Light Scalars and Exotic Higgs Decays LHC Run 2 and Run 3

陸

UMassAmherst

Rafael Coelho Lopes de Sá

University of Massachusetts Amherst

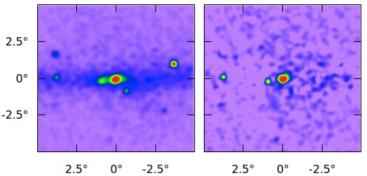
PITT PACC

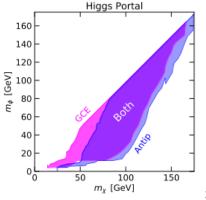
Apr 9th, 2021

INTRODUCTION

- Please allow ample time for questions, and try to structure your talks in a way that provokes questions. Talks that are listed at 30 min = 20 + 10. 40 = 25 + 15.
- Guiding themes:
 - o How do we design future analyses to fully utilize a doubled dataset, beyond the naive sqrt(2) improvement?
 - What lessons have been learned from Run 2 analyses and how we apply them to Run 3?
 - o What new SM measurements would you like to see, or how would you like to see measurements improved beyond the current state-of-the-art?
- Specific ideas that may be useful:
 - How might we benefit the most by using new triggers or trigger techniques?
 - o How can special runs or dedicated configurations play a role (for example, low pileup data or heavy ions)?
 - o How can improvements in offline reconstruction, including ML techniques be utilized?
 - o How can novel ideas from ML be utilized in the analysis of data?

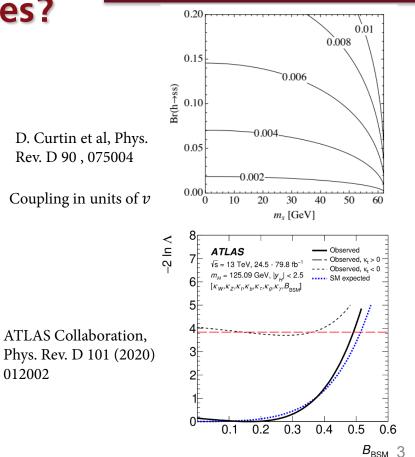
Motivation


- Recently we have seen a lot of excitement related to possible new light scalars
- They are present in models for **naturalness**, thermal dark matter, electroweak baryogenesis, axions.
- Various anomalies can be explained by the presence of light scalars (and several by coupling it to the Higgs):
 - Gamma-ray excess at the center of the galaxy
 - Antiproton excess in cosmic rays
 - KOTO anomaly
 - O(10 100 MeV)Excess in excited Beryllium decay


 $O(10 - 100 \, GeV)$

UMassAmherst

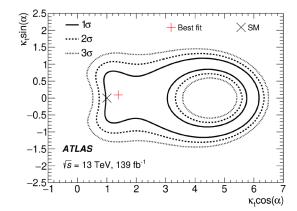
Fermi-LAT Collaboration, Phys. Rev. D 89, 042001


D. Hooper et al. arXiv:1912.08821

How to search for these states?

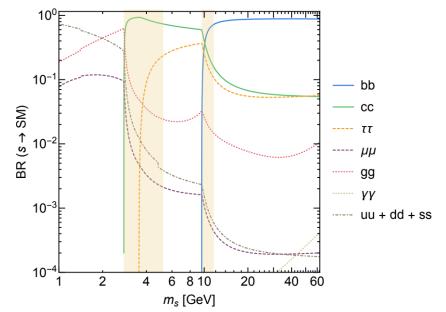
- These states have to be very weakly coupled, otherwise we would have seen them already.
- So, even though direct searches for these scalars are possible, it is usually quite challenging and these searches are usually limited by trigger.
- Another idea is to look for the new scalar in the decay of the Higgs boson.
 - The Higgs boson is a very narrow resonance. Even very weakly-coupled new particles may yield a sizeable branching ratio.
 - ATLAS and CMS have a lot of Higgs events on their tapes.
- The constraints on the total Higgs width are quite weak.

UMassAmherst


012002

Ô

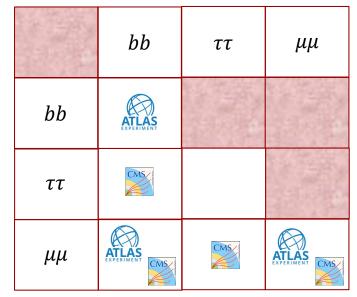
Ò


How to search for these states?

- A new light scalar mixes with the Higgs boson inheriting the Yukawa couplings
- In several DM models, a pseudo-scalar is favored to avoid constraints from direct-direction experiments.
 - Requires a CP-odd component of the Higgs
 - Also very weak constraints

ATLAS Collaboration, Phys. Rev. Lett. 125 (2020) 061802

D. Curtin et al, Phys. Rev. D 90 , 075004



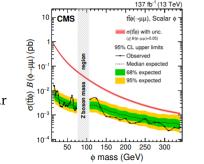
UMassAmherst

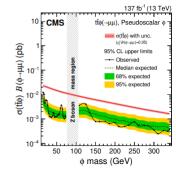
How to look for these states?

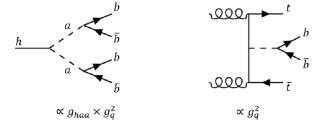
- Favors "heavy" final states.
 - *bb* for $m_S > 10$ GeV
 - $\tau \tau \text{ for } m_S > 4 \text{ GeV}$
 - $-\mu\mu$ otherwise.
- Other types of couplings may favor different decays.
- For instance, in ALP models, dimension-5 couplings to $\gamma\gamma$ and gg are favored.
 - But in these models exotic Higgs decays are either higher order (dimension 6) or loopsuppressed, so we won't cover it here.
 - See, eg, Bauer et al., JHEP 12 (2017) 044

Existing analyses with LHC Run 2 data

CMS has an $H \rightarrow aa \rightarrow (\mu + \text{track})(\mu + \text{track})$ search (PLB 800 (2019) 135087) that can be interpreted as both $2\mu 2\tau$ and 4τ . It is not included in the table above.


20


Ò

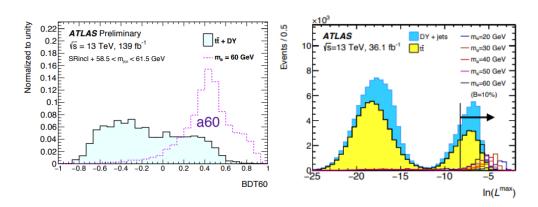

Is there another way?

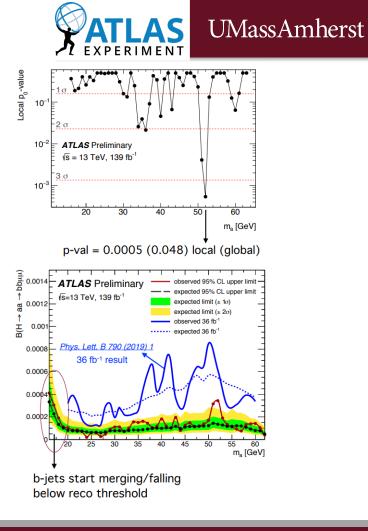
- If the new light scalar inherits the Higgs boson Yukawa couplings then it should interact strongly with top quarks.
- Search for *tta* production can provide complementary information (see, *eg*, Casolino *et al.*, Eur.Phys.J.C 75 (2015)). $H \rightarrow aa$ depends on both the *Haa* exotic coupling and on the *aff* coupling. The *tta* process depends only on the *aff* coupling.
- Performing both analyses simultaneously can provide unique information.

The predicted cross section can vary significantly between scalar and pseudoscalar hypotheses.

Existing analyses with LHC Run 2 data

bb	ττ	μμ
		CMS

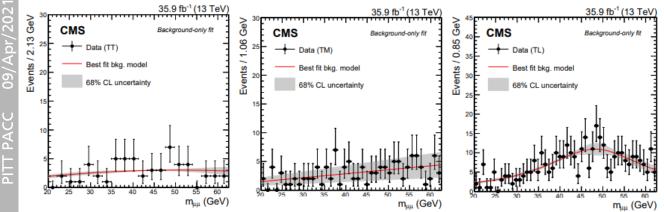

Note the CMS analysis (published in JHEP 03 (2020) 051) is not a targeted analysis.

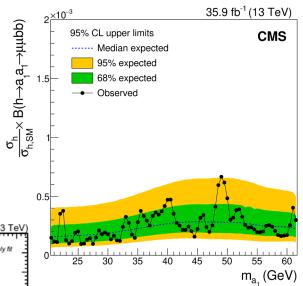

6

REVIEW OF RECENT RESULTS

Light scalars in $H \rightarrow aa \rightarrow (bb)(\mu\mu)$

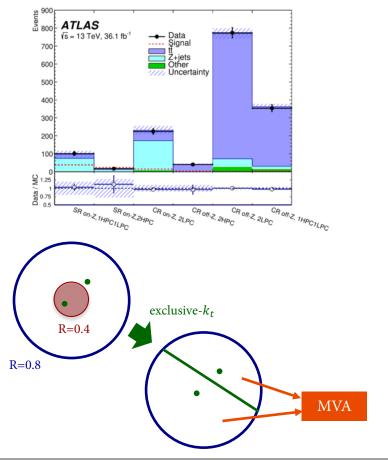
- Search for $H \rightarrow aa \rightarrow 2b2\mu$ targeting ggF production
- Covers the mass range $16 < m_a < 62$ GeV
- Introduces a maximum likelihood $m_{\mu\mu} = m_{bb}$ constrain to improve the dijet mass resolution and to select events.
- Additional event selection performed with BDT to reject DY and $t\bar{t}$ events. Different BDTs trained for different mass regimes.




Phys. Lett. B 795 (2019) 398

Light scalars in $H \rightarrow aa \rightarrow (bb)(\mu\mu)$

- Search for $H \rightarrow aa \rightarrow 2b2\mu$ targeting ggF production
- Covers the mass range $20 < m_a < 62.5$ GeV
- Similar kinematic constraint $m_{\mu\mu} = m_{bb}$ used to select events.
- Several SR depending on the value of the *b*-tagging discriminator of the two jets in the event.
- Analysis performed with an unbinned fit to data.

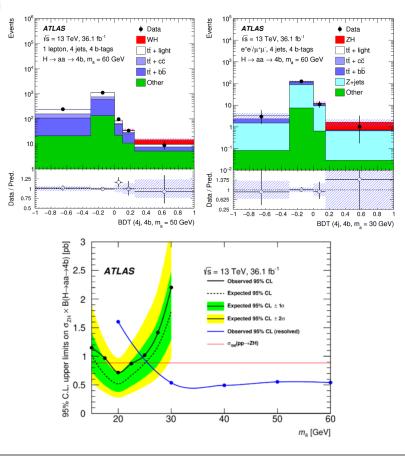


Phys. Rev. D 102 (2020) 112006 and JHEP 10 (2018) 031

Light scalars in $H \rightarrow aa \rightarrow (bb)(bb)$

- Search for $H \rightarrow aa \rightarrow 4b$ using the WH/ZH production mechanism.
- Two analyses: one targeting the mass range $15 < m_a < 30$ GeV (*ZH* only) and another one for $25 < m_a < 60$ GeV.
- *Z*/*W*-boson provides strategy for triggering and background estimate
- For low masses, $a \rightarrow bb$ decays produce merged jets. Dedicated MVA with substructure, b-tagging, and kinematic information to distinguish $a \rightarrow bb$ decays from background.

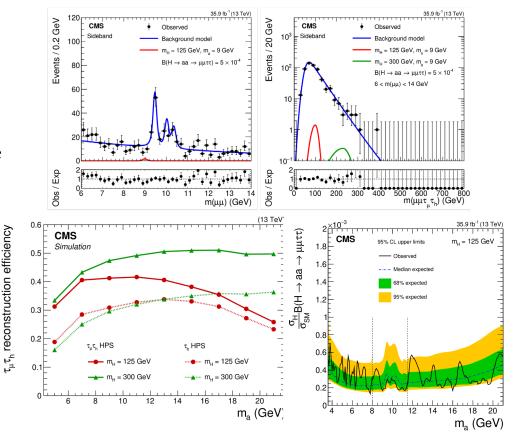
O


Ap

Phys. Rev. D 102 (2020) 112006 and JHEP 10 (2018) 031

Light scalars in $H \rightarrow aa \rightarrow (bb)(bb)$

- Search for $H \rightarrow aa \rightarrow 4b$ using the WH/ZH production mechanism.
- Two analyses: one targeting the mass range $15 < m_a < 30$ GeV (*ZH* only) and another one for $25 < m_a < 60$ GeV.
- *Z*/*W*-boson provides strategy for triggering and background estimate
- For low masses, $a \rightarrow bb$ decays produce merged jets. Dedicated MVA with substructure, b-tagging, and kinematic information to distinguish $a \rightarrow bb$ decays from background.


JHEP 08 (2020) 139

UMassAmherst

Light scalars in $H \rightarrow aa \rightarrow (\mu\mu)(\tau\tau)$

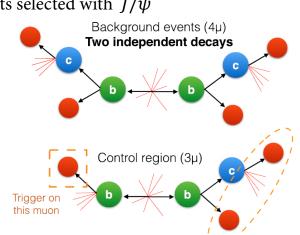
- Search for decays $H \to aa \to (\mu\mu)(\tau\tau)$.
- Focus on the case $\tau_h \tau_\mu$ to be able to identify boosted τ -decays with high efficiency and low misidentification.
- Search performed with 2D unbinned fit to the $m(\mu\mu) \times m(\mu\mu\tau_{\mu}\tau_{h})$ spectrum.
- Background model obtained from sideband with non-isolated $\tau_{\mu}\tau_{h}$ candidates and looseto-tight factors measured in $Z(\rightarrow \mu\mu)$ +jets events.
- Modeling of low-mass resonances improved by use of a low-mass $\mu\mu$ CR without additional $\tau_{\mu}\tau_{h}$.

Sá

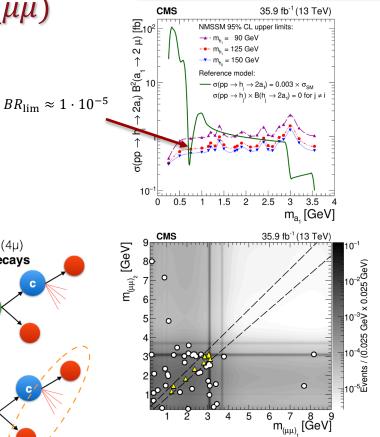
de

elho Lopes

Rafael Co

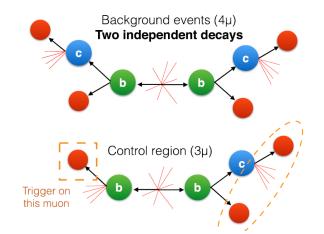

Rafael Coelho Lopes de Sá

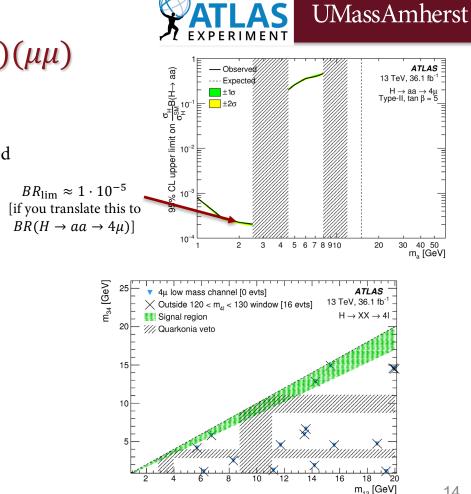
00


Phys. Lett. B 796 (2019)

Light scalars in $H \rightarrow aa \rightarrow (\mu\mu)(\mu\mu)$

- Search for decays $H \rightarrow aa \rightarrow (\mu\mu)(\mu\mu)$.
- Search for isolated, low mass, di-muon pairs.
- Non-prompt background *bb* + *X* estimated from a sample with 3 muons.
- Prompt background estimated from isolation sidebands in 4 muon events selected with J/ψ trigger.
- Negligible electroweak background.

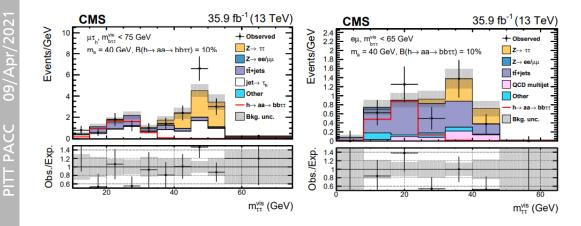


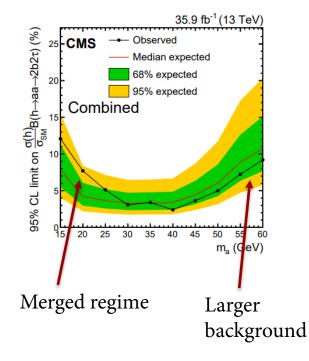

Sá Rafael Coelho Lopes de

JHEP 06 (2018) 166

Light scalars in $H \rightarrow aa \rightarrow (\mu\mu)(\mu\mu)$

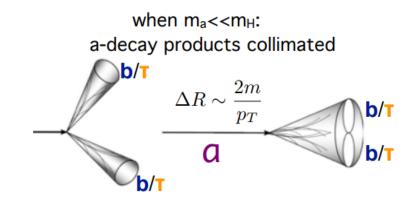
- Search for decays $H \rightarrow aa \rightarrow (\mu\mu)(\mu\mu)$ ٠
 - Same background method (3 muon sample) as used by CMS.
- But veto resonance regions (ω , ρ , J/ψ , Υ).
- Imposes Higgs mass constraint explicitly




Phys. Lett. B 796 (2019)

Light scalars in $H \rightarrow aa \rightarrow (\tau\tau)(bb)$

- Search for decays $H \rightarrow aa \rightarrow (\tau\tau)(bb)$ where at least one of the τ decays leptonically.
- Targeting the high-mass regime $15 < m_a < 60$ GeV with a completely resolved final state.
- Analysis is challenging due to the large $t\bar{t}$ and Z + jets background.



IDEAS FOR RUN 3

Ò

Looking forward: objects

- Why are these analyses difficult? Because the final state particles can be close together in the detector. This is specially true for low scalar masses.
- We will discuss some of the ideas that are being pursed for the future. Right now, these ideas as experimental and, when used in analysis, a series of customized/dedicated work is necessary,
- The best way to extend the reach of the LHC searches for the search for light scalars in Run 3 is for these technique to become standard and widely supported by the collaborations.

Merged bb reconstruction

- During the last 10 years, several *bb*-jet identification techniques were developed, calibrated, and are now widely supported by CMS and ATLAS.
- Well known examples are the family of algorithms DeepAK8, DeepDoubleB, and DeepDoubleC from CMS (see, for instance, EPJ Web Conf. 214, 06010 (2019)) and the X → *bb* taggers in ATLAS (see, for instance, ATL-PHYS-PUB-2020-019).
- These algorithms use advanced ML methods to identify merged *bb*-jets **using large-R jets**.
- Large-R jets are only defined at high- p_T and high mass. However, the merged jets in $H \rightarrow aa \rightarrow (bb)(XX)$ are low- p_T and low mass.
- Most of the searches currently being pursued use **large-R track jets**, and novel double-*b* tagging algorithms developed for this kind of jets.
- But large-R track jets are way less studied and understood than "regular" (PFlow, UFO, ...) large-R jets.

Merged $\tau\tau$ reconstruction

- The situation with merged $\tau\tau$ is similar: there are some merged $\tau\tau$ identification algorithms available and partially supported by the collaborations.
- However, they were all developed in the context of SUSY searches and most of them use high-p_T large-R jets.
- Current low- p_T , merged $\tau\tau$ reconstruction is limited to the $\tau_h\tau_\mu$ channel, where the muon has little influence on the tau hadronic jet. CMS showed the power of the PFlow-based reconstruction in the $H \rightarrow aa \rightarrow (\mu\mu)(\tau\tau)$ search where the reconstruction of the $\tau_h\tau_\mu$ mode was obtained with minimal modification over the standard τ_h reconstruction.
- There are some on-going attempts to reconstruct $\tau_h \tau_h$ and $\tau_h \tau_e$ at low p_T , but they are very much R&D at this point and this is a strong limiting factor for $(\tau \tau)$ final states.

Ò

Ŭ

PA PA

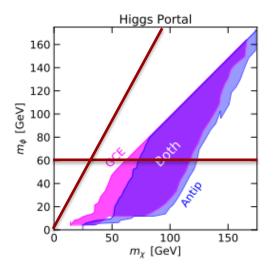
Take-home message

- There is a lot of **unexplored** potential in the CMS and ATLAS data.
- So far, there is only one preliminary analysis that has used the full Run 2 dataset (ATLAS $H \rightarrow aa \rightarrow (bb)(\mu\mu)$) and this analysis focuses on a completely resolved phase-space.
- In order to explore the full potential of the two very large datasets for discovery of Higgs exotic decays, new reconstruction algorithms will have to be developed for low- p_T merged *bb* and $\tau\tau$ states.
- Dedicated reconstruction and isolation for close-by muon may also be necessary to explore the very low mass region ($m_a < 1$ GeV).
- Right now, each analysis has to "rediscover" each of these reconstruction, identification, and isolation methods. And many times, this makes the analysis very challenging.
- We can do better in Run 3.

Looking forward: topologies

- So far, the only topology explored has been $H \rightarrow aa \rightarrow (XX)(YY)$ where both X and Y are visible.
 - First, and foremost, we have to make sure to explore all possible final states to have a complete picture in all accessible mass ranges.
- Looking forward to Run 3, we should start exploring other topologies:
 - *tta* topologies, as discussed in the introduction
 - $H \rightarrow aa \rightarrow (XX) + E_T^{\text{miss}}$, *ie*, when the *Y* particle is invisible (a DM candidate, for instance)
 - Cascade decays in models with multiple new light scalar $H \rightarrow a_1 a_2 \rightarrow a_2 a_2 a_2 \rightarrow (XX)(YY)(ZZ)$. In this case, particles become very low p_T even in the completely resolved regime (see, *eg*, Robens et al., Eur.Phys.J.C 80 (2020))
 - Lepton flavor violating decays of new light scalars (see, eg, Evans et al., JHEP 01 (2020) 028)
 - etc, etc, etc... this is a vast and unexplored field.

Looking forward: topologies


- So far, the only topology explored has been $H \rightarrow aa \rightarrow (XX)(YY)$ where both X and Y are visible.
 - There are several other directions that are currently being explored p have a First, and foremost, we have to make sure to explore all possible final and complete picture in all accessible mass ranges.
- Looking forward to Run 3, we show
- and will continue to be explored by both CMS and ATLAS: Long-lived particles (see, for instance, the talk by J. Alimena) tta topel $H \rightarrow aa$ for
 - (XX)(YY) However, they are outside the scope of this talk. $\underset{\text{rew light scalar } H \to a_1 a_2 \to a_2 a_2 a_2 \to$ Cascade d case, particles become very low p_T even in the completely resolved regime.
 - Lepton flavor violating decays of new light scalars (see, for instance JHEP 01 (2020) 028)
 - etc, etc., etc... this is a vast and unexplored field.

Ŭ

<u>ם</u>

Looking forward: phase-space

- All the analyses discussed here have a common limitation: $m_{\phi} < m_H/2$
- Above m_φ ≃ 60 GeV, the on-shell decay H → φφ is not allowed and the power of searches decreases quite quickly.
- However, for several of the motivations discussed here (see figure), the region $m_{\phi} > m_H/2$ may be favored.
- The region favored in this study also disfavors $\phi \rightarrow \chi \chi$ decays.
- In this case, new ideas will be required. Is it possible to search for these light states using Run 3 data?

D. Hooper et al. arXiv:1912.08821

Conclusions

- New light scalars have strong phenomenological motivation
- CMS and ATLAS are good experiments to search for these new light scalars in the range $0.5 < m_a < 120$ GeV
- Searches so far have focused on *H* → *aa* → (*XX*)(*YY*) final state. Several analyses still being performed with full Run 2 data.
- In order to fully explore the data collected (and to be collected in Run 3), new reconstruction algorithms will have to be developed.
- New topologies and new search strategies will also be explored.

Rafael Coelho Lopes de Sá

