Ultra-low emittance rings: report for WP7

R. Bartolini (DESY), M. Biagini (INFN), M. Böge (PSI), R. Nagoaka (SOLEIL), A-S Müller (KIT), Y. Papahilippou (CERN)

- ARIES WP7 mission and activities
- Present landscape of ultra low emittance rings
- (some) technological challenges
- Contribution of ARIES WP7
- Conclusions and future work with I-FAST

WP7: Ultra-low Emittance Rings

Mission of the network

Fostering networking activities, exchange of ideas and staff in the accelerator community involved in design, construction and operation of ultra-low emittance rings (light sources, HEP: damping rings and colliders)
via

General Workshops
Topical workshops
Student support (and student prizes)
Supporting staff for joint experiments engagement with industrial partners

Actually 10 years of LER workshops

$\mathbf{1}^{\text {th }}$ Low Emittance Rings Workshop, 12-15 January 2010 CERN - participants 70 https://ler2010.web.cern.ch/
$2^{\text {th }}$ Low Emittance Rings Workshop, 3-5 October 2011 Heraklion, Crete https://lowering2011.web.cern.ch/
$3^{\text {th }}$ Low Emittance Rings Workshop 8-10 July 2013 Oxford University https://indico.cern.ch/event/247069/overview (EuCARD-2) - participants 80 $4^{\text {th }}$ Low Emittance Rings Workshop, 17-19 September 2014, INFN-LNF Frascati https://agenda.infn.it/event/7766/ (EuCARD-2) - participants 67 5th Low Emittance Rings Workshop, 15-17 September 2015 ESRF, Grenoble https://indico.cern.ch/event/395487/overview (EuCARD-2)
$6^{\text {th }}$ Low Emittance Rings Workshop, 26-28 October 2016 • Synchrotron SOLEIL https://www.synchrotron-soleil.fr/en/events/low-emittance-rings-workshop-2016 (EuCARD-2) $7^{\text {th }}$ LER Workshop, 15-17 January 2018 CERN (ARIES) https://indico.cern.ch/event/671745/ $8^{\text {th }}$ LER Workshop 26-30 October 2020 INFN-LNF Frascati (held remotely) (ARIES) https://agenda.infn.it/event/20813/overview - participants 160

Topical workshop

Many topical workshops:

Low emittance ring technology
ALERT 14 Valencia
ALERT 16 Trieste
ALERT 19 Ioannina (ARIES)
Collective effects
TWIICE 2014 Soleil
TWIICE 2016 Diamond
Diagnostics
DULER Diamond 2018 (ARIES)
Injection
TWIIS-1 BESSY 2017 (ARIES)
TWIIS-2 PSI 2019 (ARIES)
Commissioning
KIT 2019 (ARIES)

2010-2020

Low emittance rings landscape

Community based in majority on light sources

DBA/TBA

MBA

+ technology

on-axis inj. + rev. bends + technology

Multibend achromat (MBA) technology underpins the development of diffraction limited light sources HEPS $<60 \mathrm{~nm}$; APS-U 42 nm ; PETRA IV 20 pm;
R. Bartolini, $4^{\text {th }}$ ARIES Annual Meeting, (virtual), 21/04/2021

Examples of implementation

The classical Multibend Achromat: the MAX IV- type cell is implemented in different forms (sextupoles distribution) in SIRIUS, SLS-II, SKIF, ELETTRA2.0 (possibly with reverse bends)

MAX IV - 7BA 330 pm at 3 GeV

SLS-II (PSI) - 7BA with superbend 157 pm at 2.7 GeV
modified-TME cells flanked by matching cells

Examples of implementation

Hybrid Multibend Achromat (Raimondi) based on longitudinal gradient dipoles and cancellation of nonlinear aberration by sextupole pairing

ESRF-EBS Hybrid 7BA cell: 135 pm 6 GeV

R. Bartolini, $4^{\text {th }}$ ARIES Annual Meeting, (virtual), 21/04/2021

APS-U Hybrid 7BA cell: 42 pm 6 GeV (HEPS 36 pm - PETRA IV 20 pm)

Diamond-II cell: 135 pm 3.5 GeV modified ESRF-EBS cell

The field is thriving (and competition is high)

Green bars: green field projects
Black bars: dark period Red bar: restart of user mode (friendly users in many cases)

Timeline since official project approval In some cases (APS-U) procurement started before official approval

Congestion of programmes in 2024-2025 will potentially create procurement risks to all projects
R. Bartolini, $4^{\text {th }}$ ARIES Annual Meeting, (virtual), 21/04/2021

... and more new projects

4GSR

Pohang Accelerator Laboratory, Korea

BESSYIII - Helmholtz Zentrum Berlin

- Energy $=2.5 \mathrm{GeV}$
- Emittance ~ 100 pm rad
- I ~ 300 mA
- 16 straights
- 5.6 m straight length (max. 5 m useable length)
- Circumference max. 320 m
- MBA with

High coherence fraction from 100 eV to 2.5 keV
Flexible repetition rates: TRIBs

- TopUp full-energy injection (low emittance combined function booster, 1 Hz , in the same tunnel with $100-150 \mathrm{MeV}$ linac injector)

Summary of ring parameters

	energy (Gev)	emittance (pm)	ener. spr. $(1 \mathrm{e}-4)$	$\beta_{x}, \beta_{\mathrm{y}}(\mathrm{m})$ $@$ source point	DA (mm), $\beta(\mathrm{m})$ $@$ inj. point	LMA (\%) TL (h)	reverse bends
ALS-U	2.0	108	9.8	$2.0,2.8$	$1.0 @ 2.0$	$2.5,(1.0)$	yes
ELETTRA 2	2.4	212	9.3	$5.7,1.6$	$6.0 @ 5.7$	$4.0,(6.2)$	yes
SLS-II	2.7	157	12.0	$2.5,1.3$	$7.0 @ 22.0$	$4.0,(6.3)$	yes
SOLEIL-U	2.75	81	9.0	$1.3,1.3$	$5.0 @ 11.0$	$3.5,(3.3)$	yes
Diamond II	3.5	136	9.0	$6.0,2.5$	$5.0 @ 6.0$	$1.6,(4.0)$	yes
SIRIUS	3	250	8.5	$1.5,1.5$	$10.0 @ 17.0$	$3.7,(3.9)$	no
APS-U	6	42	13.5	$4.9,1.9$	$2.2 @ 5.2$	$2.1,(4.0)$	yes
ESRF-EBS	6	135	9.3	$6.9,2.6$	$8.0 @ 18.6$	$3.4,(20)$	no
HEPS	6	$<60(35)$	10	$2.6,2.3$	$1.0 @ 2.6$	$1.5,(1.0)$	yes
PETRA IV	6	20	11.2	$4.0,2.0$	$3.6 @ 21.7$	$2.0,(1.2)$	tbd

Black classical MBA - Blue HMBA or variations
R. Bartolini, $4^{\text {th }}$ ARIES Annual Meeting, (virtual), 21/04/2021

High gradient magnets and small chambers are used

	energy (Gev)	MAX b' T / m	MAX $\mathrm{b}^{\prime \prime}$ $\mathrm{T} / \mathrm{m}^{2}$	MAX b'"' $\mathrm{T} / \mathrm{m}^{3}$	min. bore radius (mm)
ALS-U	2.0	105	10500	n / a	12.0
ELETTRA 2	2.4	50	4000	45000	13.0
SLS-II	2.7	97	8000	270000	10.5
SOLEIL-U	2.75	<110	16000	1500000	8.0
Diamond II	3.5	85	7700	660000	12.0
SIRIUS	3	45	2400	n / a	14.0
APS-U	6	86	6300	n / a	13.0
ESRF-EBS	6	90	3200	37000	12.8
HEPS	6	80	7500	670000	12.5
PETRA IV	6	92	6400	330000	12.5

High gradients require

- small bore radius
- difficult vacuum system design (e.g. NEG, extraction of photons)
Vanadium Permendur (e.g.
$\begin{aligned} & \text { Vacoflux) poles increasingly } \\ & \text { used } \\ & \text { Design optimised for } \\ & \text { efficiency (e.g. including PM }\end{aligned}$ and minimisation of power consumption in cables)

Alignment tolerances

Low emittance ring sensitiveness to alignment errors requires a careful study of the alignment tolerances. Beam based methods are commonly exploited and in the recent years the so-called commissioning simulations have been used in defining the acceptable limits for magnet and girder alignments

	emittance (pm)	magnet-to girder offset $(\mu \mathrm{m})$	girder-to- girder offset $(\mu \mathrm{m})$	girder-to- girder roll $(\mu \mathrm{rad})$
ALS-U	108	20	50	100
ELETTRA 2	212	20	50	100
SLS-II	157	30	60	100
Diamond II	136	30	100	200
SIRIUS	250	40	80	300
APS-U	42	30	100	400 (magnets)
ESRF-EBS	135	60	ESRF measured	200 (magnets)
PETRA IV	20	30	$50-100$	100
3GLS	few*1000	$\mathbf{3 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$

Such tolerances demand careful design of

Magnet supports: shimming or adjustable support or gluing

Girder and supports: manual or motorized movers (remotely controlled)

Commissioning simulations

Detailed simulations of the commissioning process are carried out by all major projects see e.g. Sajaev PRAB, 2019 Liuzzo, Virtual commissioning | ESRF

- threading beam for first turn
- switching on sextupoles and RF
- achieving stored beam (many thousands turn tracking)
- orbit corrections
- beam based alignment
- optic corrections (LOCO)

Machine models include realistic errors from magnetic measurements and alignment

Possible real life scenarios are extensively simulated years before the start of he commissioning! (ESRF-EBS, APS-U, ALS-U,...)

Example of commissioning simulations developed for PIV

75\% of cases beam

All particles lost at ~ 100 turns for all seeds at ~ 50 turns for all seed

Extremely quick commissioning of ESRF-EBS

ESRF-EBS ($140 \mathrm{pm}-6 \mathrm{GeV}$) has achieved the nominal operational parameters ahead of schedule
$28 / 11 / 2019$: start of commissioning (3 turns)

06/12/2019: first stored beam
15/12/2019: first accumulation

14/3/2020: 200 mA

P. Raimondi in http://agenda.infn.it/event/20813

High Energy Physics to Photon Science

In the last 10 years we have seen a shift from a community driven in majority by HEP projects, network and R\&D to a community based in majority on light sources

Evolution of the field (personal, i.e. limited view)
Hot topics in 2010:

- Fast HV Kickers (ILC)
- Low emittance operation in the V plane (Quantum LOVE prize) Light source were used as "examples" by damping rings for low emittance tuning

Upgrade projects based on MBA (2012 - today)

- Design concepts: MBA, HMBA (merging design concepts of HEP and light sources), novel injection schemes, magnet and vacuum technology, optimisation tools (DA/MA and commissioning)

Cross-fertilisation

SuperB lattice after 1° Low emittance workshop (2011, CERN)

Raimondi IPAC17
Two dipoles broken in 6 (a la MAXIV)

ミ ミ

688
th $=3.5 n$ beta's an
INFN
R. Bartolini, $4^{\text {th }}$ ARIES Annual Meeting, (virtual), 21/04/2021

Cross-fertilisation

Pulse power supply (FID FPG5-3000M)

GITF

HEPS - 2018

300 mm long kicker:
Pulse voltage: $\pm 20 \mathrm{kV}$ into 50Ω $\operatorname{Tr}(10 \%-90 \%)=670.7 \mathrm{ps}$ $\mathrm{Tf}(90 \%-10 \%)=1.4 \mathrm{~ns}$ FWHM=1.9ns

Pulse width(FWHM) = 2ns
Pulse height $=5.8 \mathrm{kV}$
Rise time $=\sim 1.5 \mathrm{~ns}(5 \% \sim 95 \%)$
Time jitter $=\sim 29 \mathrm{ps}$
Amplitude Jitter $=0.72 \%$
(limited by the scope resolution)
Naito KEK @ LER 2010

Kentech/Sydor 2ns-3kV

ARIES WP7 RULع: milestones and deliverables

The general workshop October 2020 was the last of this funding cycle with ARIES
The next project I-FAST (Innovation Fostering in Accelerators Science and Technology) has the kick-off meeting in May 2021

IFAST WP7 task 7.2: Networking

Networking on low emittance ring will continue in I-FAST WP7: High brightness accelerator for light sources

Task 7.2: Led by KIT

Continuation of the network activity on the themes of

Machine design
Low emittance ring technology
Collective effects
Injection systems
Commissioning

Conclusions

- Experience gathered show that ultra low emittance lattices based on MBA concept is feasible
- Confidence that design and technological challenges can be met
- Community is vast: while competition is fierce strong networks are in place I-FAST (ARIES, EuCARD2, ...), LEAPS
- More R\&D needed in improving
sustainability (e.g. extensive use of permanent magnets to reduce power consumption)
further lowering the emittance both in modest size machines $\sim 300 \mathrm{~m}$ and large rings
larger current operation - impedance IBS controls, bunch lengthening
- Many projects are receiving funds and will come on line by the end of the decade
R. Bartolini, $4^{\text {th }}$ ARIES Annual Meeting, (virtual), 21/04/2021

