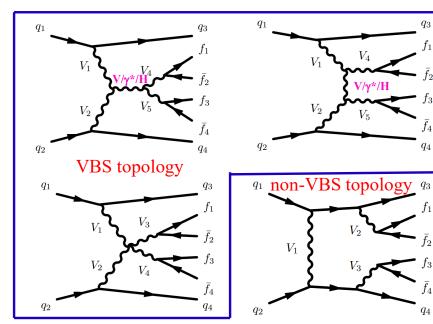
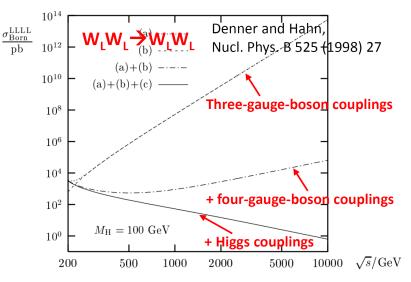
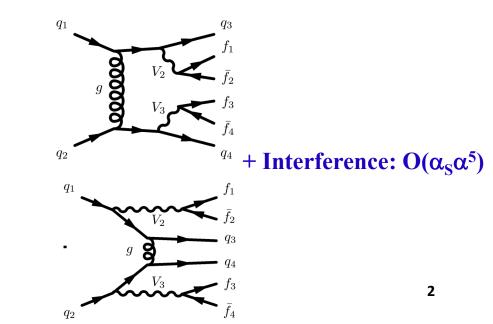
Vector boson scattering and Triboson results from ATLAS and CMS

Junjie Zhu University of Michigan April 7, 2021

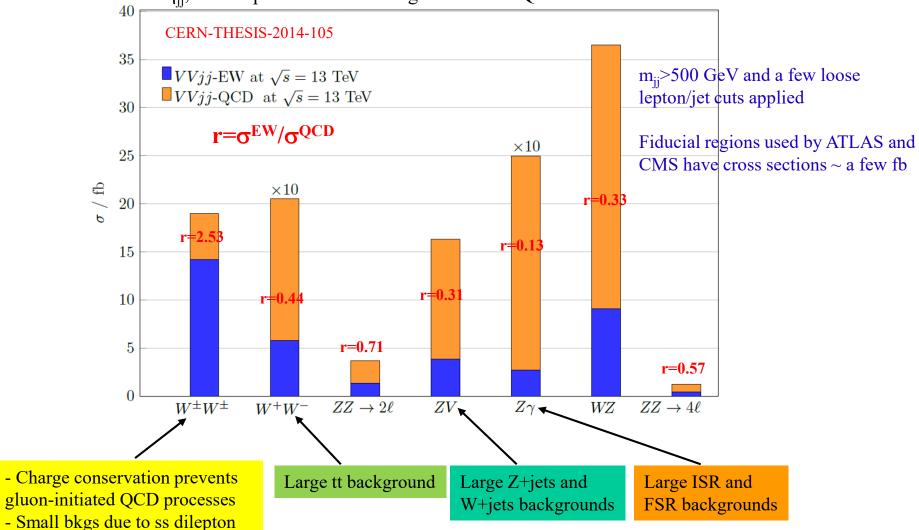

Introduction


- Higgs mechanism: Goldstone bosons resulting from EWSB are incorporated into the W and Z bosons and become their longitudinal components
- Critical to test EWSB and study its dynamics by studying the interactions of longitudinal modes of W or Z bosons (longitudinal VBS):

 $V_L V_L \rightarrow V_L V_L (V=W, Z)$

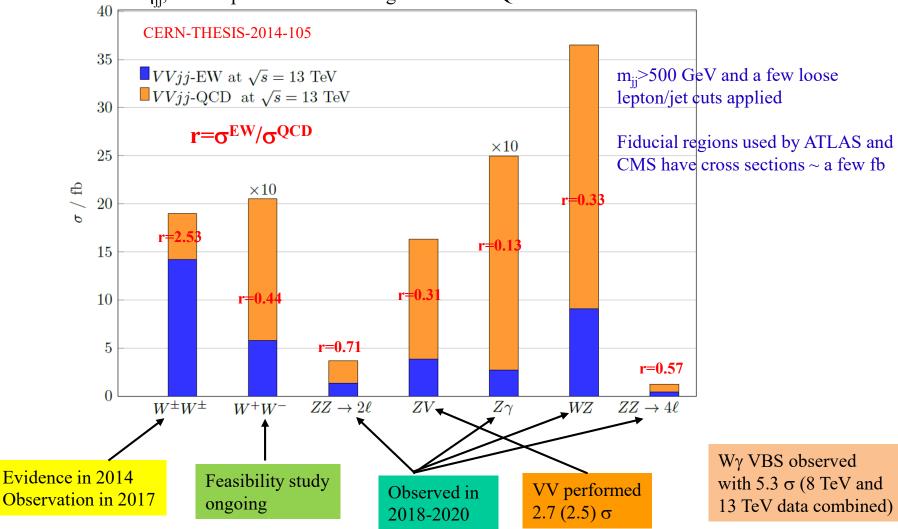

The SM Higgs boson is needed to unitarize the scattering amplitude

EW production: $O(\alpha^6)$



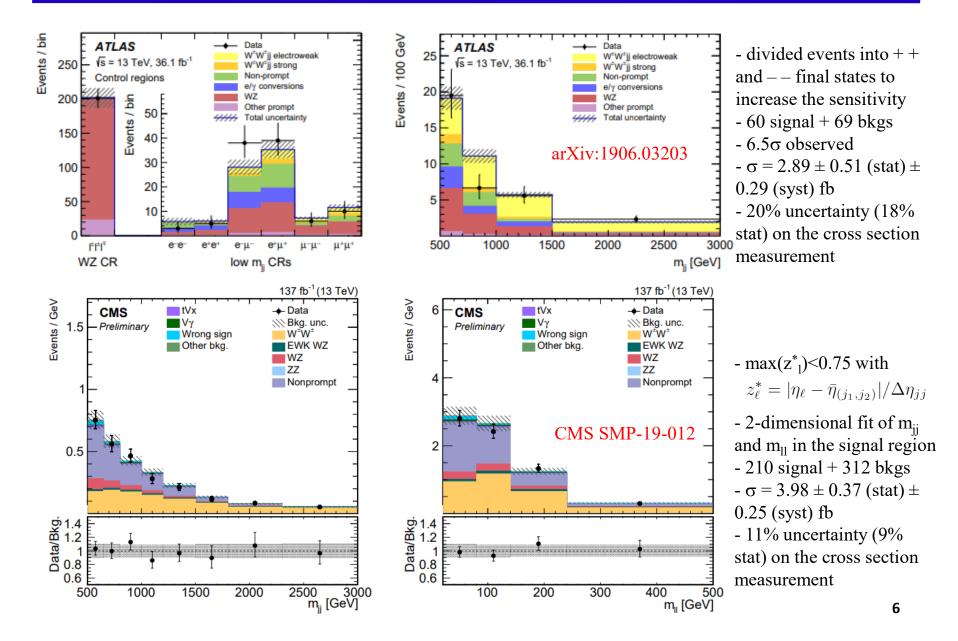
+ QCD production: $O(\alpha_s^2 \alpha^4)$

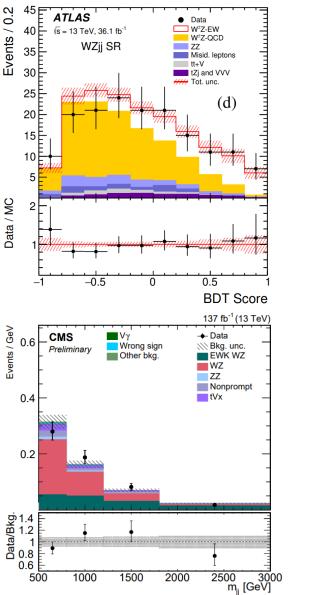
VBS processes

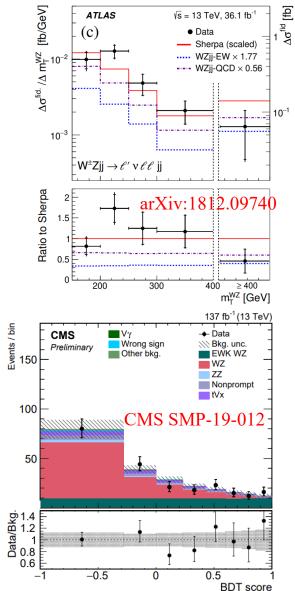

Detector signatures for EW VBS topology: two jets with large m_{jj} and $\Delta \eta_{ij}$, central part of the scattering is free from QCD activities

- Easier to calculate theoretically
- Golden channel for VBS

VBS processes

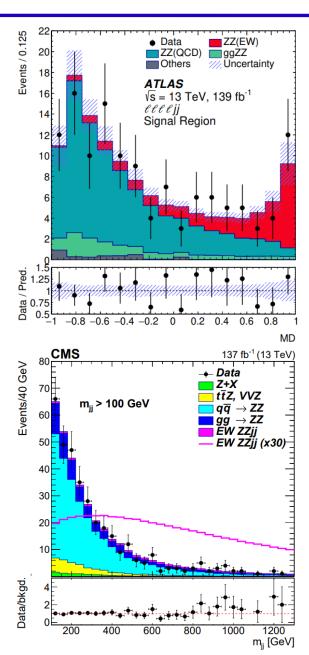

Detector signatures for EW VBS topology: two jets with large m_{jj} and $\Delta \eta_{ij}$, central part of the scattering is free from QCD activities

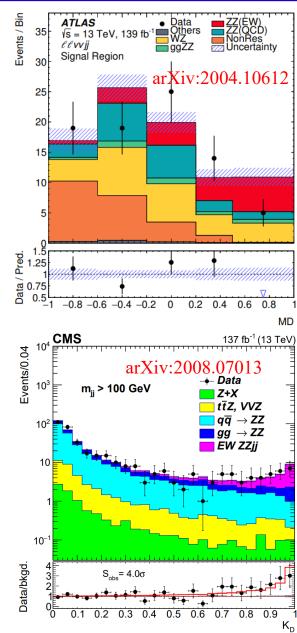

Analysis strategies


- Event selection:
 - Single-lepton or di-lepton triggers
 - Isolated electrons or muons (looser requirements applied for Z leptons to increase the signal acceptance)
 - Veto events with additional low p_T leptons to reduce prompt backgrounds
 - High p_T jets (use particle-flow jets or jet-vertex-fraction to reduce pileup jets)
 - Veto events with b jets to reduce the tt contribution
 - Signal regions are required to have large m_{jj} and $\Delta\eta_{jj}$
- Background estimation:
 - Backgrounds due to jet-faked leptons, photon-faked leptons or charge flip are often estimated using data-driven techniques
 - Dominant prompt background shapes are determined from MC, but normalizations are often derived from data
 - Data-driven or simulation-driven methods are validated in background validation regions that have similar cuts as used in the signal region
- Fiducial regions:
 - Defined by applying similar event selection cuts at the truth level
 - Often interference contributions are included as part of the signal
- Signal extraction:
 - Multivariate variables used in many analyses to reduce QCD VBS and other background contributions
 - A simultaneous fit is performed for both signal and background control regions

Same-sign WW VBS

WZ VBS





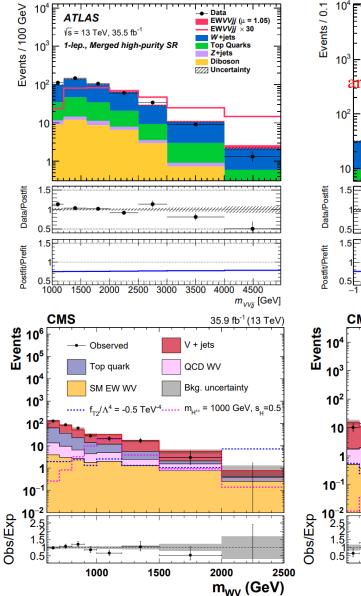
- 44 signal + 123 bkgs - 5.3 σ observed - $\sigma = 0.57 \pm 0.14(\text{stat}) \pm 0.08$ (syst) fb for a single leptonic decay mode - 28% uncertainty (25% stat) on the cross section measurement

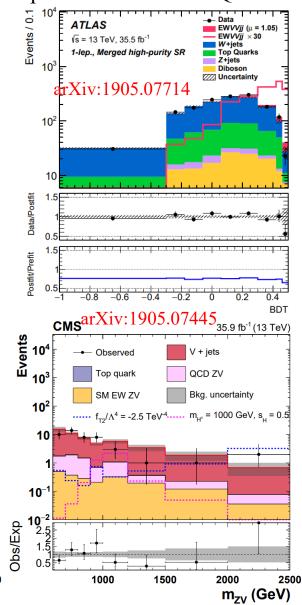
- 69 signal + 160 bkgs - 6.8 σ observed - σ = 1.81±0.39(stat) ±0.14 (syst) fb - 23% (21% stat) uncertainty on the cross section measurement

ZZ VBS

- 41 and 212 ν channels included

- 41: 21 signal + 93 bkgs, 5.5 σ - σ = 1.27±0.12 (stat)±0.08 (syst) fb - 11% uncertainty (10% stat) on the cross section measurement


- 212v: 12 signal + 66 bkgs, 1.2 σ - σ = 1.22±0.30 (stat)±0.18 (syst) fb - 28% uncertainty (25% stat) on the cross section measurement


- 4l channel used - Inclusive, loose (m_{jj} >400 GeV) and tight (m_{jj} >1 TeV) VBS regions defined - 24 signal + 346 bkgs (inclusive), 4.0 σ - $\sigma = 0.33\pm0.11$ (stat) ±0.04 (syst) fb

- 35% uncertainty (33% stat) on the cross section measurement

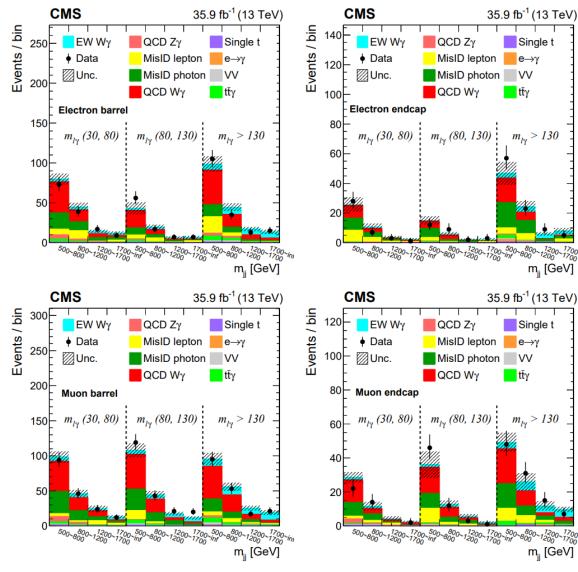
Semi-leptonic VV VBS channels

Stronger limits set by semi-leptonic channels on aQGCs and new physics models

- VV events with 0, 1 or 2 leptons and either 2 resolved jets or 1 merged jet as well as two tagging jets

- Main sensitivity comes from 1 lepton with 1 merged jet

- VVjj electroweak production: 2.7 σ - σ = 45.1±8.6(stat)±15.9(syst) fb


- 40% uncertainty (20% stat) on the cross section measurement

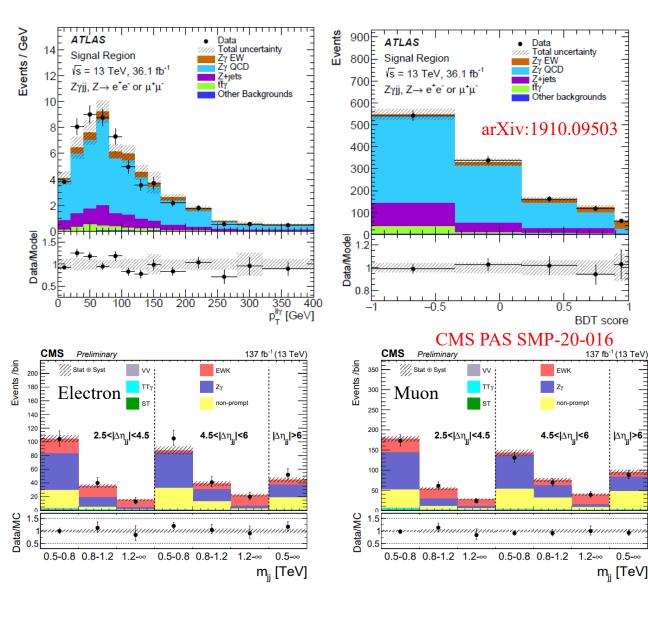
VV events with 1 or 2 leptons and 1 merged jet together with two tagging jets
Focused on aQGCs and new physics
Limits set on aQGCs in the EFT framework and resonant charged Higgs boson production (H[±]→W[±]Z and H^{±±}→W[±]W[±])

- Comparable or better limits compared to limits obtained from leptonic $W^{\pm}W^{\pm}jj$ and WZjj channels with a dataset that is four times larger 9

Wy VBS

arXiv:2008.10521

- Require $\Delta R > 0.5$ between any two selected objects (γ , lepton, jets)


- Cuts on $y_{W\gamma}$ and $\phi_{W\gamma}$ to ensure the momentum of the $W\gamma$ system is balanced by that of the dijet system - 2-dimensional fit of m_{jj} and $m_{l\gamma}$ in the signal region

- 164 signal + 814 bkgs, 5.3 σ

- $\sigma = 20.4 \pm 2.8$ (stat) ± 3.5 (syst) fb

- 22% uncertainty (14% stat) on the cross section measurement

Zy VBS

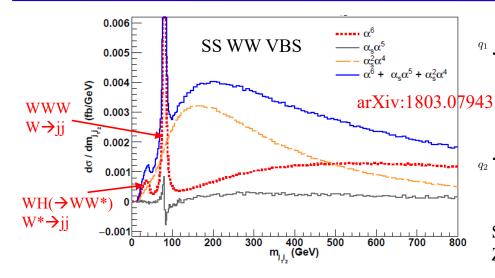
- The centrality $\zeta(Z\gamma) < 5$

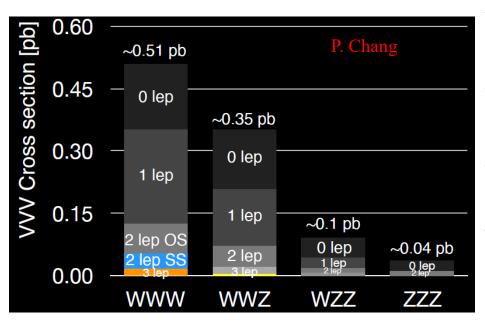
- Require $\Delta R > 0.4$ between a lepton and a photon

- $m_{II} + m_{II\nu} > 180 \text{ GeV}$
- 104 signal + 1118 bkgs, 4.1 σ
- $-\sigma = 7.8 \pm 1.5$ (stat) ± 1.0 (syst) fb

- 26% uncertainty (19% stat) on the cross section measurement

- Require $\Delta R > 0.7$ between a lepton and a photon
- $m_{Z_{y}} > 100 \text{ GeV}$


Δη_|>6


0.5-∞

m_{ii} [TeV]

- Cut on $\phi_{Z_{\mathcal{V}}}$ to ensure the momentum of the $Z\gamma$ system is balanced by that of the dijet system
- 292 signal + 1429 bkgs, 9.4 σ
- $-\sigma = 5.21 \pm 0.52$ (stat) ± 0.56 (syst) fb
- 15% uncertainty (10% stat) on the cross section measurement
- A few unfolded differential
- distributions are measured 11

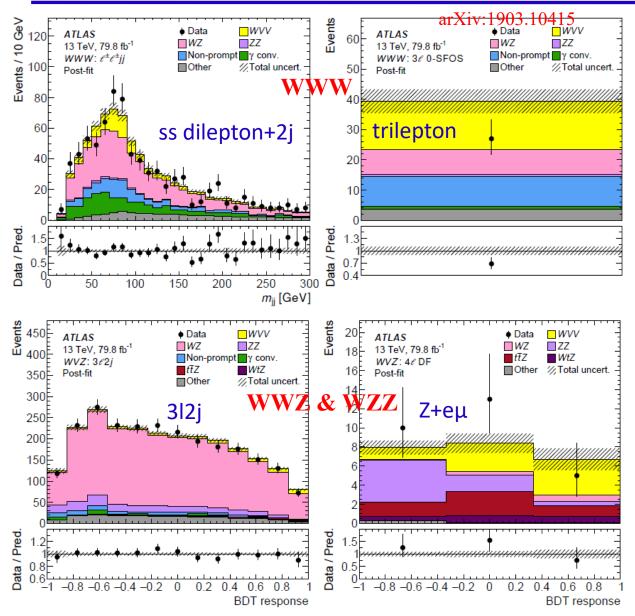
Triboson production

Similar Feynman diagrams as VBS: QGC vertex, $Z/\gamma^*/H$ -exchange, emission from a fermion

 q_3

 f_4 q_4

WWW:


3% BR to $l^{\pm}vl^{\pm}vjj \rightarrow 2500$ evts expected 1% BR to $3l3v \rightarrow \sim 700$ evts expected WWZ:

1% to $311\nu jj \rightarrow \sim 500$ evts expected 0.3% to $412\nu \rightarrow \sim 150$ evts expected WZZ:

0.1% to $511\nu \rightarrow \sim 15$ evts expected ZZZ:

0.03% to $61 \rightarrow \sim 1.5$ evts expected Smaller yields after taking into account kinematical and geometrical acceptances plus ~80% detection efficiency per lepton 12

Evidences of WWW and WVZ productions

- Same-sign dilepton and trilepton with 0 SFOS lepton pair

- Dominant WZ backgrounds determined from data

- Fake backgrounds estimated using data-driven methods

- 3.2σ observed

- $\sigma = 0.65 \pm 0.16(\text{stat}) \pm 0.16(\text{syst}) \text{ pb}$

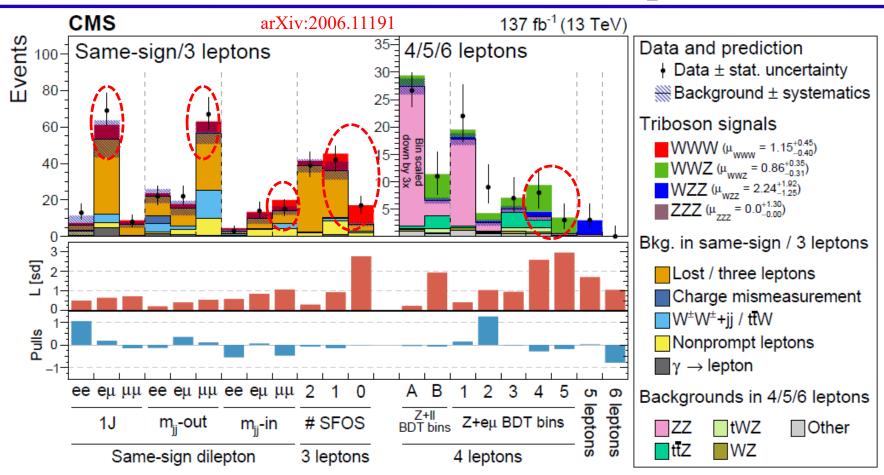
- 35% uncertainty (25% stat) on the cross section measurement

- WVZ(\rightarrow lvjjll): 31 (1, 2, 3 jets) channels

- WWZ(\rightarrow lvlvll) + WZZ(jjllll): 41 (Z+eµ, Z+ll within and outside of the Z mass window) channels

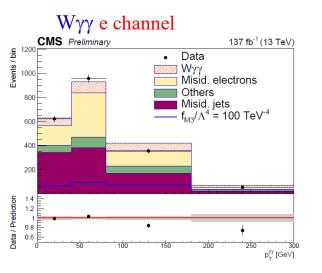
- All backgrounds determined from simulation samples, modellings checked in data CRs

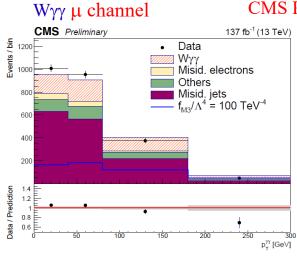
- BDT variables are used


- 3.2σ observed

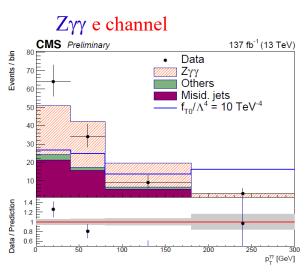
- $\sigma = 0.55 \pm 0.14(\text{stat}) \pm 0.15(\text{syst}) \text{ pb}$

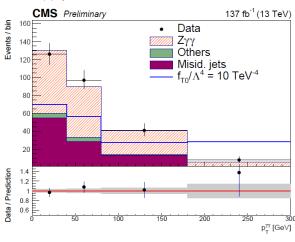
- 37% uncertainty (25% stat) on the


cross section measurement 13


Observation of combined VVV production

- WWW: same-sign dilepton (separated into 1 and ≥2 jet categories) and trilepton channels included (0, 1, and 2 SFOS channels included), cuts made on two BDT variables trained to separate the signal from non-prompt and other backgrounds
- WWZ: only considered 4-lepton channels, main sensitivity comes from the Z+eµ channel, BDT used
- 2.5 σ for WWW, 3.5 σ for WWZ, 1.6 σ for WZZ, 0 σ for ZZZ \rightarrow 5.7 σ for combined VVV production

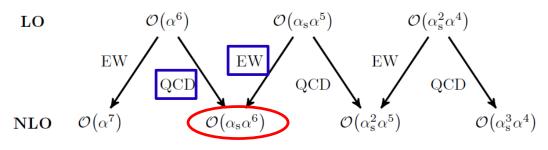

Wyy and Zyy production



CMS PAS SMP-19-013

- Require $\Delta R > 0.4$ between a lepton and a photon
- Remove photons if $m_{_{e\gamma}}$ or $m_{_{e\gamma\gamma}}$ is close to the Z pole mass
- "Misid electrons" important for the e channel due to $Z\gamma \rightarrow ee\gamma$ with $e \rightarrow \gamma$
- 748 signal + 3638 bkgs, 3.1σ
- $\sigma = 13.6 \pm 1.9 (\text{stat}) \pm 4.0 (\text{syst}) \text{ pb}$
- 33% uncertainty (14% stat) on the cross section measurement
- Require ΔR >0.4 between a lepton and a photon
- Remove photons if $m_{_{e\gamma}}$ or $m_{_{e\gamma\gamma}}$ is close to the Z pole mass
- Background due to "Misid. Electrons" is small due to the requirement on the Z boson
- 225 signal + 157 bkgs, 4.8σ
- $\sigma = 5.41 \pm 0.58(stat) \pm 0.70(syst) \ pb$
- 17% uncertainty (11% stat) on the cross section measurement

 $Z\gamma\gamma \mu$ channel

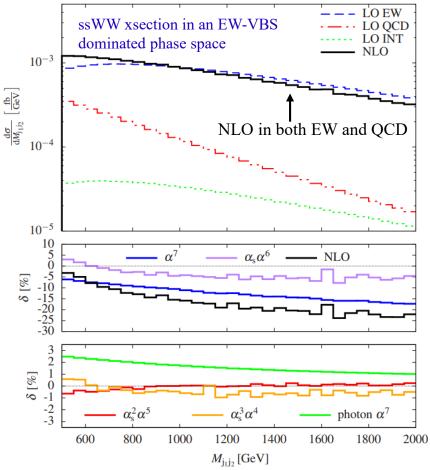

Personal opinions about Run 3 analyses

- Promising VBS and triboson studies in Run 3:
 - Most analyses are still dominated by statistical uncertainty
 - The improvement should be better than the naïve $\sqrt{2}$ improvement (normalizations for dominant prompt WZ/ZZ backgrounds, and fake backgrounds were determined from data)
 - VBS analyses: expect $\delta\sigma/\sigma \sim 10\%$ or better for most processes; expect polarized VBS studies and differential cross section measurements; expect to see more efforts spent on semileptonic channels
 - Triboson analyses: expect to observe individual WWW and WWZ production; improve search sensitivities for WZZ and ZZZ production
- Theoretical:
 - Further developments on higher-order corrections and event generators: larger theoretical uncertainties assigned due to differences coming from different assumptions/approximations used in the calculations and some inconsistency/bugs found in different generators; more accurate modelling of 3rd jet for VBS analyses
 - Further developments on calculations of polarized VBS processes
 - EFT framework
- Experimental:
 - Improvements on lepton and jet reconstruction and identification
 - Lower p_T cuts and looser IDs on leptons to increase the signal acceptance and reject (often dominant) prompt backgrounds (5 GeV at ATLAS)
 - Multivariate techniques
 - VBS studies: quark-like and gluon-like jet separation, dijet selection using two leading p_T jets or jets with the largest m_{ij} or $\Delta \eta_{ij}$
 - Semileptonic VBS studies: large-R jet reconstruction and identification
 - Polarized VBS studies in fully-leptonic and semileptonic channels: neutrino p_z calculation

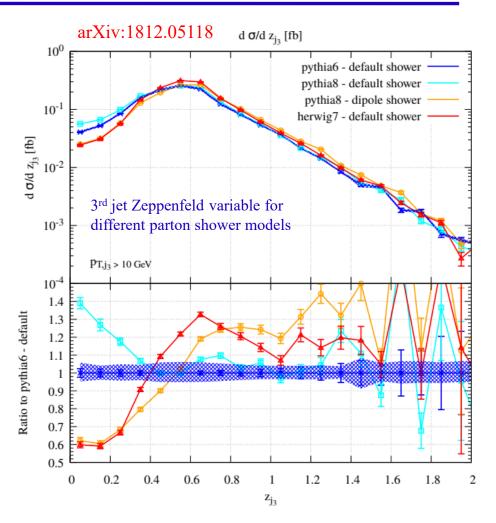
• ..

Theoretical predictions

- Various generators available: MadGraph, Powheg, Sherpa, VBFNLO, PHANTOM, EONSAY, MoCaNLO+RECOLA
- Different approximations used and higher-order corrections implemented

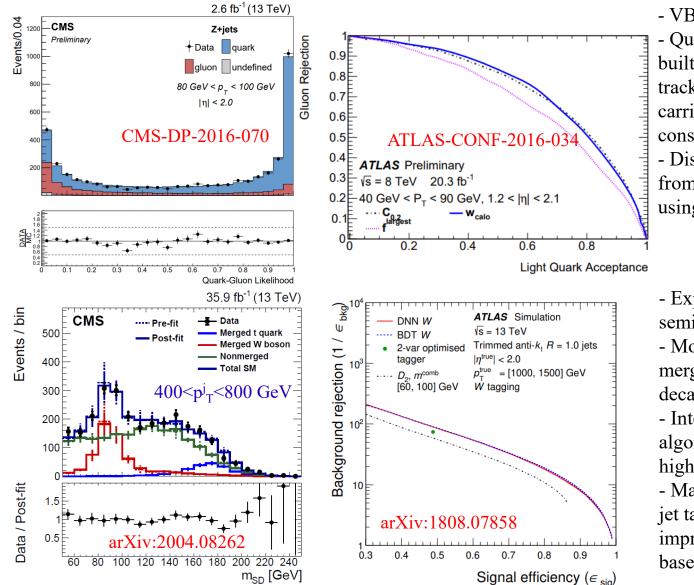

- LO: arbitrary choice to include interference contribution to either the EW signal or the QCD background
- NLO: some of these corrections are of mixed types
- Important to measure fiducial cross sections of the EW and QCD production separately as well as their sum
- To reduce computational complexity, some approximations are made, small differences in typical VBS phase spaces, but could be >5% in inclusive phase spaces

	Order	Ο(α ⁷)	Ο(α _s α ⁶)	Ο(α²₅α⁵)	Ο(α³ _s α4)
ss WW VBS	NLO	1	1	1	1
	NLO+PS	1	\ *	X	1
WZ VBS	NLO	1	1	X	1
	NLO+PS	Х	\ *	X	1
ZZ VBS	NLO	1	1	x	1
	NLO+PS	X	\ *	x	1
os WW VBS	NLO	X	\ *	x	1
	NLO+PS	X	\ *	x	1
Wγ VBS	NLO	1	x	X	1
Zγ VBS	NLO	1	X	X	1


arXiv:2102.10991

Theoretical predictions

arXiv:1708.00268


- σ_{NLO}/σ_{LO}~83% for ssWW, mainly due to large negative EW corrections (similar size for other VBS processes) in the high-energy limit
- The scale dependence is reduced by a factor of 5

- Different parton-shower models affect the 3rd jet
- 3rd jet information is often used in the event selection or included in the multivariate technique

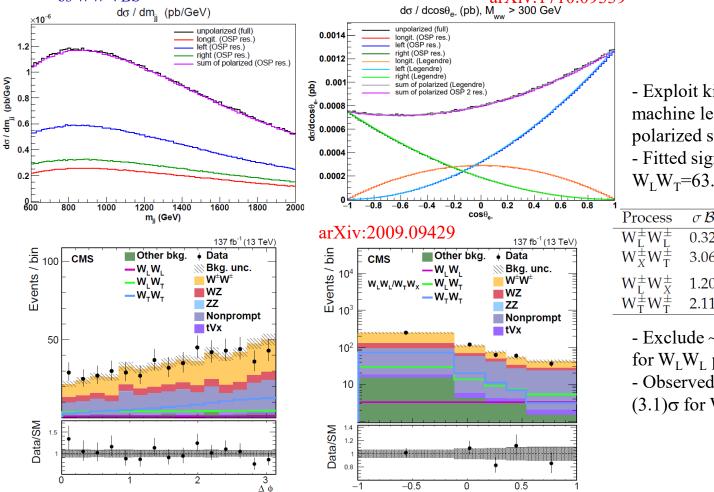
Quark-gluon jet tagging and merged jets

Large experimental uncertainties come from jets

VBF jets are quark-like jets
Quark-gluon jet discriminant
built from variables such as # of
tracks, jet width, fraction of energy
carried by the largest energy
constituent

- Discriminant shapes obtained from MC simulation and validated using Z+jets and dijet events

Expect more efforts spent on semileptonic channels in Run 3
Most sensitive channels have a merged jet from a hadronicallydecayed vector boson
Intensive development of algorithms to identify jets from highly-boosted W/Z/H/t
Machine-learning techniques for jet tagging shows strong improvement compared to cutoff-


improvement compared to cutoffbased methods 19

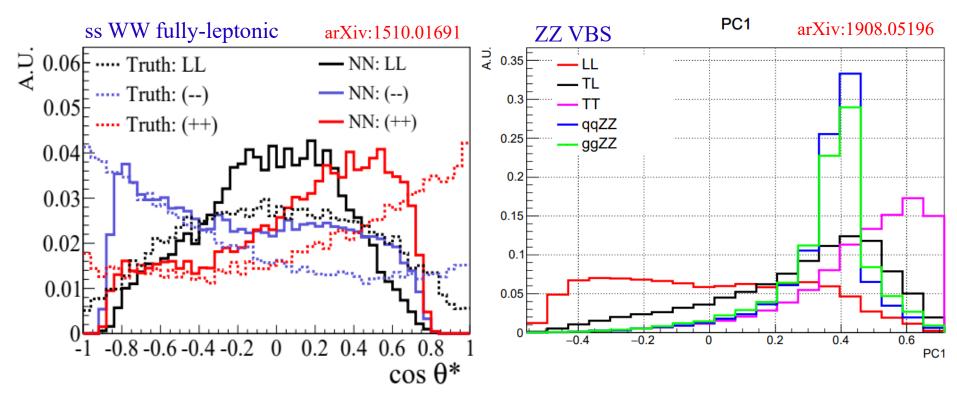
Polarized VBS

- Expect that we will include polarization measurements for all VBS processes
- Vector bosons are not external particles and their polarization states interfere with each other, the interference terms integrate to 0 over the whole range of the decay azimuthal angle

BDT score

 Polarization fractions depend on the reference frame used arXiv:1710.09339

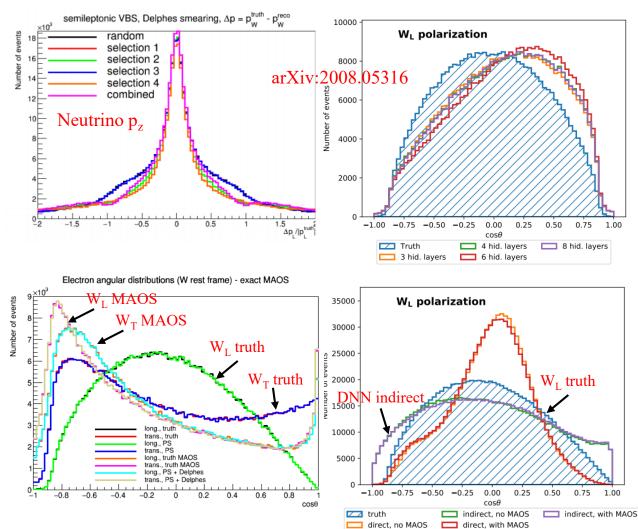
- Exploit kinematic differences with machine learning to separate different polarized scattering processes - Fitted signal yields: $W_L W_L = 16.0 \pm 18.3$, $W_L W_T = 63.1 \pm 10.7$, $W_T W_T = 110.1 \pm 18.1$


Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W_L^{\pm}W_L^{\pm}$	$0.32^{+0.42}_{-0.40}$	0.44 ± 0.05
$W_X^{\pm}W_T^{\pm}$	$3.06^{+0.51}_{-0.48}$	3.13 ± 0.35
$W_L^{\pm}W_X^{\pm}$	$1.20\substack{+0.56\\-0.53}$	1.63 ± 0.18
$W_T^{\pm}W_T^{\pm}$	$2.11_{-0.47}^{+0.33}$	1.94 ± 0.21

- Exclude ~2×SM production at 95% CL for $W_L W_L$ production

- Observed (expected) significance of 2.3 (3.1) σ for $W_L W_X$ production

Machine learning for polarized measurements


Need to develop more powerful discriminators to separate LL polarization from others

- Not easy to reconstruct the W rest frames due to two neutrinos in the final state
- Use a deep NN with regression to map measurable quantities to the truth cos0* values for ss WW VBS events (charged lepton direction in the W rest frame wrt the W boson direction, need to fully reconstruct neutrinos)
- Double the sensitivity with variables studied before
- Deep NN used, standardization and Yeo-Johnson power transformation used to each input variable, principle component analysis (PCA) applied to the 5-dimensional outputs of the DNN, and then 2-3 dimensional fits are performed
- 40% improvement compared to a previous study using BDTs
 21

Neutrino p_z calculations

- Important to be able to reconstruct all kinematical variables for VBS studies
- Difficult to reconstruct neutrino p_z in semi-leptonic and fully-leptonic channels

ssWW VBS semi-leptonic:

Use the W mass constraint to find neutrino p_z, sometimes two solutions found, often pick up a smaller value, which may not be correct
Use a DNN with binary classification technique to find the correct solution

ssWW VBS fully-leptonic:

- Use the M_T 2-Assisted On-Shell (MAOS) algorithm to reconstruct p_z of the two neutrinos

- Use a DNN with regression technique
- Direct: reconstruct $\cos\theta$ using DNN

- Indirect: first use the regression method to derive two neutrino momenta, and then calculate $\cos\theta$

Conclusions

- VBS studies:
 - Important for validate the Higgs mechanism and study the dynamics of EWSB
 - Almost all VBS processes have been observed by ATLAS and CMS
 - 10-30% uncertainty on fiducial cross section measurements, dominated by statistical uncertainty
 - Aim to reduce the uncertainty to $\sim 10\%$ or lower for most processes in Run 3
 - Focus more on differential and polarized VBS studies
 - More efforts will be spent on semi-leptonic channels
- Triboson studies:
 - Among least-studied SM processes and important to search for aQGCs/aTGCs
 - Evidences for WWW, WWZ, Wγγ, Zγγ processes obtained
 - Aim to observe all triboson processes except WZZ and ZZZ in Run 3
- Very active experimental and theoretical research areas
- Annual VBScan and MBI workshops to discuss these topics