

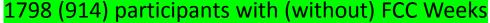
HORIZON 2020

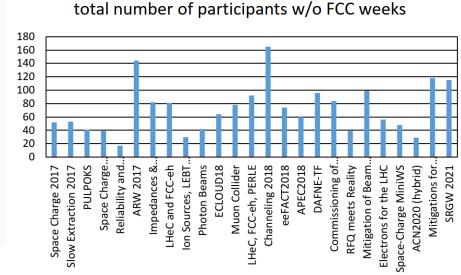
Accelerator Performance and Concepts report from WP6

http://aries.web.cern.ch/content/wp6

Alessandro Drago, Giuliano Franchetti, Johannes Gutleber, Klaus Höppner, Florian Hug, Mauro Migliorati, Marco Zanetti and Frank Zimmermann

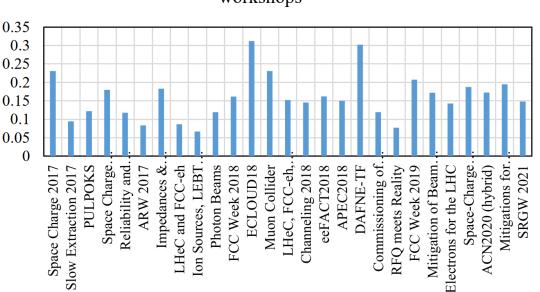
ARIES Annual Meeting


CERN, 21 April 2021


ARIES WP6 workshops

0.1

geographic distribution of WP6 workshop



fraction of woman participants in ARIES WP6 workshops

fraction of women participants in all WP6 workshops

27 WP6 workshops in total

recent ARIES WP6 milestones and deliverables

Report on 2nd Annual Workshops of all WP6 APEC Tasks

MILESTONE: MS27

ARIES

Accelerator Research and Innovation for European Science and Society

DELIGRABLE REPORT

characteristics for particle accelerators

DELIVERABLE: D6.2

ARIES

Accelerator Research and Innovation for European Science and Society
Horizon 2020 Research Infrastructures GA no 730871

MILESTONE REPORT

Report on Steegies for electronclop initigation in future accelerators

MILESTONE: MS30

Accelerator Research Control of Particular Science and Society Particular Science and Science

mking of performance degrading mechanisms for hadron storage rings and synchrotrons (M28)

DELIVERABLE: D6.1

Report on 3rd Annual Workshops of all WP6 APEC Tasks

MILESTONE: MS29

MILESTONE: MS31

Accelerator Research Control of Research Infrastructures GA n° 730871

Report on Parameter Database for Various ERL & Linac Facilities

MILESTONE: MS28

DELIXO ABLE REPORT

Summary of novel methods to reduce or mitigate accelerator impedance (M36)

DELIVERABLE: D6.3

ARIES

Accelerator Research and Innovation for European Science and Society Horizon 2020 Research Infrastructures GA no 730871

MILESTONE REPOR

Open Data Infro Picture for accelerator reliability

MILESTONE: MS32

ARIES

Accelerator Research and Innovation for European Science and Society

Horizon 2020 Research Infrastructures GA no 730871

DELIVERABLE REPORT

Outstanding open question and prioritized R&D guist Ples for Energy Recover inacs

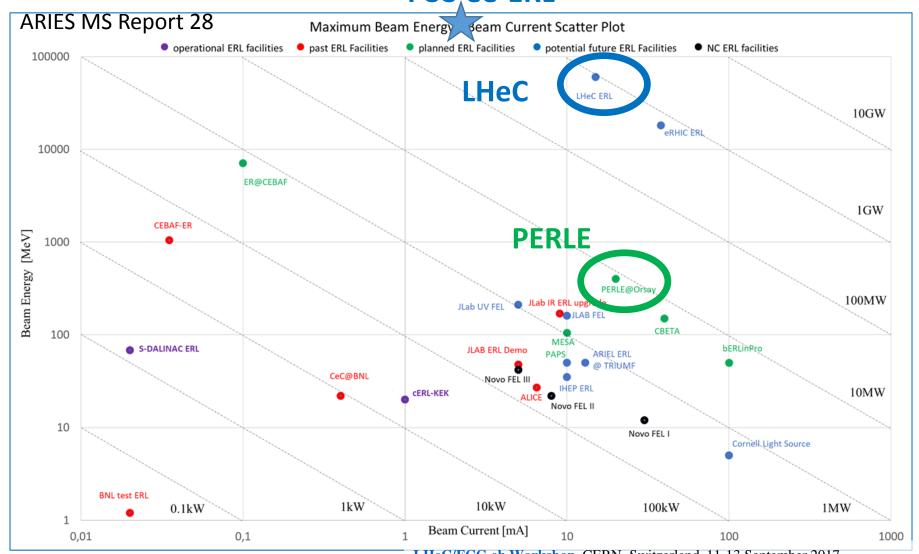
DELIVERABLE: D6.4

ARIES

Accelerator Research and Innovation for European Science and Society

Horizon 2020 Research Infrastructures GA no 730871

DELIVERABLE REPORT


White List of Ranked Far-Future Accelerator Options

DELIVERABLE: D6.5

ERL landscape

FCC-ee-ERL

LHeC/FCC-eh Workshop, CERN, Switzerland, 11-13 September 2017

<u>LHeC, FCC-eh, and PERLE Workshop</u>, LAL Orsay, France, 27-29 June, 2018 <u>Electrons for the LHC</u>, Chavannes-de-Bogis, Switzerland, 24-25 October 2019

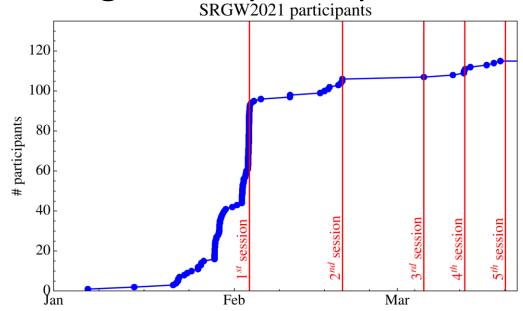
F. Hug

ARIES MS28



recent HORIZON 2020 ARIES WP6 workshops

- 1. Accelerator Applications of Crystals and Nanotubes, EPFL Lausanne, 10-11 March 2020
- 2. Mitigation Approaches for Hadron Storage Rings and Synchrotrons (Mitigations2020), safe virtual space, 22 June 1 July 2020
- 3. ARIES Workshop on Storage Rings and Gravitational Waves (SRGW2021), safe virtual space, 2 February -18 March 2021

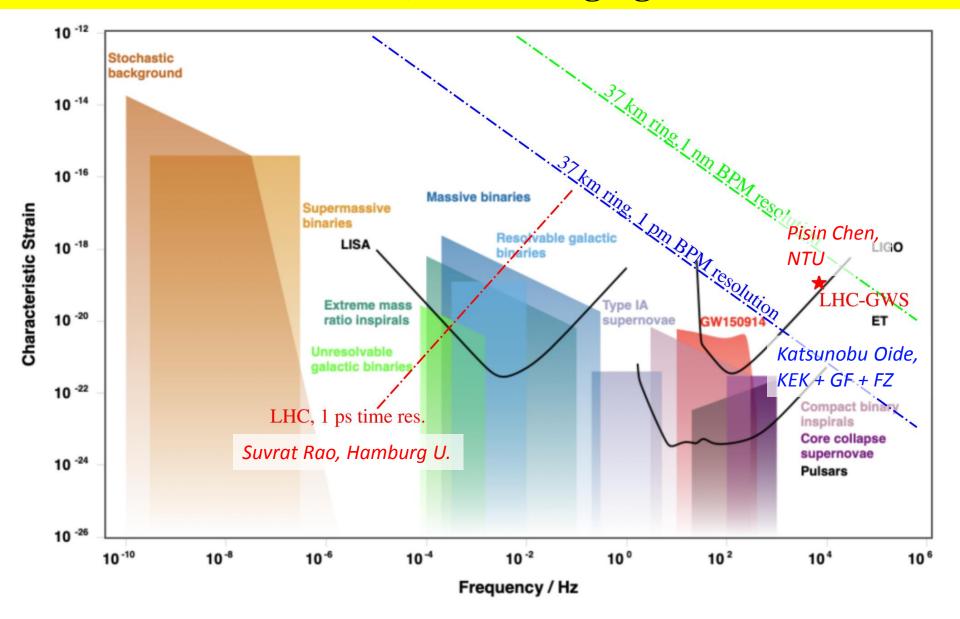

ARIES Workshop on Storage Rings and Gravitational Waves (SRGW2021), virtual space, 2

February -18 March 2021; chaired by G. Franchetti, Marco Zanetti, and F. Zimmermann

Scientific Programme Committee William A. Barletta MIT Pisin Chen NTU Raffaele-Tito D'Agnolo **IPHT** Raffaele Flaminio **LAPP** Giuliano Franchetti (co-chair) GSI Shyh-Yuan Lee Indiana U Katsunobu Oide **CERN & KEK** Qing Qin ESRF & U. Peking Jorg Wenninger CERN Marco Zanetti (co-chair) U. Padova Frank Zimmermann (co-chair) CERN

115 registered participants

main focus: detection and/or generation of gravitational waves or other gravity effects using storage rings & accelerator technologies


Sessions:

2/2/2021, Introduction to Gravitational Waves and their effects, chair: Pisin Chen / NTU Taiwan 18/2/2021, Measurements and sensitivity, chair: Shyh-Yuan Lee / Indiana U

4/3/2021, Proposals and Schemes, chair: Jörg Wenninger / CERN

11/3/2021, **Gravitational wave generation and detection,** chair: *Frank Zimmermann / CERN* 18/3/2021, **Ground motion and final discussion,** chairs: *Giuliano Franchetti/GSI; John Ellis/CERN*

Detection (& Generation) Plot emerging from SRGW2021

G. Franchetti et al.

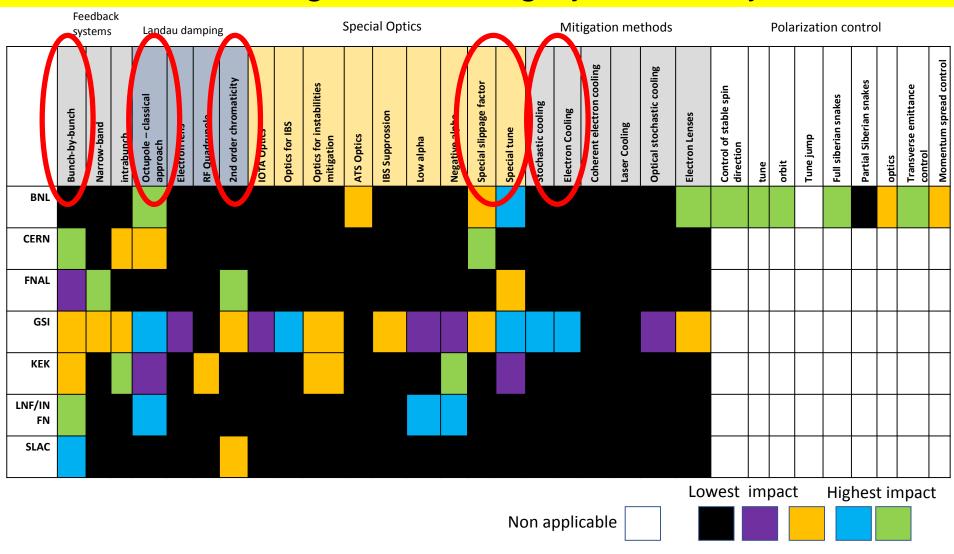
Ranking of performance degrading mechanisms for hadron storage rings and synchrotrons

Summary of the accelerator characteristics and main beam features at the laboratories participating in the ARIES ranking effort

Laboratory	Accelerator	Accelerator	Initial/final	Particles	Rms	Ramp time
	name	Circumference	Energy	per bunch	bunch	(s)/ stored
		(m)	(GeV)		length	time (s)
					(cm)	
Fermilab	Booster	476	0.4/8	5E10	30	0.033
BNL	RHIC	3834	25/255	2E11	0.6	300/3600
CERN	SPS	7000	26/450	1.1E11	15	5/20
SLAC/SSRL	SPEAR3	234	3	8.7E9	0.6	NA
J-PARC	Main ring	1567.5	3/30	3.3E13	1500	1.4/0~2
INFN-LNF	DAFNE	97	510	1E11	1.06	0/1200
GSI	ESR	108	0.4/0.004	1E8	200	10/2000
GSI	SIS18/SIS100	216/1000	0.011/2.7	5E11	3000	0.5

Ranking results on performance degrading mechanisms for hadron storage rings and synchrotrons

R	Intensity limitation	ave	std
1	Beam loss	3.12	1.16
2	RF Power	2.75	1.2
3	Single bunch instability	2.75	0.82
4	Multi-bunch instability	2.75	1.56
5	Injector	2.6	1.6
6	DA	2.375	0.99
7	Collimation	2.25	1.09
8	Momentum Acceptance	2.25	1.2
9	E-Cloud	2.25	1.3


R	Brightness limitation	ave	std
1	Nonlinearities	3.625	0.99
2	Space charge	3.125	1.53
3	Beta-beating	2.5	1.3
4	Injector	2.5	1.75
5	Beam-beam	2.0	1.41
6	IBS	1.75	1.39

ARIES D6.1

R	Other	ave	std
	performance		
	limitation		
1	Beam loss	3.37	1.21
2	Halo	2.5	1.22
	development		
3	Collimation	2.37	1.21
4	Dynamic	2.37	1.4
	vacuum		
5	Peak luminosity	2.12	1.53
6	Spill. Structure	2.0	1.73
7	Quenches	1.37	0.69
8	UFO/dust	1.12	0.33

End 2018, APEC2018 workshop

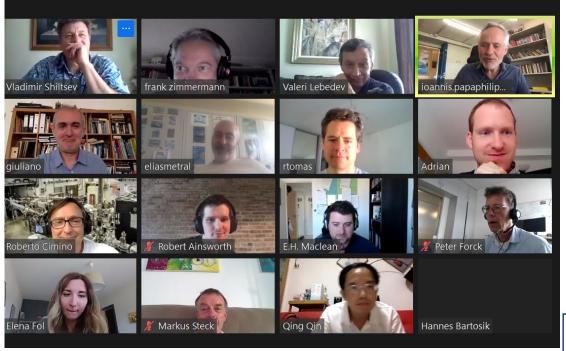
full mitigation ranking by laboratory

For FNAL the Fermilab booster is considered, for BNL the RHIC, for CERN SPS, for SLAC SPEAR III, for KEK the J-PARC Main Ring, for INFN-LNF DAΦNE, and for GSI the ESR, SIS18 and SIS100.

ARIES MS31

APEC2018 and Mitigations 2020 workshops

ARIES Mitigations workshop & Ranking for


ARIES MS31

Space Charge Effects

Summer 2020

aperture in ext.

region

J-PARC Main Ring (MR) Fast Extraction (FX) operation:
1) Injection beam optimization with the Rapid Cycling
Synchrotron (RCS) parameters; 2) RF operation with 2nd
harmonic and the new feedback system; 3) Correction of
the beta modulation and resonances; 4) Transverse
instabilities suppressed with chromaticity settings &
intra-bunch feedback systems.

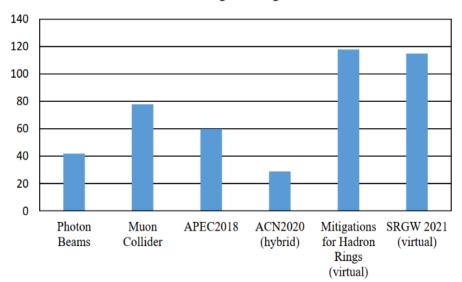
CSNS project - main strategies: tune optimization & proper injection scheme. Present limits are pushed through: 1) Installing trim quadrupoles to shape the tune curves; 2) Installing AC sextupoles to control the coherent oscillations; 2) Re-installing injection components to realize the real correlated painting scheme; 3) Re-sorting the dipoles according to the magnetic field measurement in AC mode

GSI: UNILAC upgrade measures: high intensity **RFQ**, heavy ion stripping end-to-end optimization, etc.;

etc.;
SIS18: intensity limitation
mechanism: dynamic
vacuum, other beam
instability mechanisms, etc;
mitigation: feedbacks.
Storage rings: precision
beam controls.

For RHIC and EIC- some unique techniques: 1)
bright sources (high-intensity H-, polarized H-,
laser+EBIS); 2) orbit/tune/coupling/ (chromaticity)
feedbacks on ramps/in stores, transitions jumps (in
AGS, and in RHIC – a slowly ramping SC machine);
3) beam-beam compensation with electron lenses.
Importantly, beam cooling fundamentally changes
how RHIC is operated. Two cooling systems are
expectational (stochastic cooling for high-energy ions;
electron cooling for low-energy Au), leading to much
higher luminosity and cleaner operating conditions. A
novel strong hadron beam cooling scheme.

FNAL PIP II	Driving forces	Near Term Mitigations	PIP-II Era Mitigations
Emittance growth at injection	Space charge	Resonance (1/2) compens.	Higher inj. energy; Painting inj; Two- stage collimation
Longitudi nal losses at inj.	Adiab. Capt.; Field stability	LLRF Upgr.; Improved field stab.	Direct bucket injection w. chopping
Loss during transition	Instabilities; Emittance growth at inj.	Damper upgrades	Increased transition rate Reduced leakage
Extraction	Vert. Ap.		Magnets w. larger


losses

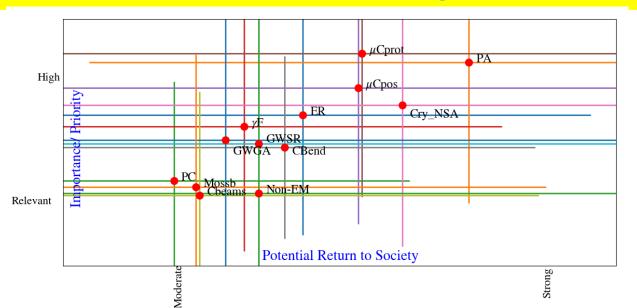
restriction

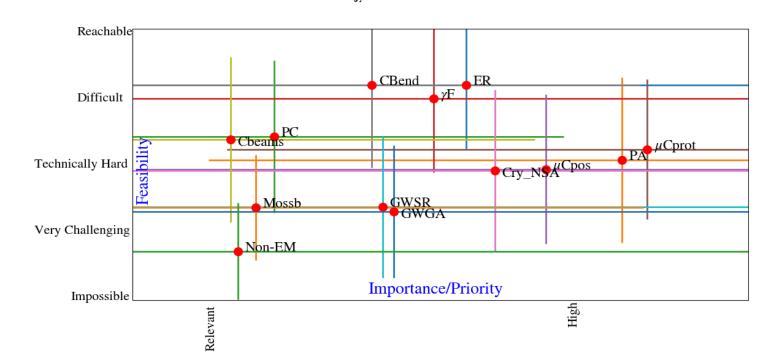
final community survey on (far)-future options

The survey invitation was sent to 388 different participants from six ARIES exploratory workshops. In total 94 experts responded.

number of participants

(Far-)Future Options for Survey

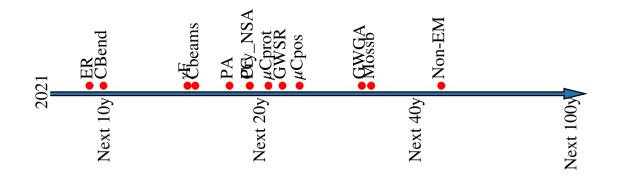

- 1. Energy Recovery (>50 GeV and/or > 50 mA)
- 2. Plasma Acceleration
- 3. Photon Collider
- 4. Gamma Factory
- 5. Muon Collider, positron based
- 6. Muon Collider, proton based
- 7. Crystal/Nanostructure Acceleration
- 8. Crystal Bending
- 9. Crystalline Beams
- 10. Gravitational Wave Detection using Storage Rings
- 11. Gravitational Wave Generation using Accelerators
- 12. High Energy Photon Generation using Entanglement and Moessbauer Effect
- 13. Non-electromagnetic acceleration or focusing mechanisms incl. gravity based schemes


ARIES survey criteria & choices

Feasibility	Importance/	Risk of	Potential Return	Time scale	Numeric
reasibility	Priority	Failure	to Society	Time scale	ranking
Easy	Marginal	None	Negative	Next 5 years	1
Reachable	Relevant	Moderate	Marginal	Next 10 years	2
Difficult	High	High	Moderate	Next 20 years	3
Technically hard	Very high	Certain!	Strong	Next 40 years	4
Very challenging	Top		Game Changer!	Next 100 years	5
Impossible					6

April 2021

survey results 1



survey results 2

Expected realization time scale

White List of Ranked Far-Future Accelerator Options April 2021

Time scale	Priority and focus
10-15 years	Energy recovery
	Crystal bending
	Gamma Factory
15-30 years	Proton based muon collider
	Plasma acceleration
	Positron based muon collider
	Crystal and nanostructure acceleration
	Gravitational wave detection using storage rings
	Low or no priority
	Photon collider
	Crystalline beams
	"Moessbauer acceleration" using photon entanglement
	Gravitational wave generation using accelerators
	Non-electromagnetic acceleration or focusing mechanisms

key results from WP6 APEC

- ERL R&D guidelines [D6.4]
 - (1) test facilities, (2) beam dynamics & diagnostics, (3) electron sources & injectors, (4) SRF: high loaded Q cavity operation; HOMs, HOM damping & high current operation; high Q_0 cavity performance
- optimal RAMS characteristics for accelerators [D6.2] availability critical systems and availability model (FCC-ee); measures to improve reliability of power converters, RF system, and electrical distribution (lead causes of unavailability for
 - CERN's normal conducting machines); operations modelling platform (FCC-hh) for allocating availability goals to different sub-machines, fault-tolerant system design
- performance limitations in hadron synchrotrons [D6.1]
 beam loss, single-bunch instabilities, & nonlinearities prominent
- mitigation measures [MS31, D6.3]
 - Landau octupoles, bunch-by-bunch feedback, optimised tunes, and tailored slippage factor; novel techniques emerging; for Space Charge: reduced the peak intensity (CERN, PSB, JPARC), resonance compensation, optimized lattice & working point; future e-lenses; Impedance: mechanical design optimization, feedback systems, advanced coatings (HTS,...)
- ranking of (far-)future accelerator options [D6.5]
 - (1) energy recovery linacs, crystal bending, Gamma Factory
 - (2) muon collider(s), plasma & crystal & nanostr. acceleration, gravitational wave detection