Unconventional SUSY Signatures at LHC Run 3

Matt Reece
Harvard University

@ Pitt PACC Workshop, 2021

The Core of Supersymmetry

(Broken) supersymmetry pairs *bosons* with *fermions* such that their couplings are (approximately) related.

This is what we want to discover.

Don't need to assume:

- Dark matter is a superpartner (much less a thermal relic)
- R-parity is conserved
- The particle content is the MSSM
- The superpartners have just one common mass scale
- Gauge couplings unify
- Any theorist has the details right

The Story So Far

Mind the Gaps

Electroweakinos as a Target

Can enumerate diboson signals that can appear for transitions between a given set of electroweakinos.

Wino to bino: missing p_T plus W+W-, Wh (fewer WZ)

Higgsino to bino: missing pT plus W+W-, WZ, Wh, Zh, ZZ, hh (possibly fewer of the latter two)

Wino to higgsino: missing pT plus soft particles plus W+W-, W+W+, W-W-, WZ, Wh, Zh, ZZ, hh (again possibly fewer of last 2)

... and so on. Also longer cascades involving all 3 ewkinos.

R-Parity or Not?

Motivated by proton stability, but neither necessary nor sufficient to solve that problem.

Trilinear RPV terms: **QLD, LLE, UDD**UDD only: compatible with Minimal Flavor Violation (Csaki, Grossman, Heidenreich '11)

Bilinear RPV: Neutrino/Neutralino Mix

$$\tilde{W}^0 \to Z\nu, W^{\pm}\ell^{\mp}$$

$$\tilde{W}^{\pm} \to Z \ell^{\pm}, W^{\pm} \nu$$

Contributes to neutrino masses:

$$\langle \tilde{v} \rangle \times \dots \times \langle \tilde{v} \rangle$$

$$m_{v} \sim \epsilon^{2} \frac{v^{2}}{M_{1,2}}$$

$$v$$

This implies an upper bound $\epsilon \lesssim 10^{-6}$.

Lower bound on the lifetime of the two-body wino decays, ~ 100 microns. Displaced vertices! (Possibly macroscopically displaced; standard lepton ID may fail.)

Large literature, e.g., papers by Valle et al.

Squeezing the Signals

heavy invisible particle

Compressed SUSY:

softer visible particles from smaller mass differences

Missing momentum if ISR recoil ("monojet"-like): Alwall, Le, Lisanti, Wacker 0803.0019

Fan, Reece, Ruderman 1105.5135

Stealth Supersymmetry Modeling

Supersymmetry can hide itself!

Have a parametric limit: hidden sector SUSY breaking \rightarrow 0 and missing ET \rightarrow 0.

Stealth SUSY Simplified Models

Fan, Krall, Pinner, Reece, Ruderman 1512.05781

CMS RPV/Stealth Stop Search

CMS RPV/Stealth Stop Search

Looked at many-jet events

Don't Assume Naturalness

SUSY could solve the big hierarchy problem, but we could have a small accident making the hierarchy a little tuned.

Arvanitaki, Craig, Dimopoulos, Villadoro 1210.0555

"Mini-Split"?

The 125 GeV Higgs actually *favors* heavy scalars in simple models.

Gauginos lighter in many models.

Look for Long Liftimes

$$\mathcal{A} = \frac{m_{\tilde{\chi}_1^0}^5}{16\pi F^2} \approx \left(\frac{m_{\tilde{\chi}_1^0}}{100 \text{ GeV}}\right)^5 \left(\frac{100 \text{ TeV}}{\sqrt{F}}\right)^4 \frac{1}{0.1 \text{ mm}}.$$

SUSY events can have *macroscopically displaced* decays, e.g., to light gravitino or axino.

Meade, Reece, Shih 1006.4575

Don't Assume Promptness

SUSY events can have *mildly displaced* decays, e.g., hundred micron ~ millimeters. Predicted for gluinos in "Mini-Split" or "Simply Unnatural" scenario.

Arkani-Hamed, Gupta, Kaplan, Weiner, Zorawski '12

$$c\tau \approx 10^{-5} \text{m} \left(\frac{m_{\tilde{q}}}{\text{PeV}}\right)^4 \left(\frac{\text{TeV}}{m_{\tilde{q}}}\right)^5$$
.

Don't Assume the MSSM

Example: Composite Pions

Arkani-Hamed, D'Agnolo, Low, Pinner 1608.01675

				1
meson	constituents	$(\mathrm{SU}(3)_c,\mathrm{SU}(2)_L)_Y$		
π_8	D^cD	$({f 8},{f 1})_0$		
π_3	LL^c	$(1,3)_0$	ratio	10^{-1}
π_1	$2D^cD - 3LL^c$	$(1,1)_0$	oranching ratic	
$Q_X = (X_{-1/3}, X_{-4/3})$	LD	$({f 3},{f 2})_{-5/6}$	branc	10^{-2}
$Q_X^* = (X_{4/3}, X_{1/3})$	D^cL^c	$(\mathbf{ar{3}},2)_{5/6}$		
π'	D^cD+LL^c	1		
				10-3

Largest diboson rates are always 2 gluons; but gluon + photon, W + photon, WZ, ZZ, ... also arise.

Don't Assume the MSSM

Example:

"Hidden Valley" (Strassler/ Zurek): divide energy among many particles

figure from M. Strassler, hep-ph/0607160

Roughly divide MET by #(final state particles).
See also lepton jets, etc.

Anomalies to Watch

Return of muon g-2

Muon g-2 collaboration

g-2: Light Sleptons, Electroweakinos

e.g., Endo, Hamaguchi, Iwamoto, Kitahara 2104.03217

case 1: "chargino dominated"

case 2: "bino dominated"

See also: Baum, Carena, Shah, Wagner 2104.03302; numerous others

Implications for SUSY

g-2

case 1: chargino dominated loop $\propto \frac{\alpha_2}{4\pi} \frac{m_\mu^2}{M_2 \mu} \tan \beta$ (left-handed) smuon, wino, higgsino, bino (LSP)

Endo, Hamaguchi, Iwamoto, Kitahara 2104.03217

case 2: bino dominated loop $\propto \frac{\alpha_Y}{4\pi} \frac{m_\mu^2 M_1 \mu}{m_{\tilde{\mu}_L}^2 m_{\tilde{\mu}_R}^2} \tan \beta$ smuons, bino

Endo, Hamaguchi, Iwamoto, Kitahara 2104.03217

Putting Pieces Together

A possible smuon decay in RPV SUSY through the QLD-type Yukawa.

A possible smuon decay in Stealth SUSY.

Concluding Remarks

(also see Meenakshi's remarks early in the conference: complex topologies, weak couplings, applying new tools like jet substructure methods)

- Electroweak signals (low rates) or many-jet signals (high backgrounds) need more attention
- Don't assume leptons + missing p_T is "easy"; low cross sections need more work! **Test g-2**.
- Be careful not to miss mildly displaced vertices! Test Higgs mass origin.
- SUSY can have many guises. RPV, Stealth, Hidden Valleys; SUSY can mimic a wide range of signals.
 Search broadly!