

Triggering on Long-Lived Particles: Lessons Learned and Ideas for the Future

Juliette Alimena (CERN)

PITT PACC Workshop: LHC physics for Run 3

April 9, 2021

Why look for new long-lived particles (LLPs)?

Standard model particles span a wide range of lifetimes (τ)

LLPs appear in many scenarios beyond the standard model

LLP Searches

- To make a discovery, look where no one has looked before!
- Wide variety of LLP signatures and strategies
- Often require unusual and innovative techniques at main LHC experiments
- Some challenges:
 - Dedicated triggers
 - Unique object reconstruction
 - Atypical backgrounds
 - Unusual discriminating variables

Triggers for LLPs

See Darin and Caterina's talks

- LLP signatures are often unusual and not covered by "standard" triggers
- If your data is not triggered, it's lost!
- Dedicated triggers for LLPs are crucial!
- Can be a key way to improve sensitivity of existing searches and/or expand our coverage

Trigger Improvements in Run 3

- Disclaimer: will focus on CMS, but some of these ideas are applicable for ATLAS as well
- Had a few dedicated LL triggers at CMS in Run 2:
 - Displaced dimuons (L2 and L3)
 - Displaced muon + photon
 - Single nonpointing photon
 - Displaced dijet
 - MET+isolated track
 - Jet/muon not coincident with collision
- Many ways we can improve triggers for LLPs in Run 3, at every stage of the trigger
- Work underway at L1 and ramping up on HLT

Steven Lowette

See Darin's talk

displaced

lepton

CMS Displaced Lepton Triggers

- Two types of muon reconstruction at the HLT:
 - **L2 muon** = muon system only
 - L3 muon = tracker + muon system
- Run 2 displaced lepton triggers:

- Null 2 displaced lepton triggers.		
Trigger	Analysis	
At least two L2 muons with no vertex constraint	Displaced dimuons (forthcoming)	
At least two L3 muons with no vertex constraint	Displaced leptons without common vertex	
• Two versions: Inclusive and muon transverse impact parameter $ d_0 > 0.1 \text{ mm}$	• 2015, e μ channel: <u>CMS-PAS-EXO-16-022</u> • Full Run 2 forthcoming	
At least one L3 muon with no vertex constraint and at least one photon	p q	
• Inclusive and muon $ d_0 > 0.1$ mm versions	\tilde{t} λ'_{23k} μ	
Photon used as proxy for displaced electron	p \tilde{t} λ'_{23k} q	

Improved muon algorithms at CMS L1 for Run 3

- Displaced muons in Run 2 were limited by the L1 trigger, which was not optimal for large displacements
- New Kalman filter outside-in sequential algorithm in the barrel:

- Commissioned during 2018 data taking and more recently during cosmic runs
- Recently improved for Run 3
- Two options available:
 - Vertex-constrained for prompt muons
 - Vertex-unconstrained for displaced muons
- Vertex-unconstrained algorithm shows > factor of 2 gain in efficiency for displaced muons (~40-100 cm)
- Other developments are also in progress that target improving the efficiency for displaced muons at L1 in the endcaps

 See Darin's talk

Displaced Lepton Trigger Ideas for Run 3

- Would be good to have a coordinated approach to displaced lepton triggers
 - Optimizing coverage in p_T $|d_0|$ (or d_0 significance) plane
 - Can optimize p_T and $|d_0|$ thresholds at both L1 and HLT

- For example, in addition to what already existed in Run 2, could add:
 - Electrons with minimum |d₀| requirement
 - Could be tuned to fill in lifetime coverage gap between prompt electron triggers and triggering on a photon
 - Single and double leptons with larger $|d_0|$ thresholds but smaller p_T thresholds
 - Target soft leptons for compressed mass spectra searches or displaced semi-leptonic decaying taus

CMS Nonpointing Photon Trigger

displaced photon

- Single photon trigger from Run 2 was effective for delayed photons search (doi:10.1103/PhysRevD.100.112003)
 - Photons from a displaced vertex strike the front face of the ECAL barrel at a non-normal incidence angle
 - Creates a more elliptical EM shower in the $\eta-\phi$ plane
 - Single photon HLT path makes requirements on major and minor axes of the shower to select elliptical shower shape
 - Other HLT requirements: photon $p_T > 60$ GeV, photon isolation, $H_T > 350$ GeV
 - Improves signal acceptance by about a factor of 2 over standard diphoton trigger for neutralino ctau>10 m

• Ideas for Run 3:

- Can explore loosening/removing H_T requirement when photon $p_T > 150$ GeV, to improve signal efficiency
- Can try a similar trigger but for at least 2 photons, which will allow thresholds to be lowered and improvements to be made in the 2 photon channel

CMS Displaced Dijet Triggers

Displaced dijet triggers used successfully in Run 2 for displaced jets search (arxiv:2012.01581)

displaced, delayed jets

- <u>Core idea</u>: use displaced tracking iteration at the HLT to count the number of prompt and displaced tracks associated with jets
 - Allows for significant reduction in H_T threshold
- Two dedicated displaced dijet triggers in Run 2:

"Displaced" trigger	"Inclusive" trigger
Calo H _T > 430 GeV	• Calo H _T > 650 GeV
At least 2 jets with:	At least 2 jets with:
• p _T > 40 GeV	• p _T > 60 GeV
 At most two prompt tracks (d₀ < 1 mm) 	 At most two prompt tracks (d₀ < 1 mm)
• At least one displaced track (d ₀ > 0.5 mm, d ₀ sig <5)	
Better efficiency for low-mass LLPs (< 500 GeV)	Better efficiency for high-mass LLPs
	with small (< 3 mm) or large (>300 mm) ctau

- Idea for Run 3: use displaced and prompt tracks for other displaced objects at the HLT
- Displaced tracking at the HLT could benefit many LLP analyses!

CMS HCAL L1 Improvements for Run 3

Studying new L1 HCAL handles to target LLPs:

E_{HCAL}/E_{ECAL}

- Powerful discrimination
- Rates being studied for different E_{HCAL}/E_{ECAL} and jet energy thresholds

Already successfully used by ATLAS

Depth

 Could allow substantial reduction in jet energy threshold

Timing

- Decay products of heavy LLPs are delayed
- Time-to-digital converter (TDC) info available for each HBHE channel in Run 3
- Shows promise for ctau>1m

CMS ECAL Timing at the HLT for Run 3

- **ECAL timing**: powerful offline tool for LLPs with successful Run 2 delayed jets search (doi:10.1016/j.physletb.2019.134876)
- But this analysis had to rely on high MET trigger since no ECAL timing reco at HLT in Run 2
 - MET trigger limits the sensitivity to low mass and compressed models
- A way to target lighter LLPs: make use of ECAL timing at the HLT in Run 3
- Can seed with new L1 triggers targeting delayed signatures in the HCAL
 - Also investigating seeding with tau triggers at L1 and/or dedicated HCAL timing trigger
- Can combine timing with prompt track veto (a la displaced dijets) to keep HLT thresholds low
- Possibly also helpful for:
 - Delayed photons/electrons
 - Monopoles:
 - Detector signature: large, narrow energy deposits in calorimeter + large tracker ionization
 - Needs a dedicated trigger that avoids or mitigates the L1 spike cleaning

Hadronic Clusters in the Muon System

- New LLP signature for CMS:
- Neutral LLPs with ctau> 1m could decay hadronically beyond the calorimeter with:
 - No tracks, no jets, high-multiplicity shower (>500 hits) in the muon system

Run 3 trigger idea:

- Current L1 muon trigger is limited to 2 track segments per chamber per BX
- Could add a stub counter in the logic of the DT and CSC L1 trigger primitives
 - Takes advantage of recent CSC trigger upgrade
- HLT: Cut on cluster properties to reduce the rate
- Investigating available bandwidth at L1 and HLT

LL Scouting/Trigger Level Analysis

• Performing an analysis on trigger objects can enable good sensitivity to $c\tau$ <10 cm and low mass

- In Run 2 at CMS:
 - Scouting triggers do not explicitly require large displacement
 - Search for displaced dimuons using scouting triggers underway
- Ideas for Run 3:
 - Can retain sensitivity to displaced objects by not applying strict ID
 - Could add info for additional background rejection
- See Jakob, William, Darin's talks

Other Thoughts about LLP Triggers in Run 3

Other possible trigger developments for Run 3:

- Displaced hadronic taus?
- Need to make smart use of cross triggers and triggering on prompt associated objects
- Should take advantage of GPUs in the HLT
 - Perfect for machine learning (see Maximilian, David, and Ben's talks)
- Where can parked data be useful? Can B-parked dataset be useful for LLPs?

Lessons learned, in general:

- Need to make sure HLT paths give high efficiency, particularly vs displacement
- Need to develop L1/HLT trigger DQM and validation to spot trigger problems early
- In addition to staying within rate budgets, need to make sure CPU time is within constraints as well
- Should explore porting offline developments to the HLT
- Should think about skims and the event content needed
- ... stay vigilant!

High-Luminosity LHC

See Simon's talk for displaced vertex triggers at the HL-LHC

HL-LHC

- 14 TeV center-of-mass energy
- About 20 times more data by the end
- Expect up to 200 interactions per pp collision, unprecedented amount of radiation

CMS Detector

- Higher geometrical coverage, with high resolution for all subdetectors
- New timing detector
- New L1 track trigger
- New high-granularity endcap calorimeter (HGCAL)

High pileup: about 200 additional proton collisions per bunch crossing

Track information at level 1 trigger

Higher trigger rates

Replace barrel calorimeter readout electronics

Extend muon coverage

New high-granularity endcap calorimeter

CMS L1 Track Trigger and LLPs

- Baseline track trigger targets prompt tracks
- Extended track trigger targets displaced tracks (~1 cm)
 - Baseline algorithms + few modules to target large displacements

Large improvement in efficiency with extension for displaced tracks:

Enough events for discovery!

Benchmark model:

Extension for displaced tracks

Baseline track trigger

CNN Trigger for LLP Decays in HGCal

- Realized there is currently no way to trigger at L1 on displaced/delayed signatures in the forward region with CMS at the HL-LHC
- Developed a **fast convolutional neural network** (CNN) to find **nonpointing showers** in a **highgranularity calorimeter** (HGCal)
 - Current HGCal L1 reconstruction assumes pointing showers
- Computer vision image recognition can easily differentiate between nonpointing and pointing showers
- Proof of concept paper with toy calorimeter: doi:10.1088/1748-0221/15/12/P12006

April 9, 2021 Juliette Alimena

Summary

- Run 3 will be a very exciting time for LLP searches!
- Developments ongoing for L1 and HLT
- What else? Keep the ideas coming! **Now** is the time to work on this!
- Don't forget about the HL-LHC: New detectors provide explicit opportunities for LLPs, besides the increased physics reach and more data
- Plenty of phase space still to explore! Triggers are the KEY

Backup

Displaced Particles in CMS Phase 2 at Level 1

- Can we trigger at level 1 (L1) on displaced/ delayed particles in the CMS at the HL-LHC?
- Track trigger:
 - Only for charged particles
 - Only for $|\eta| < 2.1$
 - Only for $|d_0|$ < 10 cm, with the track trigger extension
- MIP Timing Detector (MTD):
 - Will not be used at L1
- ECal and HCal barrel:
 - Timing available at L1
- High-Granularity Calorimeter (HGCal):
 - No timing at L1
 - Current HGCal L1 reconstruction assumes pointing showers
- Displaced/delayed signatures from LLPs in the forward region could be completely missed with CMS in Phase 2, without a dedicated trigger
- Example LLP signature: Emerging jets (t-channel production)

21

Efficiency vs Energy and Angle

- Select a working point of 15 kHz based on previous slide
- Promising, model-independent results:

- Now working with CERN High Level Synthesis for Machine Learning (HLS4ML) group to see how feasible this would be for FPGAs in the real Phase 2 CMS HGCal at L1
- Ultimate goal is to have this as a trigger for the CMS HGCal