Physics Analysis use-cases and GCP

Nikolai Hartmann?, Lukas Heinrich?

LLMU Munich, 2CERN

February 17, 2021, ATLAS - Google Technical Meeting

LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

’ gr\’l”n\
ErQMﬂ ta %E/RW
Tl \J

1/9

An impressive demo
Lukas Heinrich and Ricardo Rocha at the KubeCon 2019 — youtube recording, chep talk

al

\S=7TeV,L=231b" 15=8TeV,L=116"

Google Cloud §oo cMsOpenData gom
2 DTTBar
Ezs— \:,%\f |2‘5Gev
= e
Google Cloud
Storage
70 TB Dataset Cluster on GKE Job Results Interactlve
Visualization
Max 25000 Cores =% 100 120 140 N (Gewu
Single Region, 3 Zones Aggregation

25000 Kubernetes Jobs

Reperform the Higgs discovery analysis on 70 TB of CMS open data in a live demo

2/9

https://www.youtube.com/watch?v=CTfp2woVEkA
https://indico.cern.ch/event/773049/contributions/3581373/attachments/1939661/3215578/chephiggs.pdf

What to do next?

The demo was using “toy” data and analysis software from 2010
— Can we use this for realistic datasets?
— How does this look like with modern tools?

3/9

N

HO® [

Event loop

[]

Columnar

/N e

‘
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

Event loop

® Traditional analysis workflow in HEP involves processing one event at a time

® Columnar (array-at-a-time) processing in python is becoming standard in data science
— thanks to tools like numpy, tensorflow, etc
— becoming increasingly popular in HEP as well

® |ot's of progress in recent years in the HEP python ecosystem
— e.g uproot, awkward array and coffea

A larger scale columnar data analysis could be a nice fit for GCP!

4/9

https://github.com/scikit-hep/uproot4
https://github.com/scikit-hep/awkward-1.0
https://github.com/CoffeaTeam/coffea

Dataset and example analysis

100 TB dataset with ATLAS LHC Run2 data in derived format
— DAOD_PHYSLITE: small analysis format, calibrations applied

Distributed across 260k files, 18e9 events in total

Stored in ROOT format, columns split
— potential for conversion to parquet

Example analysis using uproot and awkward array:

Apply selection criteria for analysis objects: Electrons, Muons, Jets

Perform overlap removal (involves combinatorics)

Can then calculate simple observables, fill histograms

Reads = 10% of the stored data

— but rather scattered reading: basket (compressed block) sizes in the order of 5-50kb
Maximum throughput when reading from memory: 10k events per second

(still mostly dominated by decompression/deserialization)

5/9

Scaling

Want to try 2 approaches:

Via

PanDa (ATLAS workflow managment system)
Experience from previous Google project
Submit as user job script (prun)

Dask

Directly submit tasks as python futures or high-level constructs like distributed data frames
Running dask on kubernetes in Google cloud probably (?) straight forward

Good for interactive analysis, e.g. using Jupyter notebooks

Already collected some experience from running ~ 100 workers
— Up to which point can we scale this?

6/9

https://kubernetes.dask.org/en/latest/

Parquet, RNtuple and other alternative storage formats

® Current ROOT format suboptimal for columnar reading
— lot’s of overhead
— too small baskets (compression units)
— columnwise storage only one level of nesting deep
(only event-wise byte offsets stored separately)

® Two attractive formats to address this:
— Apache Parquet: Already quite mature, works well with awkward array
— RNtuple: Future ROOT format, still under development

® Another alternative: “Pure” columnar storage
— Don't distinguish indices/offsets and data on storage level
(supported by awkward array)
— Can use almost any format that allows storing and retrieving columns (e.g. HDF5, npz)

Plan: Try at least with Parquet on Google cloud

7/9

RDataFrame
Framework for declarative analysis (part of ROOT)

histo\

— xy
|
| .

d — . \ histo

z

Filter | .| Define

‘ x>0 / \ =

// d2 is a new data-frame, a transformed version of d
auto d2 = d.Filter("x > 0")
.Define("z","x*x + y*y");
// make histograms out of it
auto hz = d2.HistolD("z");

auto hxy = d2.Histo2D({"hxy","hxy",16,-1,1,64,-1,1},"x","y");

— Demonstrator analysis on top of spark cluster: https://cds.cern.ch/record/2655457
(based on Google Summer of Code project PyRDF)

https://cds.cern.ch/record/2655457
https://github.com/shravan97/PyRDF

Questions

® How to read the data?
Uproot supports http(s), local/posix file access, memory mapped files

® When reading ROOT files via http, multipart/byteranges might be interesting
(but depends on latency - maybe not so important for low latency)

9/9

