
Physics Analysis use-cases and GCP

Nikolai Hartmann1, Lukas Heinrich2

1LMU Munich, 2CERN

February 17, 2021, ATLAS - Google Technical Meeting

1 / 9



An impressive demo
Lukas Heinrich and Ricardo Rocha at the KubeCon 2019 → youtube recording, chep talk

Reperform the Higgs discovery analysis on 70 TB of CMS open data in a live demo

2 / 9

https://www.youtube.com/watch?v=CTfp2woVEkA
https://indico.cern.ch/event/773049/contributions/3581373/attachments/1939661/3215578/chephiggs.pdf


What to do next?

The demo was using “toy” data and analysis software from 2010
→ Can we use this for realistic datasets?
→ How does this look like with modern tools?

3 / 9



Columnar data analysis

• Traditional analysis workflow in HEP involves processing one event at a time

• Columnar (array-at-a-time) processing in python is becoming standard in data science
→ thanks to tools like numpy, tensorflow, etc
→ becoming increasingly popular in HEP as well

• Lot’s of progress in recent years in the HEP python ecosystem
→ e.g uproot, awkward array and coffea

A larger scale columnar data analysis could be a nice fit for GCP!
4 / 9

https://github.com/scikit-hep/uproot4
https://github.com/scikit-hep/awkward-1.0
https://github.com/CoffeaTeam/coffea


Dataset and example analysis

• 100 TB dataset with ATLAS LHC Run2 data in derived format
→ DAOD PHYSLITE: small analysis format, calibrations applied

• Distributed across 260k files, 18e9 events in total

• Stored in ROOT format, columns split
→ potential for conversion to parquet

• Example analysis using uproot and awkward array:
• Apply selection criteria for analysis objects: Electrons, Muons, Jets
• Perform overlap removal (involves combinatorics)
• Can then calculate simple observables, fill histograms
• Reads ≈ 10% of the stored data
→ but rather scattered reading: basket (compressed block) sizes in the order of 5-50kb

• Maximum throughput when reading from memory: 10k events per second
(still mostly dominated by decompression/deserialization)

5 / 9



Scaling

Want to try 2 approaches:

Via PanDa (ATLAS workflow managment system)

• Experience from previous Google project

• Submit as user job script (prun)

Via Dask

• Directly submit tasks as python futures or high-level constructs like distributed data frames

• Running dask on kubernetes in Google cloud probably (?) straight forward

• Good for interactive analysis, e.g. using Jupyter notebooks

• Already collected some experience from running ≈ 100 workers
→ Up to which point can we scale this?

6 / 9

https://kubernetes.dask.org/en/latest/


Parquet, RNtuple and other alternative storage formats

• Current ROOT format suboptimal for columnar reading
→ lot’s of overhead
→ too small baskets (compression units)
→ columnwise storage only one level of nesting deep
(only event-wise byte offsets stored separately)

• Two attractive formats to address this:
→ Apache Parquet: Already quite mature, works well with awkward array
→ RNtuple: Future ROOT format, still under development

• Another alternative: “Pure” columnar storage
→ Don’t distinguish indices/offsets and data on storage level
(supported by awkward array)
→ Can use almost any format that allows storing and retrieving columns (e.g. HDF5, npz)

Plan: Try at least with Parquet on Google cloud

7 / 9



RDataFrame
Framework for declarative analysis (part of ROOT)

→ Demonstrator analysis on top of spark cluster: https://cds.cern.ch/record/2655457

(based on Google Summer of Code project PyRDF)
8 / 9

https://cds.cern.ch/record/2655457
https://github.com/shravan97/PyRDF


Questions

• How to read the data?
Uproot supports http(s), local/posix file access, memory mapped files

• When reading ROOT files via http, multipart/byteranges might be interesting
(but depends on latency - maybe not so important for low latency)

9 / 9


