Probing the muon g-2 anomaly at a Muon Collider

Paride Paradisi

University of Padova and INFN

5th Muon Collider Physics Potential Meeting

5 March 2021, CERN

Based on arXiv:2012.02769 in collaboration with D. Buttazzo

- **1** Status of the muon g 2 as of early 2021
- **2** New Physics explanations of the muon g 2 anomaly
- **3** The muon g 2 anomaly at a Muon Collider
- 4 Future prospects

• Status of the muon $a_\mu\equiv rac{g_\mu-2}{2}$ as of early 2021 [T. Aoyama *et al.*, Phys. Rept. '20]

 $a_{\mu}^{\text{EXP}} = 116592089(63) \times 10^{-11}$ $a_{\mu}^{\text{SM}} = 116591810(43) \times 10^{-11}$

 $\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} \equiv a_{\mu}^{\text{NP}} = 279 \, (76) \times 10^{-11}$ (3.7 σ discrepancy!)

$$\underbrace{(0.1)_{\rm QED}, (1)_{\rm EW}, (18)_{\rm HLbL}, (40)_{\rm HVP},}_{(43)_{\rm TH}} (63)_{\delta a_{\mu}^{\rm EXP}}.$$

- Hadronic uncertainties (HLbL & HVP) can be hardly go below the current values.
- The E989 Muon g-2 experiment will deliver a measure of a_{μ}^{EXP} by this spring.
- We expect $\delta a_{\mu}^{\text{EXP}} \lesssim 2 \times 10^{-10}$ by the E989 Muon g-2 experiment in a few years.
- Low-energy determinations of Δa_μ assume that systematic and hadronic uncertainties are under control at the outstanding level of Δa_μ ~ 10⁻⁹!

A completely independent test of Δa_{μ} is very desirable!

Connecting $(g-2)_{\mu}$ with high-energy processes

• Δa_{μ} discrepancy at $\sim 3.7 \sigma$ level:

$$egin{aligned} \Delta a_\mu &= a_\mu^{ ext{EXP}} - a_\mu^{ ext{SM}} \equiv a_\mu^{ ext{NP}} = (2.79 \pm 0.76) imes 10^{-9} \ \Delta a_\mu &\equiv a_\mu^{ ext{NP}} pprox (a_\mu^{ ext{SM}})_{\textit{weak}} pprox rac{m_\mu^2}{16\pi^2 v^2} pprox 2 imes 10^{-9} \end{aligned}$$

A weakly interacting NP at Λ ≈ v can naturally explain Δa_μ ≈ 2 × 10⁻⁹.
 Λ ≈ v favoured by the *hierarchy problem* and by a WIMP DM candidate.

LEP and LHC bounds disfavour Λ ≈ ν and two possibilities emerge:

- ▶ NP is very light ($\Lambda \lesssim 1$ GeV) and feebly coupled to SM particles.
- NP is very heavy ($\Lambda \gg 1$ TeV) and strongly coupled to SM particles.
- Connecting Δa_{μ} with high-energy scattering processes ($\Lambda \gg 1$ TeV)

$$\mathcal{L} = \frac{C_{e\gamma}^{\ell}}{\Lambda^2} \left(\bar{\ell}_L \sigma^{\mu\nu} e_R \right) H F_{\mu\nu} + h.c. \qquad H = \mathbf{v} + \frac{h}{\sqrt{2}}$$

$$\Delta a_{\mu} \sim rac{m_{\mu} v}{\Lambda^2} C_{e\gamma}^{\mu} \quad \iff \quad \sigma_{\mu\mu o h\gamma} \sim rac{s}{\Lambda^4} |C_{e\gamma}^{\mu}|^2$$

SMEFT Lagrangian relevant for Δa_ℓ

$$\mathcal{L} = \sum_{V=B,W} \frac{C_{\theta V}^{\ell}}{\Lambda^{2}} \left(\overline{\ell}_{L} \sigma^{\mu \nu} e_{R} \right) HV_{\mu \nu} + \sum_{q=c,t} \frac{C_{T}^{\ell q}}{\Lambda^{2}} \left(\overline{\ell}_{L} \sigma_{\mu \nu} e_{R} \right) \left(\overline{Q}_{L} \sigma^{\mu \nu} q_{R} \right) + h.c.$$

$$\overset{\ell_{L}}{\overbrace{\bar{\ell}_{R}}} \overset{v}{\overbrace{\ell_{e_{T}}}} \overset{\ell_{L}}{\overbrace{\bar{\ell}_{R}}} \overset{v}{\overbrace{\ell_{e_{T}}}} \overset{v}{\overbrace{\ell_{e_{T}}}} \overset{\ell_{L}}{\overbrace{\bar{\ell}_{R}}} \overset{v}{\overbrace{\ell_{e_{T}}}} \overset{\ell_{L}}{\overbrace{\bar{\ell}_{R}}} \overset{v}{\overbrace{\ell_{e_{T}}}} \overset{v}{\overbrace{\ell_{e$$

Figure: Connection between the Feynman diagrams for leptonic *g*-2 (upper row) and high-energy scattering processes (lower row) within the SMEFT.

$$\Delta a_{\mu} \sim rac{m_{\mu}v}{\Lambda^2} C_{eV,T} \quad \iff \quad \sigma_{\mu\mu
ightarrow f} \sim rac{s}{\Lambda^4} |C_{eV,T}|^2 \quad (f = e\gamma, eZ, q\bar{q})$$

SMEFT Lagrangian relevant for Δa_ℓ

$$\mathcal{L} = \sum_{\mathbf{V}=B,\mathbf{W}} \frac{C_{e\mathbf{V}}^{\ell}}{\Lambda^2} \left(\bar{\ell}_L \sigma^{\mu\nu} e_R \right) H V_{\mu\nu} + \sum_{q=c,t} \frac{C_T^{\ell q}}{\Lambda^2} (\bar{\ell}_L \sigma_{\mu\nu} e_R) (\overline{Q}_L \sigma^{\mu\nu} q_R) + h.c.$$

$$\Delta a_{\ell} \simeq \frac{4m_{\ell}v}{e\Lambda^2} \left(C_{e\gamma}^{\ell} - \frac{3\alpha}{2\pi} \frac{c_W^2 - s_W^2}{s_W c_W} C_{eZ}^{\ell} \log \frac{\Lambda}{m_Z} \right) - \sum_{q=c,t} \frac{4m_{\ell}m_q}{\pi^2} \frac{C_T^{\ell q}}{\Lambda^2} \log \frac{\Lambda}{m_q},$$

$$\frac{\Delta a_{\mu}}{3 \times 10^{-9}} \approx \left(\frac{250 \text{ TeV}}{\Lambda}\right)^{2} \left(C_{e\gamma}^{\mu} - 0.2C_{T}^{\mu t} - 0.002C_{T}^{\mu c} - 0.05C_{eZ}^{\mu}\right).$$

▶ Strongly coupled NP: $C_{T}^{\mu t} \sim g_{\rm NP}^2 / 16\pi^2 \lesssim 1$ implying $\Lambda \lesssim few x 100$ TeV, beyond the direct production reach of any foreseen collider.

▶ Weakly coupled NP: $C_{\mu\gamma}^{\mu t} \lesssim 1/16\pi^2$ implying $\Lambda \lesssim 20$ TeV maybe within the direct production reach of a very high-energy Muon Collider [Capdevilla et al., '20].

High-energy probes of $(g-2)_{\mu}$

• Connecting $\mu^+\mu^-
ightarrow h\gamma$ with Δa_μ

$$\sigma_{\mu\mu\to h\gamma} = \frac{s}{48\pi} \frac{|C^{\mu}_{e\gamma}|^2}{\Lambda^4} \approx 0.7 \text{ ab } \left(\frac{\sqrt{s}}{30 \text{ TeV}}\right)^2 \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2$$

• SM irreducible background:

 $\blacktriangleright \ \sigma^{\rm SM}_{\mu\mu\to h\gamma} \approx (\alpha y_{\mu}^2/4s) \times \ln(s/m_{\mu}^2)|_{\sqrt{s}=30\,{\rm TeV}} \sim 4\times 10^{-3}\,{\rm ab}: {\rm negligible!}$

• SM reducible background:

$$\frac{d\sigma_{\mu\mu\to Z\gamma}}{d\cos\theta}\sim \frac{\pi\alpha^2}{4s}\frac{1\!+\!\cos^2\theta}{\sin^2\theta} \qquad \qquad \frac{d\sigma_{\mu\mu\to h\gamma}}{d\cos\theta}=\frac{|C_{e\gamma}^{\mu}|^2}{\Lambda^4}\frac{s}{64\pi}(1\!-\!\cos^2\theta)$$

• The significance of the signal $S = N_S / \sqrt{N_B + N_S}$ maximal for $|\cos \theta| \lesssim 0.6$.

$$\sigma^{\mathrm{cut}}_{\mu\mu\to h\gamma} \approx 0.53 \operatorname{ab} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}} \right)^2, \qquad \sigma^{\mathrm{cut}}_{\mu\mu\to Z\gamma} \approx 82 \operatorname{ab} \qquad (\sqrt{s} = 30 \operatorname{TeV})$$

S/B isolation: i) angular distributions and ii) h/Z invariant mass reconstruction.

- Cut-and-count exp. with $b\bar{b}$ final state, $\mathcal{B}(h/Z \rightarrow b\bar{b}) = 0.58/0.15$ and $\epsilon_b = 80\%$.
- For a Z/h misident. prob. of 10%, $N_{S(B)} = 22(88)$ and S = 2 at $\sqrt{s} = 30$ TeV.

High-energy probes of $(g-2)_{\mu}$

• Connecting $\mu^+\mu^-
ightarrow$ ($h\gamma, Zh, tar{t}, car{c}$) with Δa_μ

$$\begin{split} \sigma^{\mathrm{cut}}_{\mu\mu\to h\gamma} &\approx 0.5 \,\mathrm{ab} \left(\frac{\sqrt{s}}{30 \,\mathrm{TeV}}\right)^2 \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \\ \sigma_{\mu\mu\to Zh} &\approx 38 \,\mathrm{ab} \, \left(\frac{\sqrt{s}}{10 \,\mathrm{TeV}}\right)^2 \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \\ \sigma_{\mu\mu\to t\bar{t}} &\approx 58 \,\mathrm{ab} \, \left(\frac{\sqrt{s}}{10 \,\mathrm{TeV}}\right)^2 \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \\ \sigma_{\mu\mu\to c\bar{c}} &\approx 100 \,\mathrm{fb} \, \left(\frac{\sqrt{s}}{3 \,\mathrm{TeV}}\right)^2 \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \end{split}$$

• Δa_{μ} predictions in the SMEFT

 $\frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{250 \text{ TeV}}{\Lambda}\right)^2 |C_{\theta\gamma}^{\mu}|$ $\frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{100 \text{ TeV}}{\Lambda}\right)^2 |C_{T}^{\mu t}|$

SM irreducible background

$$\begin{split} &\sigma^{\rm SM,cut}_{\mu\mu\to Z\gamma}\approx 82\,{\rm ab}\left(\frac{\rm 30~TeV}{\sqrt{s}}\right)^2\\ &\sigma^{\rm SM}_{\mu\mu\to t\bar{t}}\approx 1.7\,{\rm fb}\left(\frac{\rm 10~TeV}{\sqrt{s}}\right)^2 \end{split}$$

 $\frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{50 \text{ TeV}}{\Lambda}\right)^2 |C_{eZ}^{\mu}|$ $\frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{10 \text{ TeV}}{\Lambda}\right)^2 |C_{T}^{\mu c}|$

$$\begin{split} \sigma^{\rm SM}_{\mu\mu\to Z\hbar} &\approx 122 \, {\rm ab} \left(\frac{10 \, {\rm TeV}}{\sqrt{s}} \right)^2 \\ \sigma^{\rm SM}_{\mu\mu\to c\bar{c}} &\approx 19 \, {\rm fb} \left(\frac{3 \, {\rm TeV}}{\sqrt{s}} \right)^2 \end{split}$$

Paride Paradisi (University of Padova and INFN) Probing the muon g-2 anomaly at a Muon Collider 5th Muon Collider Physics Potential Meeting 8/10

The muon g-2 at a Muon Collider

Figure: 95% C.L. reach on the muon anomalous magnetic moment Δa_{μ} , as well as on the muon EDM d_{μ} , as a function of the center-of-mass energy \sqrt{s} from various processes.

$$d_{\mu} = \frac{\Delta a_{\mu} \tan \phi_{\mu}}{2m_{\mu}} \ \boldsymbol{e} \simeq 3 \times 10^{-22} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right) \tan \phi_{\mu} \ \boldsymbol{e} \operatorname{cm}$$

Future prospects

- A MC offers a new way to probe NP which is complementary both to:
 - Direct searches for new particles at high-energy particle colliders.
 - Indirect searches at low energy through high-precision experiments.
- A MC running at √s ≫ 1 TeV provides a unique opportunity to probe new physics effects in the muon g-2 in a model-independent way:
 - Direct determination of NP, not hampered by the hadronic uncertainties of $a_{\mu}^{\rm SM}$.
 - A high-energy measurement with O(1) precision is sufficient to probe $\Delta a_{\mu} \sim 10^{-9}$.
- Extraction of the tau g 2 through: [Buttazzo & Paradisi, in progress]
 - ▶ Rare Higgs decays $h \rightarrow \ell^+ \ell^- \gamma$ and $h \rightarrow \ell^+ \ell^- Z$
 - ▶ Drell-Yan process $\mu^+\mu^- \rightarrow \tau^+\tau^-$
 - ▶ VBF process $\mu^+\mu^- \rightarrow \mu^+\mu^-\tau^+\tau^-(\bar{\nu}\nu\,\tau^+\tau^-)$
 - Expected sensitivity: $10^{-5} \lesssim |\Delta a_{\tau}| \lesssim 10^{-4}$

B-physics anomalies and leptonic g – 2 at a MC

Leptoquarks –favoured by B-physics anomalies– generate semileptonic operators which contribute also to leptonic g – 2 and can be tested at a MC.