Physics Analysis use-cases and GCP

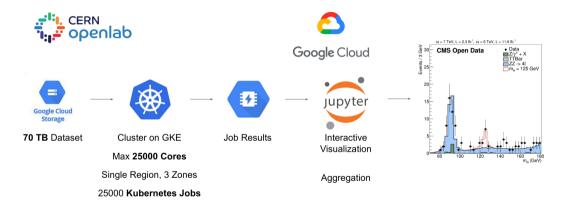
Nikolai Hartmann¹, Lukas Heinrich²

 $^1\mathsf{LMU}$ Munich, $^2\mathsf{CERN}$

February 17, 2021, ATLAS - Google Technical Meeting

An impressive demo

Lukas Heinrich and Ricardo Rocha at the KubeCon 2019 \rightarrow youtube recording, chep talk

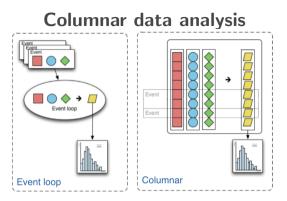


Reperform the Higgs discovery analysis on 70 TB of CMS open data in a live demo

What to do next?

The demo was using "toy" data and analysis software from 2010

- \rightarrow Can we use this for realistic datasets?
- \rightarrow How does this look like with modern tools?



- Traditional analysis workflow in HEP involves processing one event at a time
- Columnar (array-at-a-time) processing in python is becoming standard in data science \rightarrow thanks to tools like numpy, tensorflow, etc
 - \rightarrow becoming increasingly popular in HEP as well
- Lot's of progress in recent years in the HEP python ecosystem
 - \rightarrow e.g uproot, awkward array and coffea

A larger scale columnar data analysis could be a nice fit for GCP!

Dataset and example analysis

- 100 TB dataset with ATLAS LHC Run2 data in derived format \rightarrow DAOD_PHYSLITE: small analysis format, calibrations applied
- Distributed across 260k files, 18e9 events in total
- Stored in ROOT format, columns split
 → potential for conversion to parquet
- Example analysis using uproot and awkward array:
 - Apply selection criteria for analysis objects: Electrons, Muons, Jets
 - Perform overlap removal (involves combinatorics)
 - Can then calculate simple observables, fill histograms
 - Reads \approx 10% of the stored data
 - \rightarrow but rather scattered reading: basket (compressed block) sizes in the order of 5-50kb
 - Maximum throughput when reading from memory: 10k events per second (still mostly dominated by decompression/deserialization)

Scaling

Want to try 2 approaches:

Via PanDa (ATLAS workflow managment system)

- Experience from previous Google project
- Submit as user job script (prun)

Via Dask

- Directly submit tasks as python futures or high-level constructs like distributed data frames
- Running dask on kubernetes in Google cloud probably (?) straight forward
- · Good for interactive analysis, e.g. using Jupyter notebooks
- Already collected some experience from running \approx 100 workers \rightarrow Up to which point can we scale this?

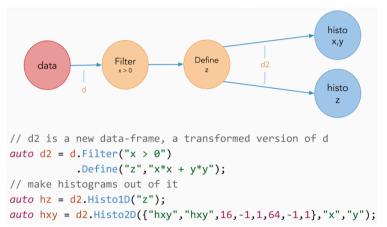
Parquet, RNtuple and other alternative storage formats

- Current ROOT format suboptimal for columnar reading
 - \rightarrow lot's of overhead
 - ightarrow too small baskets (compression units)
 - \rightarrow columnwise storage only one level of nesting deep
 - (only event-wise byte offsets stored separately)
- Two attractive formats to address this:
 - ightarrow Apache Parquet: Already quite mature, works well with awkward array
 - \rightarrow RNtuple: Future ROOT format, still under development
- Another alternative: "Pure" columnar storage
 - \rightarrow Don't distinguish indices/offsets and data on storage level
 - (supported by awkward array)
 - \rightarrow Can use almost any format that allows storing and retrieving columns (e.g. HDF5, npz)

Plan: Try at least with Parquet on Google cloud

RDataFrame

Framework for declarative analysis (part of ROOT)



 \rightarrow Demonstrator analysis on top of spark cluster: https://cds.cern.ch/record/2655457 (based on Google Summer of Code project PyRDF)

Questions

- How to read the data? Uproot supports http(s), local/posix file access, memory mapped files
- When reading ROOT files via http, multipart/byteranges might be interesting (but depends on latency maybe not so important for low latency)