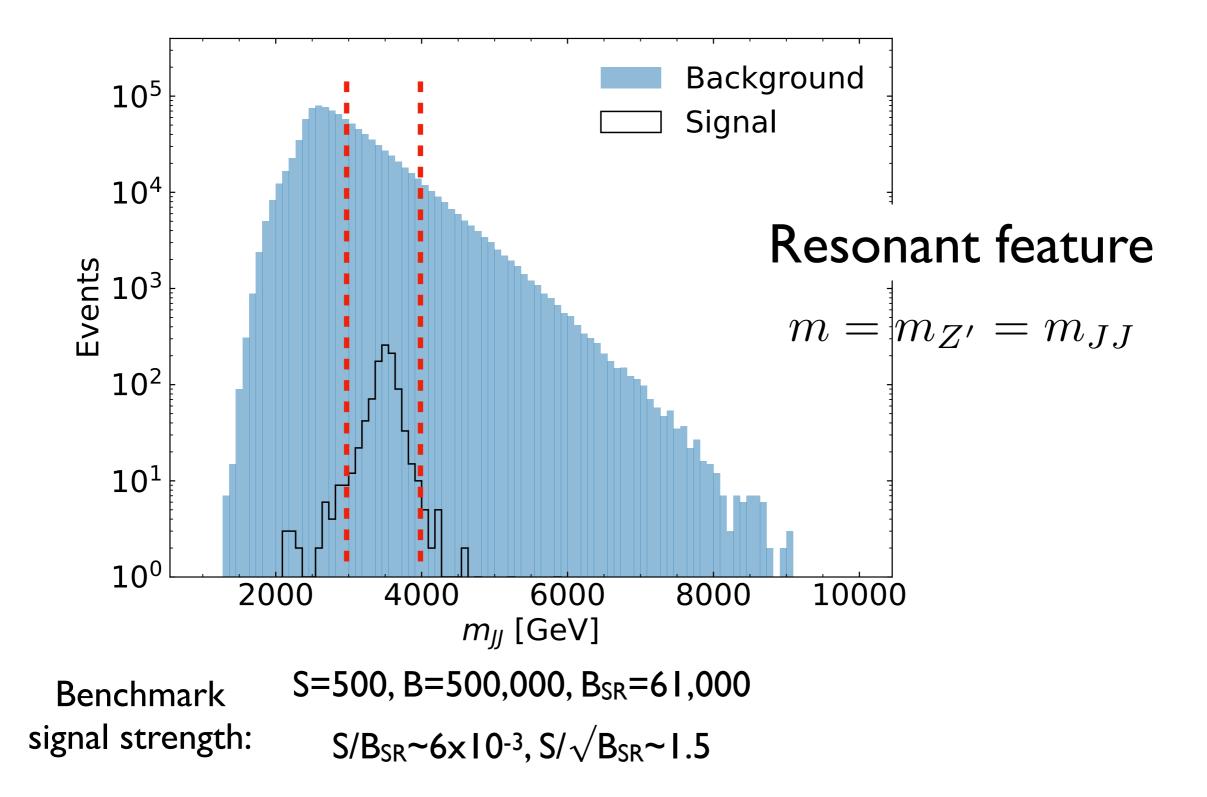
LHC Olympics 2020: R&D Dataset

https://doi.org/10.5281/zenodo.2629072

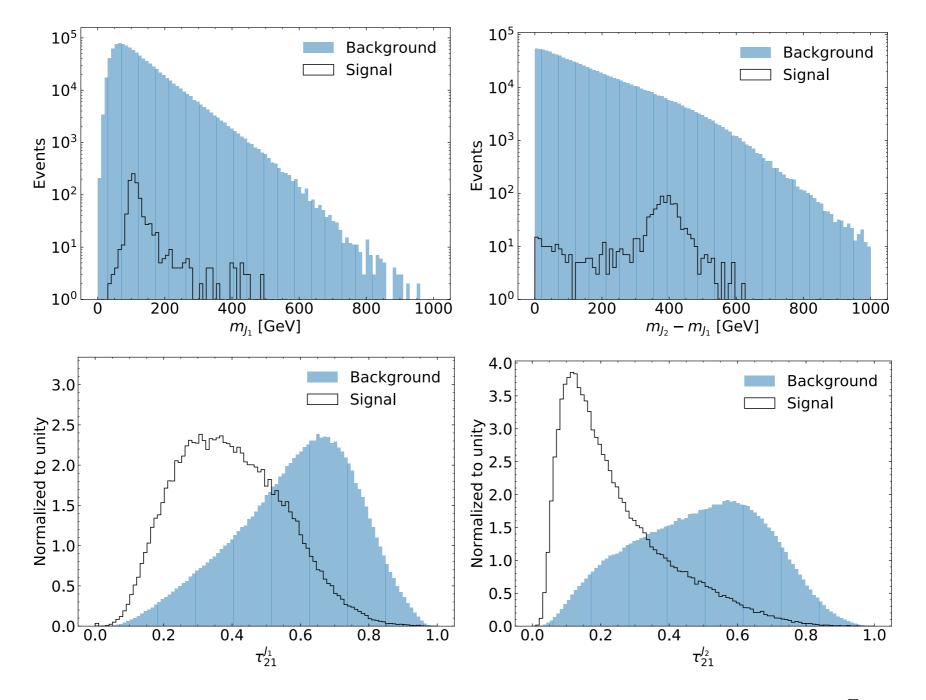
Prior to the challenge, we also released a labeled R&D dataset consisting of IM QCD dijet events and 100k signal events



LHC Olympics 2020: R&D Dataset

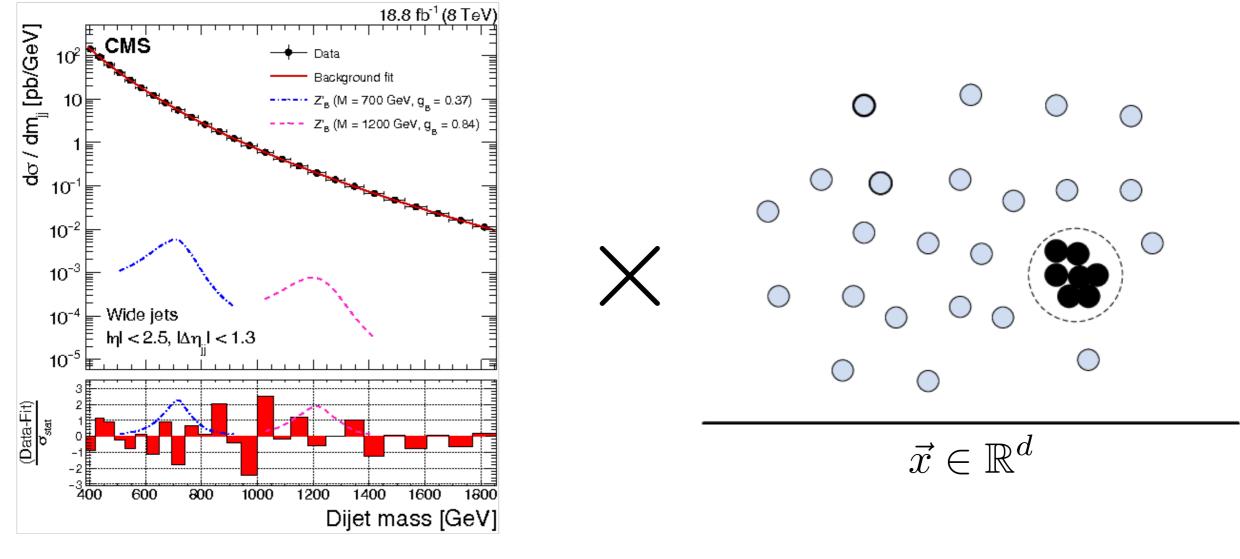


LHC Olympics 2020: R&D Dataset



Additional features: $x = (m_{J_1}, m_{J_2}, \tau_{21}^{J_1}, \tau_{21}^{J_2})$

Enhancing the bump hunt



primary resonant feature (mJJ)

additional features

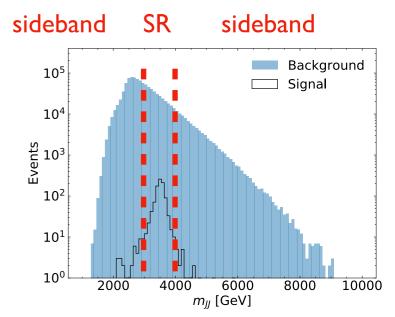
If the signal is localized in additional features, can we find it in a modelindependent way?

Enhancing the bump hunt

The optimal model-agnostic discriminant would be

$$R(x) = \frac{\mathcal{P}(x|data)}{\mathcal{P}(x|bg)}$$

Key idea: use sidebands in mJJ to model P(x|bg)

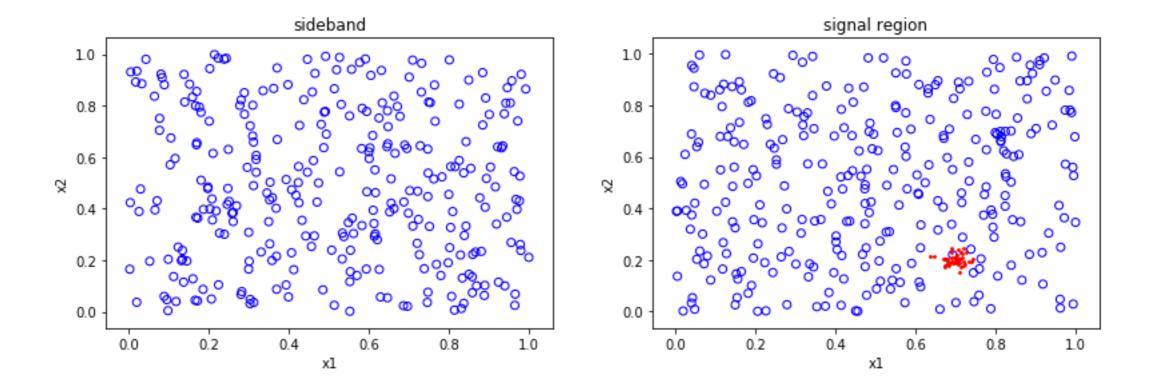


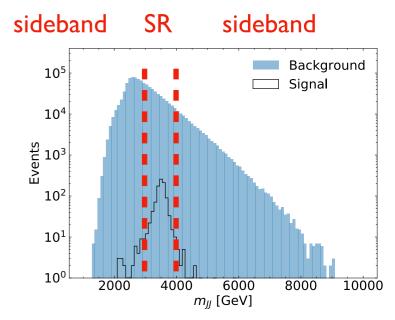
Enhancing the bump hunt

The optimal model-agnostic discriminant would be

$$R(x) = \frac{\mathcal{P}(x|data)}{\mathcal{P}(x|bg)}$$

Key idea: use sidebands in mJJ to model P(x|bg)

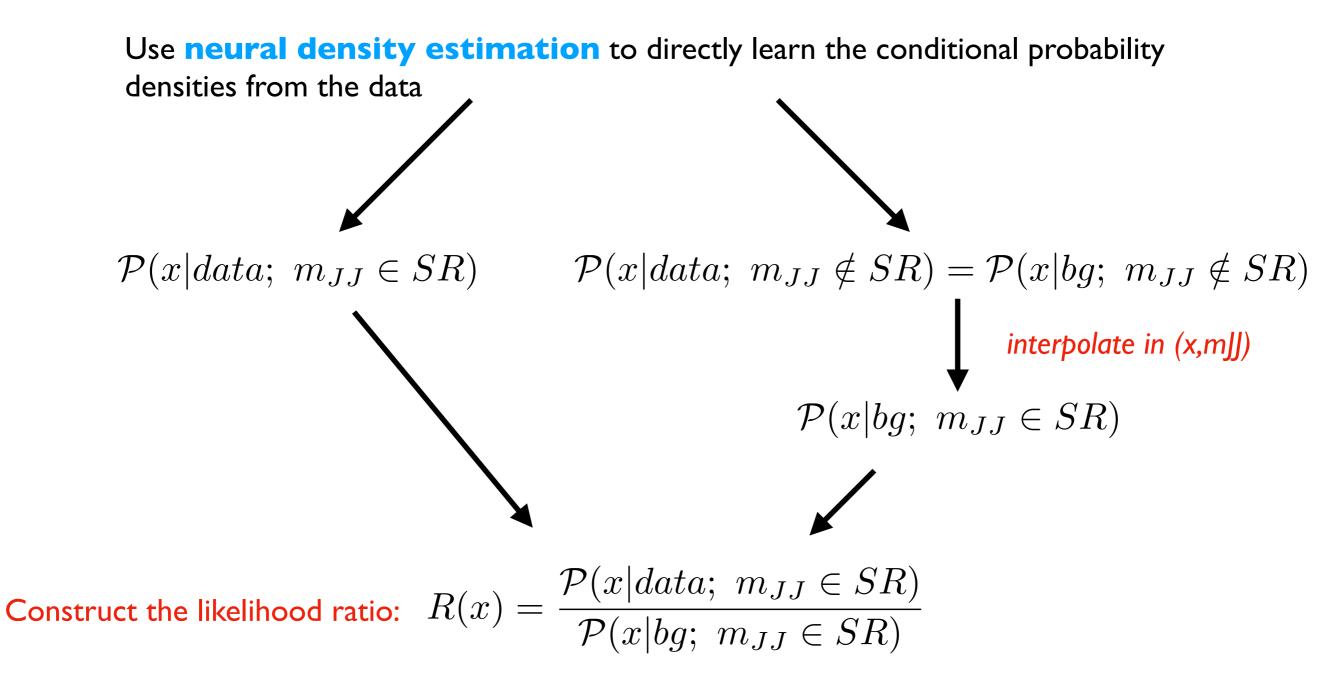




ANODE: Anomaly Detection with Density Estimation Nachman & DS 2001.04990

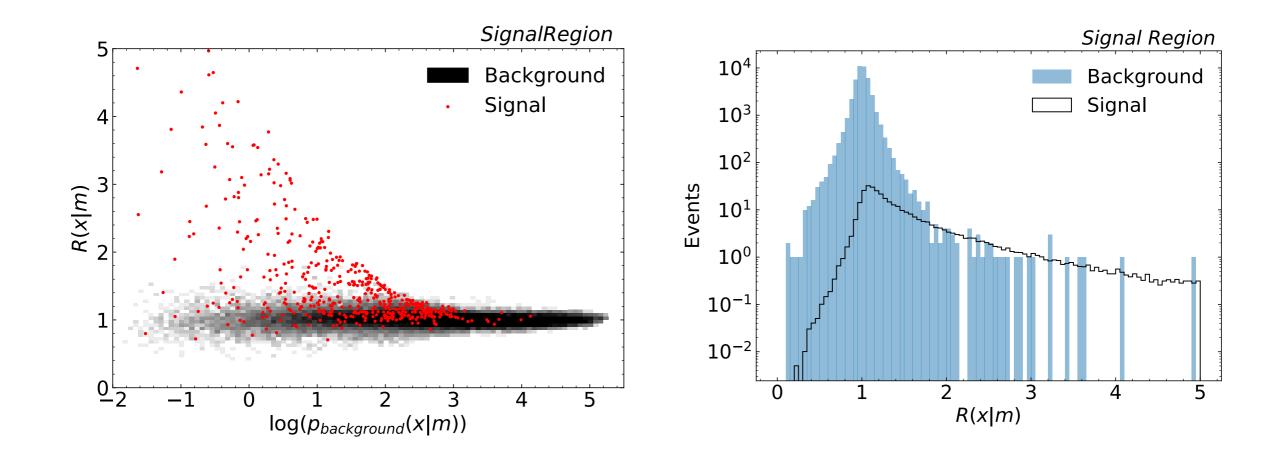
Example of a new approach inspired by LHCO2020.

(See Ben's talk for additional new approaches!)



ANODE: Results on LHCO R&D Dataset

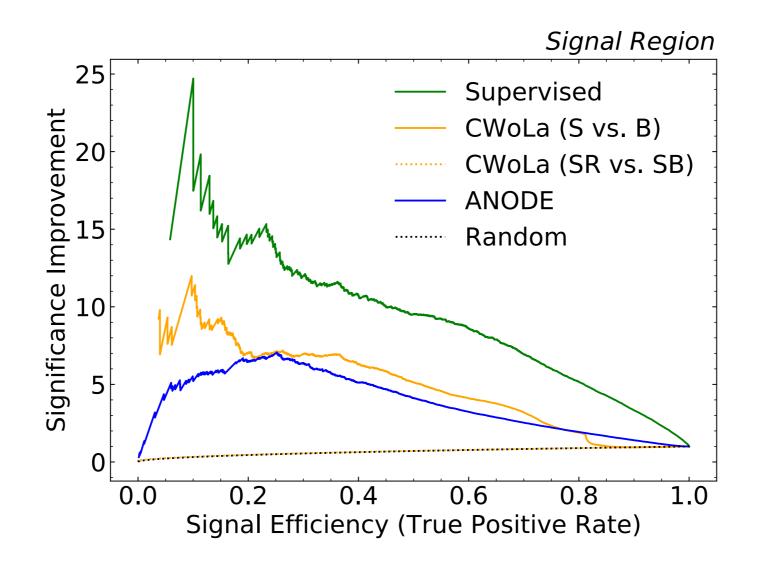
Nachman & DS 2001.04990



The method works! ANODE is sensitive to the signal!

ANODE: Results on LHCO R&D Dataset

Nachman & DS 2001.04990

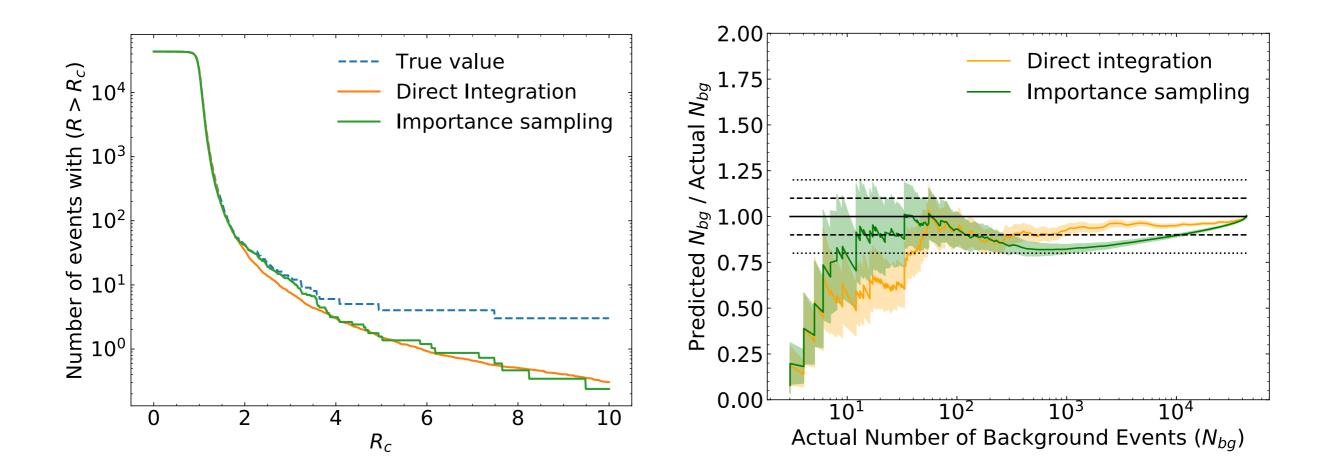


Can enhance the significance of the bump hunt by a factor of up to 7!

I.5 σ (dijet bump hunt) => 10 σ (ANODE+dijet bump hunt)

ANODE: Results on LHCO R&D Dataset Nachman & DS 2001.04990

Novel aspect of ANODE: can estimate backgrounds directly with $P(x|bg; m \in SR)$

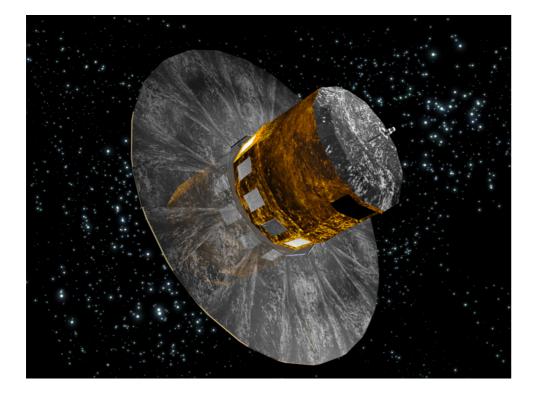


Via Machinae: ANODE IN SPACE

DS, Matt Buckley, Lina Necib & John Tamanas, in preparation

ANODE is a completely general method for identifying multivariate overdensities in data using sidebands. It could have many diverse applications.

We are currently using it to find **stellar streams** in Gaia data.

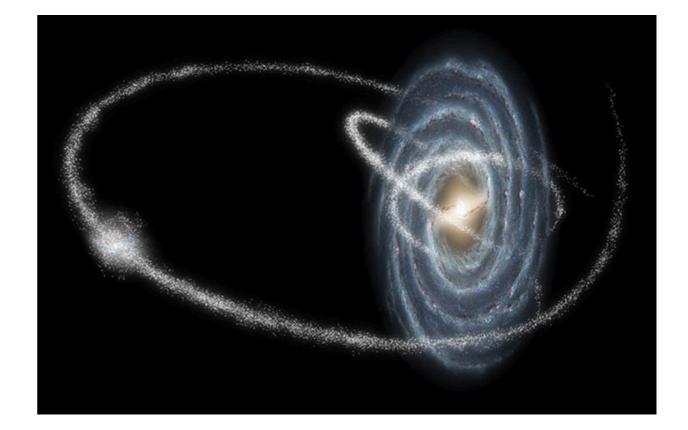


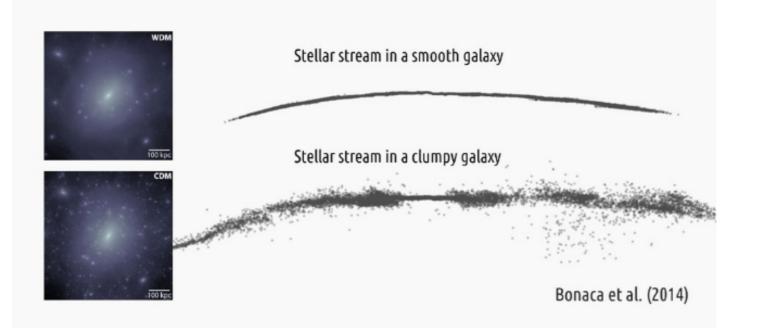
Gaia satellite:

- Launched in 2013; extended to 2025
- Mission: map out the full 6d phase space of the stars in our galaxy
- Angular positions, velocities, color and magnitude of over I billion stars in our galaxy
- radial positions and velocities for a smaller subset of nearby stars (not used in this work)

Stellar streams

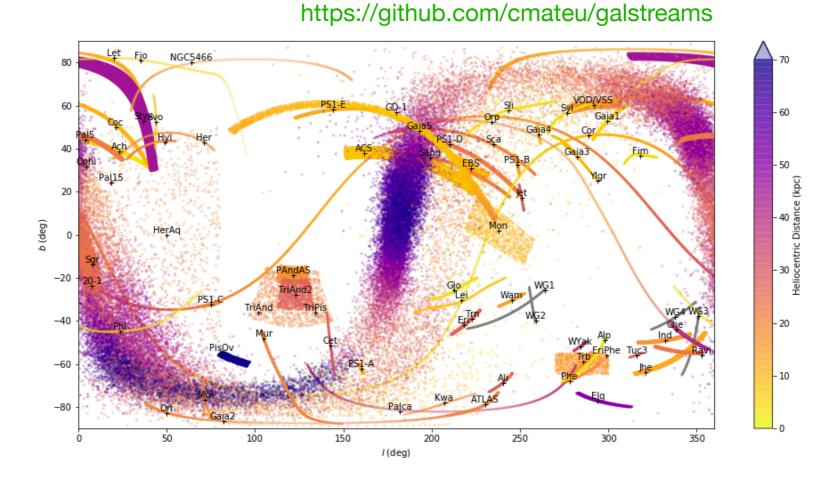
Cold stellar streams are tidallystripped remnants of globular clusters and dwarf galaxies, falling into and orbiting our galaxy.





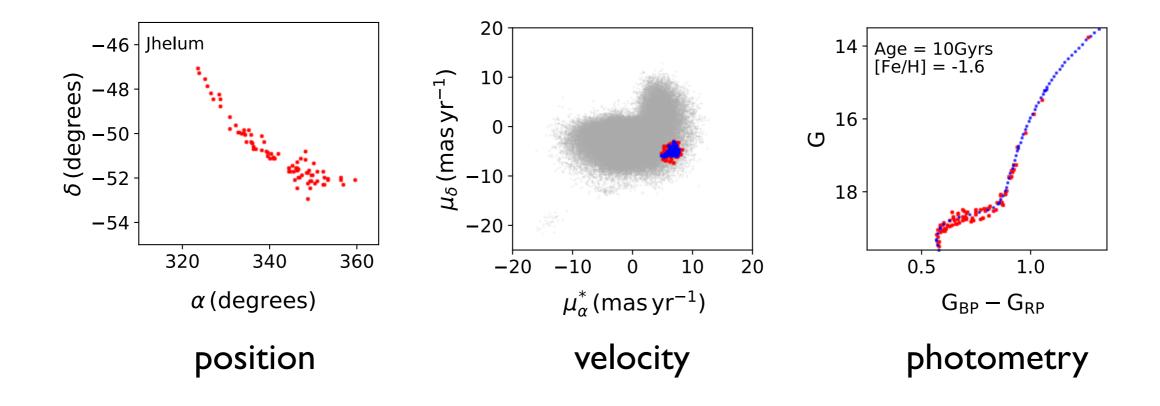
They are very interesting objects of study for astrophysicists and particle physicists.

In particular, they could be unique probes into dark matter substructure.

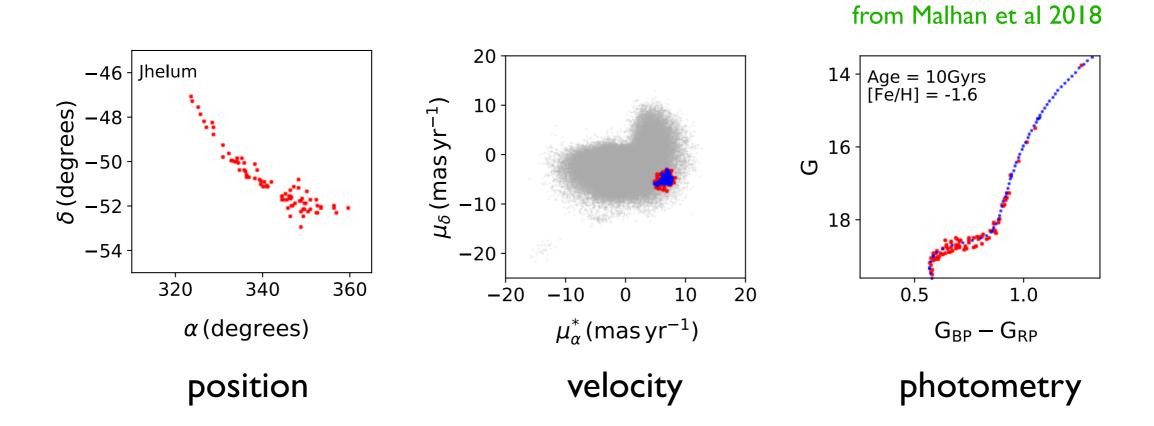


Existing methods (eg STREAMFINDER, Malhan & Ibata 2018) have found many new streams in the Gaia data, but they make a number of model-dependent assumptions (form of the galactic potential, orbits, isochrones, ...).

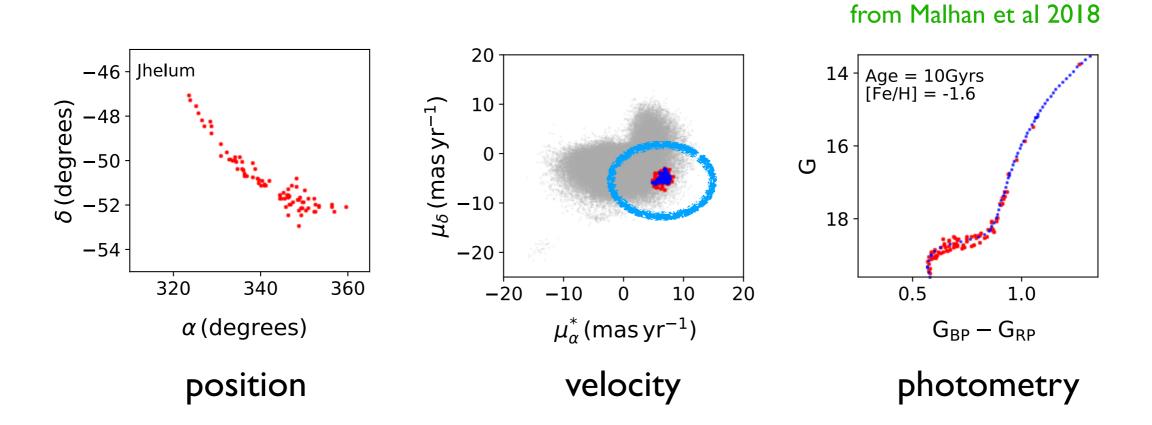
We were interested in whether unsupervised ML could be used to find streams more model-independently.



from Malhan et al 2018

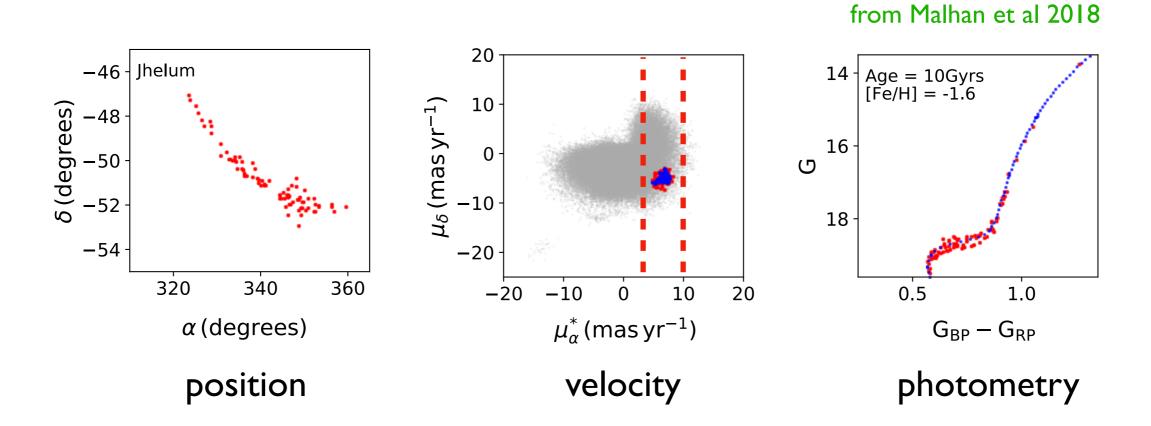


Idea: streams are local overdensities in position, velocity and photometric space.



Idea: streams are local overdensities in position, velocity and photometric space.

Since they are **cold**, the stars in the stream are clustered in velocity.

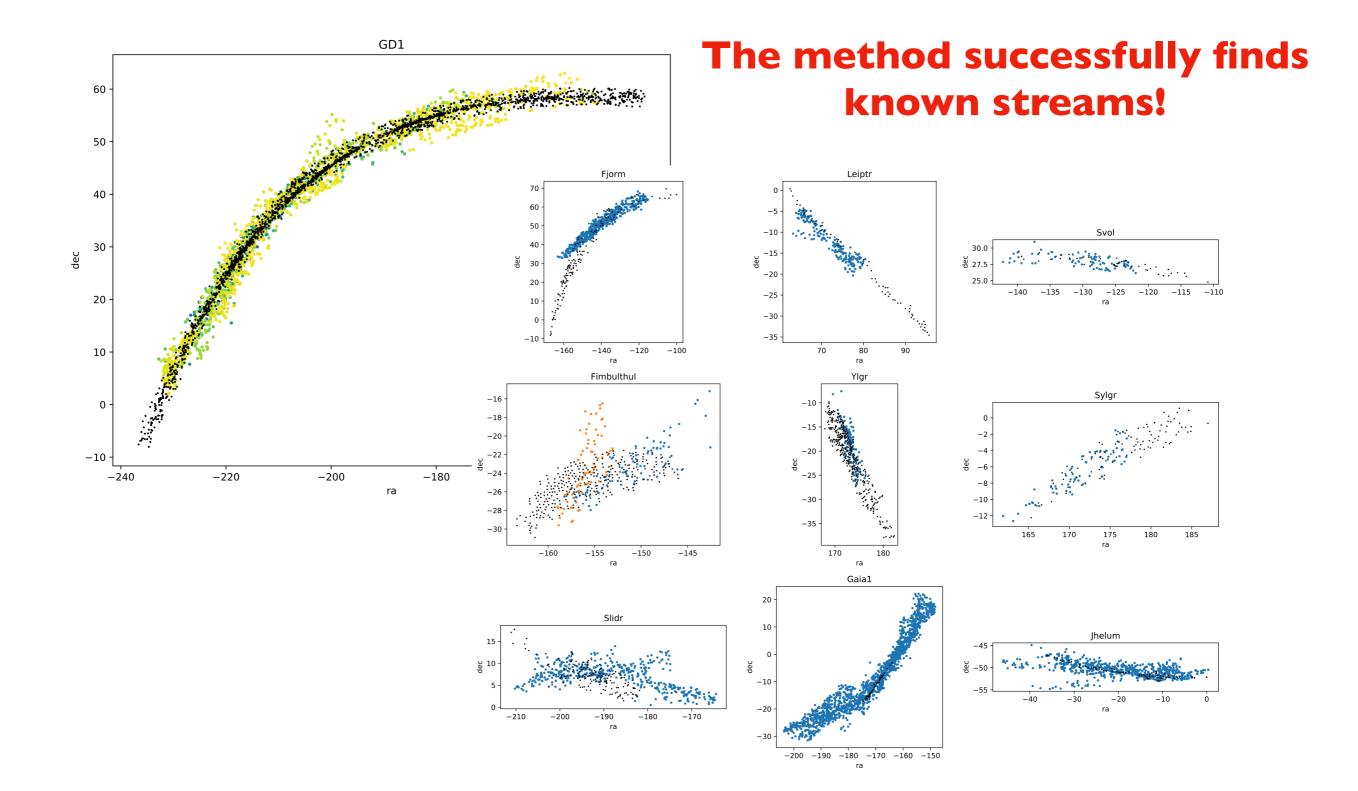


Idea: streams are local overdensities in position, velocity and photometric space.

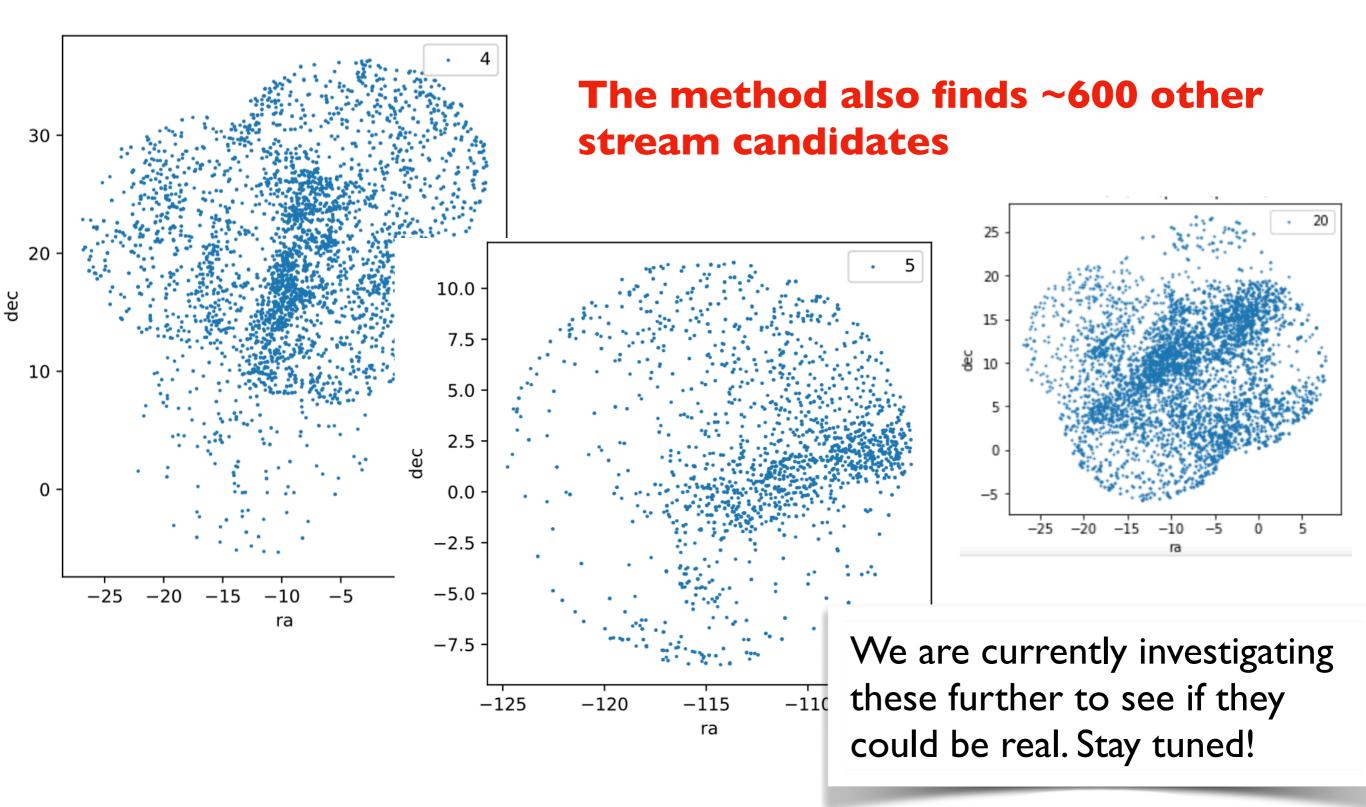
Since they are **cold**, the stars in the stream are clustered in velocity.

Can sideband in one of the velocities and use ANODE to look for local overdensities!

Via Machinae: preliminary results



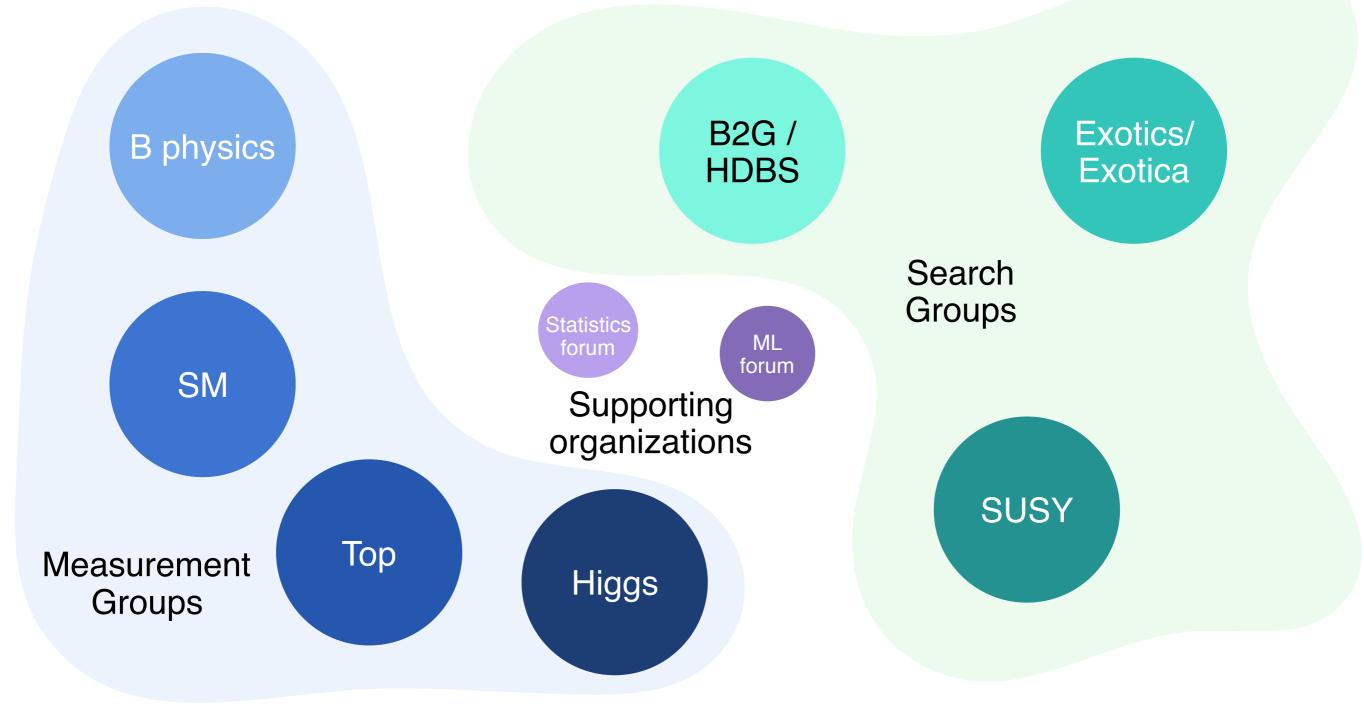
Via Machinae: preliminary results



Summary and Outlook

- Advances in machine learning are opening up new and exciting avenues for model independent new physics searches at the LHC.
- Ideas and methods inspired by LHC problems are being applied successfully to other fields such as astronomy and astrophysics.
- The LHC Olympics 2020 provided a very useful testing ground for the development and common benchmarking of new approaches.
- Much work remains to be done in order to port these ideas over to ATLAS and CMS and implement them as actual analyses on real data.
- We need more ideas for model-independent searches at the LHC. This is just the beginning!

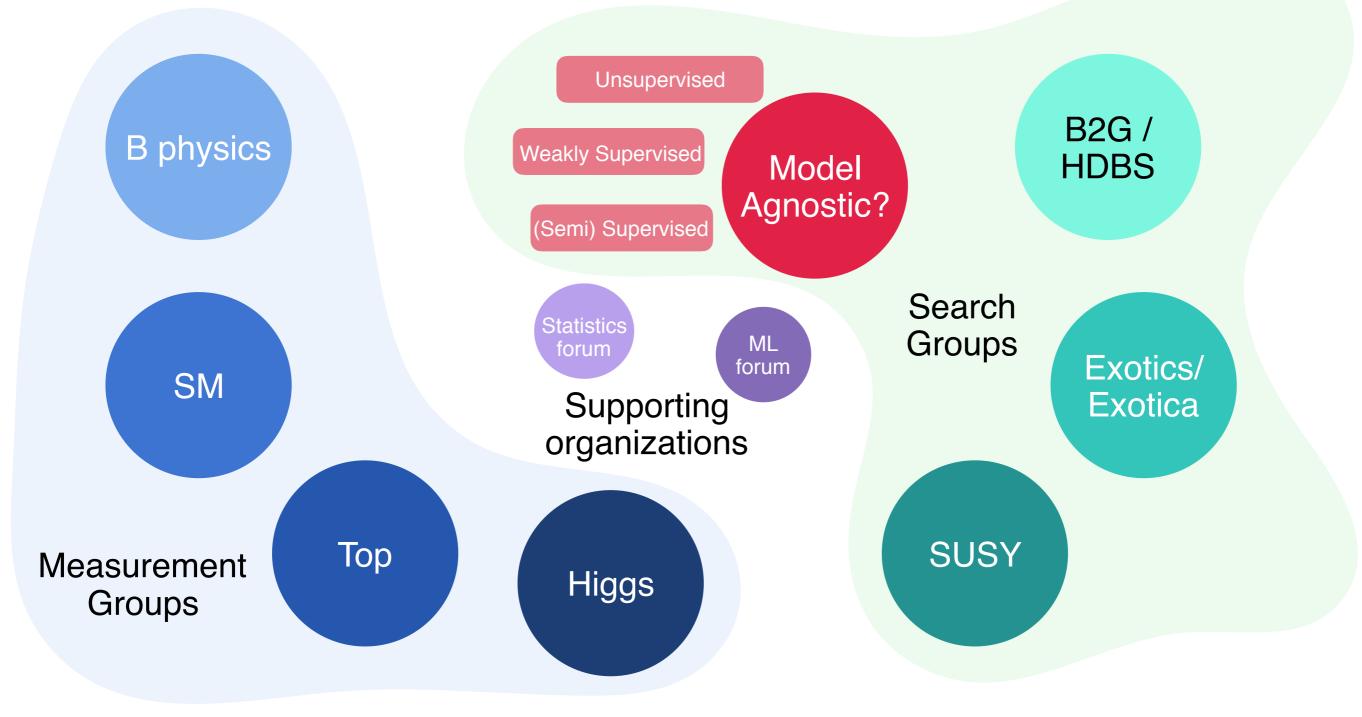
Current Organization of Physics Analysis Groups at the LHC



Q: Why is there no model independent search group???

A vision for the future...

Future Organization of Physics Analysis Groups at the LHC??



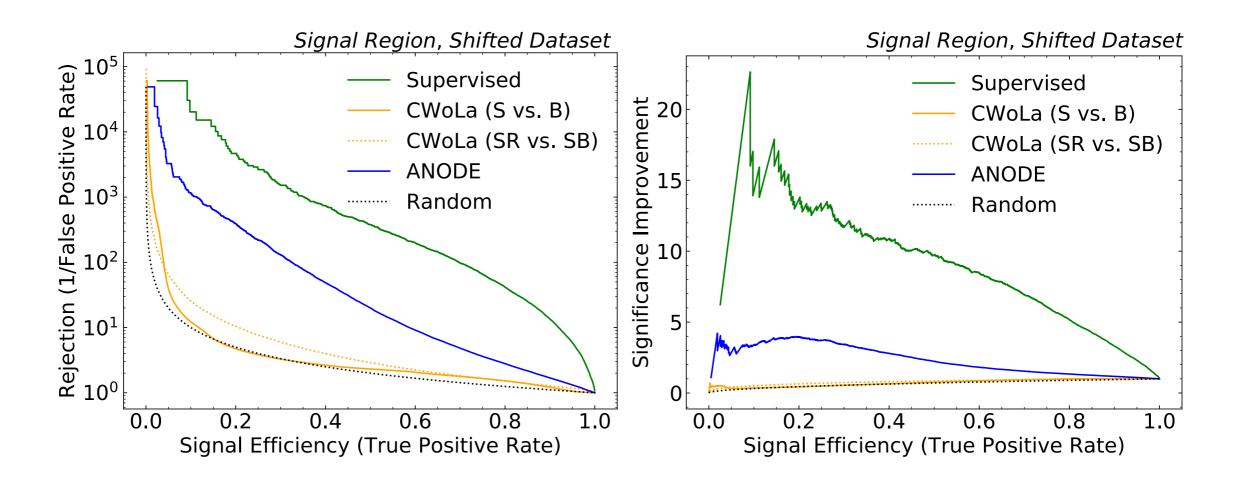
from G. Kasieczka, B. Nachman, DS (eds), et al 2101.08320

Thanks for your attention!

ANODE: Results on LHCO R&D Dataset

Ben Nachman & DS 2001.04990

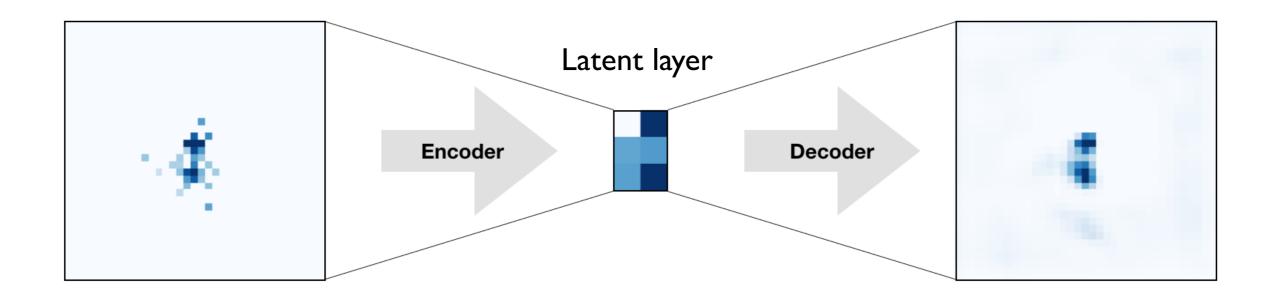
Can also consider performance on a feature set which is not independent of m. We introduced artificial correlations just as proof of concept: $m_{J_{1,2}} \rightarrow m_{J_{1,2}} + c m_{JJ}$



ANODE is robust while CWoLa completely fails!

Searching for NP with deep autoencoders

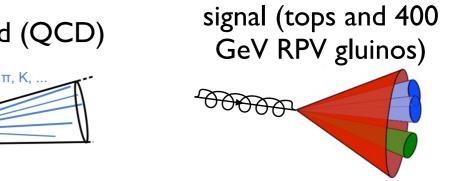
Heimel et al 1808.08979; Farina, Nakai & DS 1808.08992



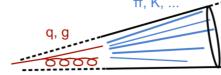
An autoencoder maps an input into a reduced "latent representation" and then attempts to reconstruct the original input from it.

Can use reconstruction error as an anomaly threshold!

See also: Hajer et al "Novelty Detection Meets Collider Physics" 1807.10261 Cerri et al "Variational Autoencoders for New Physics Mining at the Large Hadron Collider" 1811.10276

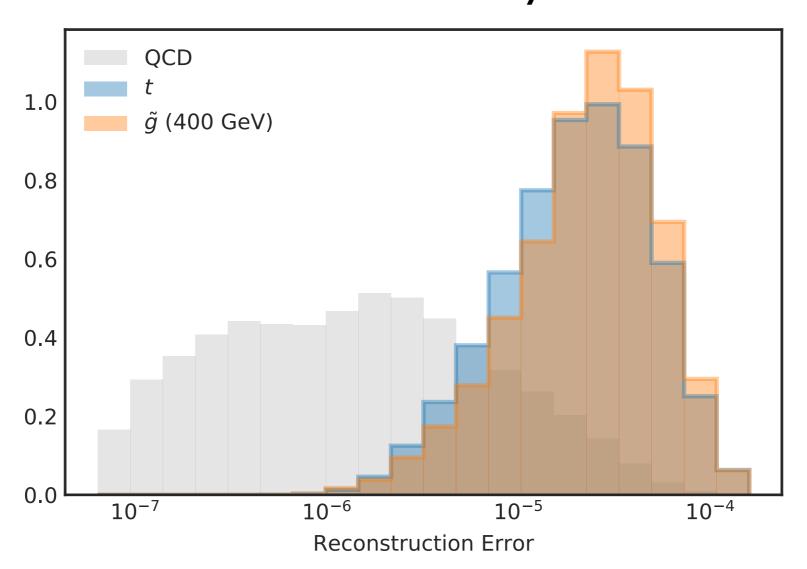


background (QCD)



Performance

It works as an anomaly detector!



Robust against contamination with signal — can use in fully unsupervised mode