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The information paradox: A pedagogical introduction
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Abstract

The black hole information paradox is a very poorly understood problem. It is often be-
lieved that Hawking’s argument is not precisely formulated, and a more careful accounting of
naturally occurring quantum corrections will allow the radiation process to become unitary.
We show that such is not the case, by proving that small corrections to the leading order
Hawking computation cannot remove the entanglement between the radiation and the hole.
We formulate Hawking’s argument as a ‘theorem’: assuming ‘traditional’ physics at the
horizon and usual assumptions of locality we will be forced into mixed states or remnants.
We also argue that one cannot explain away the problem by invoking AdS/CFT duality.
We conclude with recent results on the quantum physics of black holes which show the the
interior of black holes have a ‘fuzzball’ structure. This nontrivial structure of microstates
resolves the information paradox, and gives a qualitative picture of how classical intuition
can break down in black hole physics.
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1 The black hole information paradox paradox

Consider the following conversation between two students:

First student: ‘Suppose I am falling into a black hole. By the equivalence principle, I
will notice nothing special at the horizon. Hawking has argued that radiation from such a
horizon has a thermal spectrum, which means that the radiation can carry no information and
information will be lost when the black hole evaporates.’

Second student: ‘I know that this is called the information paradox, but I think there are
many weaknesses in Hawking’s argument. The radiation he computes starts as transplankian
modes, so it is wrong to treat those modes like free field modes, as Hawking did. In any case
there is no information paradox in string theory because we know that black holes in AdS at
least are dual to a field theory, and the field theory is manifestly unitary.’

I will argue in these notes that each phrase in the above conversation is either incorrect
or is irrelevant to the information problem. Some forty years after Hawking became famous
for finding this problem, one of the most paradoxical things is that the black hole information
paradox is so well known and yet so poorly understood. A principal goal of these lectures will
therefore be to understand exactly what the paradox is. We will see that there is a very precise
statement of the contradiction found by Hawking, and that bypassing the paradox needs a basic
change in our understanding of how quantum effects operate in gravity.

2 The information paradox

We develop the ideas underlying the paradox in a number of steps, starting with very basic
principles. It is essential to understand these principles, because even though we use them auto-
matically in our everyday use of physics, it is these same principles which are being challenged
by the information paradox.

2.1 Existence of a ‘solar system physics’ limit

General relativity has brought several complications to physics. In particular, space and time
can ‘stretch’, and we are then forced to extend quantum theory to curved spacetime. In our solar
system we have space-time curvature, but we believe that we can do laboratory experiments
without worrying about details of quantum gravity. Why is that? The vacuum of a free
quantum field in flat space has fourier modes of all wavelengths going down to zero. When
quantum gravity is taken into account, what will be the behavior of modes with wavelengths
shorter than planck length? We do not fully understand the answer to such questions, and if it
were the case that the full physics of quantum gravity were needed for describing any process,
then we would not be able to do much physics.

The reason that we do not worry about quantum gravity in everyday experiments is that
we believe there is an appropriate limit where the effects of quantum gravity become small,
and a local, well defined, approximate evolution equation becomes possible. The existence of
this limit is so crucial to physics, that I use a specific name for it in these notes: ‘solar system
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physics’. The term signifies that we can do normal physics when spacetime curvatures are of
the order found in our solar system.

Definition D1: Solar system limit: There must exist a set of ‘niceness conditions’
N containing a small parameter ǫ such that when ǫ is made arbitrarily small then physics
can be described to arbitrarily high accuracy by a known, local, evolution equation. That is,
under conditions N we can specify the quantum state on an initial spacelike slice, and then a
Hamiltonian evolution operator gives the state on later slices. Furthermore, the influence of the
state in one region on the evolution in another region must go to zero as the distance between
these regions goes to infinity (locality).

We have not yet specified these niceness conditions N, but the fact that there must exist
such a ‘solar system limit’ underlies all of our physical thinking. Hawking’s theorem starts with
a natural set of niceness conditions N, and proves that requiring locality with these conditions
would lead to an ‘unacceptable’ physical evolution. One must then either agree to this ‘unac-
ceptable evolution’, or find a way to add new conditions to the set N, in such a way that these
conditions still allow us to define a ‘solar system limit’ incorporating some idea of locality.

2.2 ‘Niceness’ Conditions’ N for local evolution

Here we make a list of ‘niceness conditions’ that are traditionally assumed, whether explicitly
or implicitly:

(N1) Our quantum state is defined on a spacelike slice. The intrinsic curvature (3)R of this
slice should be much smaller than planck scale everywhere: (3)R≪ 1

l2p
.

(N2) The spacelike slice sits in an 4-dimensional spacetime. Let us require that the slice
be nicely embedded in the full spacetime; i.e., the extrinsic curvature of the slice K is small
everywhere: K ≪ 1

l2p
.

(N3) The 4-curvature curvature of the full spacetime in the neighbourhood of the slice
should be small everywhere (4)R≪ 1

l2p

(N4) We should require that all matter on the slice be ‘good’. Thus any quanta on the
slice should have wavelength much longer than planck length (λ≫ lp), and the energy density
U and momentum density P should be small everywhere compared to planck density: U ≪
l−4
p , P ≪ l−4

p . Let us add here that we will let all matter satisfy the usual energy conditions
(say, the dominant energy condition).

(N5) We will evolve the state on the initial slice to a later slice; all slices encountered should
be ‘good’ as above. Further, the lapse and shift vectors needed to specify the evolution should
change smoothly with position: dN i

ds
≪ 1

lp
, dN

ds
≪ 1

lp

Note that not all these conditions may be independent, but we have tried to be as generous
as possible in making sure that we are in a domain of semiclassical physics.
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2.3 The quantum process of interest

While we have tried to make sure that the spacetime is such that quantum gravity can be
ignored, we have to do a little more: we have to be more precise about what physical process
we are interested in looking at. The reason is simple. There is always some effect of quantum
gravity, so if we insist on making a very precise measurement of something or look at some
very abstruse physical effect, we might pick up effects of quantum gravity even in gently curved
spacetime. So we will now pick the physical process of interest.

1. A set of nice slices: Start with the vacuum state on the lower slice in fig.1(a). Consider
the evolution to the upper slice shown in the figure. The later slice is evolved forward in the
right hand region, less so in the left hand region. This is of course allowed: in general relativity
we have ‘many-fingered time’ in the language of Wheeler, so we can evolve in any way that we
like. The slices satisfy all the ‘niceness’ conditions N.

Figure 1: (a) Spacelike slices in an evolution; the intrinsic geometry of the slice distorts in the
region between the right and left sides (b) Particle pairs are created in the region of distortion
(c) There is matter far away from the region of distortion; locality would say that the state of
this matter is only weakly correlated with the state of the pair.

2. Pair creation: The evolution of the geometry will lead to particle creation in the region
where the geometry of the slice is being deformed; this happens because the vacuum state on
one slice will not in general be the natural vacuum on a later slice. Let the geometry in the
deformation region be characterized by the length and time scale L. Then the particle pairs
created have wavelengths λ ∼ L and the number of such created pairs is n ∼ 1. For concreteness
we will take L ∼ 3 Km which is the curvature length scale at the horizon of a solar mass black
hole.
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The particle pair is depicted by c, b in figure fig.1(b). The state of the created pairs is of
the form

|Ψ〉pair = Ceγĉ
†b̂† |0〉c|0〉b (1)

where γ is a number of order unity. The detailed form of this state can be found in [1, 3]. But
the essence of this entanglement can be obtained by assuming the following simple form for the
state

|Ψ〉pair =
1√
2
|0〉c|0〉b +

1√
2
|1〉c|1〉b (2)

where in fig.1(b) the quantum of the right is called b and the quantum on the left is called c.

3. Matter on the slice: There is some matter in a state |ψ〉M on the spacelike slice, but
the crucial point is that this matter is very far away, a distance L′ ≫ L from the place where
the pair creation is taking place. For concreteness, we will take L′ ∼ 1077 light years (fig.1(c)).
(This is the length scale that we will encounter in the Hawking evaporation problem of the
solar mass hole.)

4. Locality: If we now assume ‘locality’ on the spacelike slices then the complete state on
the spacelike slice would be

|Ψ〉 ≈ |ψ〉M ⊗
( 1√

2
|0〉c|0〉b +

1√
2
|1〉c|1〉b

)

(3)

Even though the matter |ψ〉M is far away from the place where the pairs are being created,
there will always be some effect of |ψ〉M on the state of the create pairs. This is why we have
written an ≈ sign in (3). But it is crucial to Hawking’s argument that we make this more
precise.

Let the state of matter |ψ〉M consist of a single spin which can be up or down. Let us take

|ψ〉M =
(

1√
2
| ↑〉M + 1√

2
| ↓〉M

)

. Then if there was no effect of the matter state |ψ〉M on the

state of the pairs, the state on the slice would be

|Ψ〉 ≈
( 1√

2
| ↑〉M +

1√
2
| ↓〉M

)

⊗
( 1√

2
|0〉c|0〉b +

1√
2
|1〉c|1〉b

)

(4)

It is crucial to understand that locality allows small departures from the state (4), for example

|Ψ〉 =
( 1√

2
| ↑〉M +

1√
2
| ↓〉M

)

⊗
[

(
1√
2
+ ǫ)|0〉c|0〉b + (

1√
2
− ǫ)|1〉c|1〉b

]

, ǫ≪ 1 (5)

but not a completely different state like

|Ψ〉 =
( 1√

2
| ↑〉M |0〉c +

1√
2
| ↓〉M |1〉c

)

⊗
( 1√

2
|0〉b +

1√
2
|1〉b

)

(6)

5. Quantifying locality: Let us now quantify the sense in which (5) is close to (4) but
(6) is not. For the state (4) write the density matrix describing the quantum b, while tracing
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over the degrees of freedom in M and c. Note that b is entangled with c, but not with M . One
finds the entanglement entropy

Sent = −tr[ρ ln ρ] = ln 2 (7)

Doing the same computation for the state (5) gives

Sent = −tr[ρ ln ρ] = ln 2− ǫ2(6 − 2 ln 2) ≈ ln 2 (8)

But with the state (6) we get
Sent = 0 (9)

Now we can make a precise statement about the consequence of assuming locality. Consider
the limit

L

lp
≫ 1,

L′

lp
≫ 1,

L′

L
≫ 1 (10)

The first two inequalities say that all length scales are much longer than planck length, and
the last says that the matter M is ‘far away’ from the place where the pairs are being created.
Note that both the length and time scales involved in the pair creation process are ∼ L. The
above limits are amply satisfied by the scales we took in fig.1.

Now we can express the notion of locality in the following way

If we assume that the niceness conditions N give ‘solar system physics’, then in the limit
(10) we will get

Sent
ln 2

− 1 ≪ 1 (11)

3 The ‘traditional black hole’

The above discussion was very general, but let us now apply it to the black hole with metric

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2dΩ2

2 (12)

This metric has a horizon at r = 2M . The curvature in the vicinity of the horizon is low:
4R ∼ 1

M2 . We will call this the ‘traditional black hole geometry’. The essential feature of the
traditional geometry that will be of relevance to us is the fact that there is no ‘information’
about the hole in the vicinity of the horizon. We call this an ‘information-free horizon’ and
make this precise with the following definition:

Definition D2: A point on the horizon will be called ‘information-free’ if around this
point we can find a neighborhood which is the ‘vacuum’ in the following sense: the evolution of
field modes with wavelengths lp ≪ λ . M is given by the semiclassical evolution of quantum
fields on ‘empty’ curved space upto terms that vanish as mp/M → 0.

A black hole with an infomation-free horizon will be called a ‘traditional black hole’.
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Note that in any curved space there is no unique definition of particles, but if the curvature
radius is R then for wavemodes with wavelength λ . R we can get a definition of particles in
which we can say what ‘empty space’ is. That is, one definition of particle will disagree with
another but only in that the two definitions will differ by ∼ 1 quanta with λ ∼ R. At the black
hole horizon we have the same situation, and one might expect to see order unity quanta with
λ ∼M in any natural definition of particles; Hawking radiation quanta that are being created
will also fall in this category. Thus ‘empty’ in the above definition means that we do not have
for instance modes with λ .M/10 populated by ∼ 1 quanta each.

Finally, note that the metric (12) gives a time-independent black hole geometry. Hawking
radiation makes the black hole slowly evaporate, but since the evaporation process is slow, we
can describe the traditional black hole by a metric like (12) at any given point of the evaporation
process except near the very end when the black hole becomes planck sized.

3.1 Slicing the traditional black hole geometry

The traditional black hole has a spacelike singularity inside the horizon. If this singularity
intersects the spacelike slices of our evolution, then the niceness conditions N would not hold
everywhere on the slice, and one would not be able to make Hawking’s argument. Thus it is
crucial that we can make a set of spacelike slices that describe a spacetime region S, satisfy
all the niceness conditions N, and yet capture all the physics of Hawking radiation. We now
describe this very important construction of slices.

3.1.1 Making one spacelike slice

We make a spacelike slice for the black hole (12) as follows (fig.2):

(a) For r > 4M we let the slice be t = t1 = constant

(b) Inside r < 2M the spacelike slices are r = constant rather than t = constant. We let
the slice be r = r1, M/2 < r1 < 3M/2, so that this part of the slice is not near the horizon
r = 2M and not near the singularity r = 0.

(c) We join these parts of the slice with a smooth ‘connector’ segment C. It is easy to check
that such a connector can be made so that the slice satisfies all the niceness conditions N which
we gave above.

(d) The geometry (12) gives the time independent black hole, but we will be interested in
black holes made by starting with flat space and having a shell of mass M collapse towards
the origin r = 0. The Penrose diagram for this hole is shown in fig.3. With such a hole made
by collapse we can follow the r = r1 part of the slice down to early times before the hole was
formed, and then smoothly extend it to r = 0 (there is no singularity at r = 0 at these early
times).
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Figure 2: A schematic set of coordinates for the Schwarzschild hole. Spacelike slices are t =
const outside the horizon and r = const inside. Infalling matter is very far from the place where
pairs are created (∼ 1077 light years) when we measure distances along the slice. Curvature
length scale is ∼ 3 km all over the region of evolution covered by the slices Si.

3.2 Evolution to later slices

This makes one complete spacelike slice, which we call as S1 in fig.2. Let us now make a ‘later’
spacelike slice S2.

(a) At r > 4M we take t = t1 +∆.

(b) The r = const part will be r = r1 + δ where δ1 ≪ M . Note that the timelike direction
for this part of the geometry is in the decreasing r direction, so this change δ1 is indeed correct
for evolution of this part of the slice. We let δ1 be small, and will later take the limit where
δ1 → 0 for convenience.

(c) We again join the parts (a),(b) by a smooth ‘connector’ segment. In the limit δ1 → 0
we can take the geometry of the connector segment C to be the same for all slices. Note the
very important fact (which can be seen from fig.2) that the r = const part of the later slice
S2 is longer than the r = const part of S1. This extra part of the slice is needed because the
connector segment has to join the r = const part to the t = const part, and the t = const part
has been evolved forwards on the later slice.

(d) At early times we again bring the r = const part smoothly down to r = 0, at a place
where there is no singularity.
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3.3 The changes between the slices

Let us now see the nature of the evolution from slice S1 to slice S2. Let us choose lapse and
shift vectors on the spacetime as follows. We take the slice S1 and pick a point xi on it. Now
move along the timelike normal till we reach a point on S2. Let this point on S2 have the same
spatial coordinates xi. Thus we have set the shift vector to be N i = 0. With this choice we
can describe the evolution as follows:

(a) In the t = constant part of the slice we have no change in intrinsic geometry. This part

of the slice just advances forward in time with a lapse function N = (1− 2M
r
)
1

2 .

(b) Let us work in the limit δ1 → 0. The r = const part of S1 moves over to S2 with
no change in intrinsic geometry. The early time part which joins this segment to r = 0 also
remains unchanged.

(c) The connector segment C of S1 has to ‘stretch’ during this evolution, since the corre-
sponding points on S2 will have to cover both the connector C of S2 and the extra part of the
r = const segment possessed by S2.

Thus we see that the ‘stretching’ happens only in the region near the connector segment.
This region has space and time dimensions of order M , which is 3 km for the solar mass black
hole that we have taken as our example.

Now consider a succession of slices Sn of this type, evolving from Sn to Sn+1 in exactly the
same way that we evolved from S1 to S2. Each evolution from Sn to Sn+1 can be described as
follows:

Divide Sn into a left part, a right part, and a middle part (which is the connector region).
In the evolution to Sn+1, the left and right parts stay unchanged but are pushed apart, and the
middle part is stretched to a longer length. The length of the middle part is ∼ M , the proper
time between the slices in this middle region is ∼ M , and the stretching is by a factor (1 + α),
with α ∼ 1.

One can now check the following important fact:

Nice slicing of the traditional hole: The slicing constructed above satisfies all the
‘niceness conditions’ N listed in section 2.2 above.

In fact these slices look just like the ones shown in fig.1. The curvature is low in all the
regions covered by the evolution. Note that while the metric (12) looks time independent, this
is only an illusion because the Schwarzschild coordinates break down at the horizon; any slicing
that covers both the outside and the inside of the hole will necessarily be time dependent. This
time-dependence is the underlying reason for particle creation in the black hole geometry.

3.4 A comment on the ‘stretching’ in this slicing

The slicing of the black hole geometry is very interesting. All the ‘stretching’ between successive
slices happens in a given place, so that the fourier modes of fields at this location keep getting
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Figure 3: The Penrose diagram of a black hole formed by collapse of the ‘infalling matter’. The
spacelike slices satisfy all the niceness conditions N.

stretched to larger wavelengths, and particles will keep being produced (until the hole becomes
very small). We cannot have such a set of slices in ordinary Minkowski space. If we try to make
slices like those in fig.2 in Minkowski space, then after some point in the evolution the later
slices will not be spacelike everywhere: the ‘stretching’ part will become null and then timelike.
But it is the basic feature of the black hole that the space and time directions interchange roles
inside the horizon, and we get spacelike slices having a stretching like that of fig.2 throughout
the region of interest.

Looking at such a slicing one might wonder if there should be a problem with stretching a
given region of spacetime ‘too much’. If we could make such a notion concrete, then we could
add a new condition to the niceness conditions N, prohibiting ‘too much stretching’. Then
the slicing used in the derivation of Hawking’s theorem would cease to satisfy the niceness
conditions, and the information paradox would be bypassed. But if we add such a condition,
then we will have to face its consequences. Our Universe starts with a small marble sized ball,
and its spatial sections stretch without bound. If we propose that ‘too much stretching’ destroys
the ‘solar system limit’, then we have to consider that that this limit will be violated at some
point in Cosmological evolution. (In [5] such a condition was proposed, and its consequence
for Cosmological evolution was explored in [6].) Thus we see that it is not easy to add new
conditions to the set N without suffering serious modifications to physics in other situations.

A second possibility is to argue that while the slicing of the spacetime region itself satisfies
the niceness conditions N, there is a singularity in the future of the region covered by the
slices, and this could affect the evolution on the slices and generate nonlocal effects. Again, if
one wishes to make this argument, one has to make a precise statement of when the niceness
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conditions will be violated by a singularity in the future. Suppose one does manage to add
such a condition to the niceness set N. Then what will happen if our Universe approaches a
Big Crunch? There is a singularity in the future, so will we get nonlocal effects all across our
spacelike slices? Also, by time reversal symmetry, if we had a singularity in the past then should
it not have similar effects? In that case, just after the Big Bang we should get nonlocal effects
across the spacelike slices of our Universe, something that we do not build into our normal
understanding of Cosmology. So we see again that it is not easy to add new conditions to the
set N. In the discussion below we will just take the standard set of niceness conditions given in
section 2.2 in exploring the information paradox.

4 The Hawking radiation process: leading order

The evolution of slices in the black hole geometry will lead to the creation of particle pairs. The
members of these pairs that float out to infinity are called Hawking radiation. In this section we
look at the nature of the wavefunction of these created pairs. The pairs will form a state which
is entangled in a very specific way, and this fact will form the heart of Hawking’s theorem. It
is crucial that the state of these pairs is a state unlike any that is created when a normal hot
body radiates photons. We will see that the essential difference arises from the fact that in the
black hole case the particle pairs are the result of ‘stretching’ of a region of the spacelike slice;
thus these pairs are ‘pulled out of the vacuum’. In normal hot bodies the radiation is emitted
from the constituents making up the hot body. This is the essential difference between a hot
body and the black hole, so we will be returning to this issue repeatedly.

In this section we will see the state of the created pairs ‘to leading order’. If this were the
actual state of the pairs, it is easy to see that we cannot escape Hawking’s conclusion. But
of course there will always be small corrections to any leading order computation. A common
misconception is that these small corrections can remove Hawking’s problem and make the
black hole radiation no different from radiation from a hot body. This is absolutely incorrect.
Thus in proving Hawking’s theorem we will explore the space of small corrections to the leading
order state and show that unless we make an order unity modification to the leading order result,
Hawking’s problem will persist. Well, why not assume then that there are order unity corrections
to the lading order state? The crucial point of Hawking’s theorem is that in that case there will
be breakdown of the solar system limit even if we are given the niceness conditions N.

This then is the outline of the Hawking result. It would clearly be very difficult to write
down all sources of small corrections to the leading order result. The proof of the theorem does
away with the necessity of analyzing these corrections, by simply mapping the evolution to one
in a domain of ‘solar system physics’, so that any effect that generates corrections large enough
to make the hole radiate like a normal body will be forced to lead to a violation of the solar
system limit.

Clearly, we need to get a good understanding of evolution in the black hole spacetime. To
make the essence of the proof clearer, we start in this section with the leading order Hawking
state, analyze its essential properties, and postpose the investigation of corrections to the next
section.
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Figure 4: The creation of Hawking pairs. The new quanta cn+1, bn+1 are not created by
interaction with either the matter |ψ〉M (represented by the black square) or with the earlier
created pairs. Rather the creation is by a Schwinger process which moves |ψ〉M further away
from the place of pair creation, and also moves the earlier created c, b quanta away from the
place of pair creation. The new pairs are created in a state which to leading order is entangled
between the new b, c quanta but not entangled with anything else. Small corrections to this
leading order state does not change this entanglement significantly, so the entanglement keeps
growing all through the radiation process, unlike the case of radiation from normal hot bodies.

(1) Consider an initial spacelike slice. The shell that collapses to make the hole is represented
by a matter state |ψ〉M .

(2) Let us evolve to the next spacelike slice. The ‘middle part’ of the spacelike slice stretches,
while the left and right parts remain unchanged. This is shown in fig.4. The stretching creates
correlated pairs (labelled b1, c1) and the state on the complete slice is like (3)

|Ψ〉 ≈ |ψ〉M ⊗
( 1√

2
|0〉c1 |0〉b1 +

1√
2
|1〉c1 |1〉b1

)

(13)

If we compute the entanglement of b1 with M, c1 we obtain

Sentanglement = ln 2 (14)

(3) Now consider the next slice of spacetime in fig.4. The following happens during this
step of the evolution:

(i) The matter state |ψ〉M stays almost the same because there is no evolution in this part
of the slice

(ii) The change in the geometry happens only in the region where the ‘connector’ part joins
the r = const part; in this region there is a ‘stretching’ of the spacelike slice. There are two
consequences of this stretching. The first is that the pairs b1, c1 created earlier move away from
each other and from the region of stretching. The second is that the stretching creates a new
set of pairs b2, c2 in the region of stretching. Again, the full state of the quantum field can be
found in [1, 3], but for our present purposes we can write the state at the end of this step as

|Ψ〉 ≈ |ψ〉M ⊗
( 1√

2
|0〉c1 |0〉b1 +

1√
2
|1〉c1 |1〉b1

)
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⊗
( 1√

2
|0〉c2 |0〉b2 +

1√
2
|1〉c2 |1〉b2

)

(15)

We compute the entanglement of the set {b1, b2} with {M, c1, c2}. We get

Sentanglement = 2 ln 2 (16)

(4) After N such steps we will have the state

|Ψ〉 ≈ |ψ〉M ⊗
( 1√

2
|0〉c1 |0〉b1 +

1√
2
|1〉c1 |1〉b1

)

⊗
( 1√

2
|0〉c2 |0〉b2 +

1√
2
|1〉c2 |1〉b2

)

. . .

⊗
( 1√

2
|0〉cN |0〉bN +

1√
2
|1〉cN |1〉bN

)

(17)

The space {bi} is entangled with the remainder M, {ci} with

Sentanglement = N ln 2 (18)

(5) As the quanta {bi} collect at infinity, the mass of the hole decreases. The slicing does
not satisfy the niceness conditions N after the point when Mhole ∼ mpl because

4R≪ l−2
p is no

longer true. We will therefore stop evolving our spacelike slices when this point is reached.

The emitted radiation quanta {bi} have an entanglement (18) with M, {ci}. We define:

Definition D3: We will say that our gravity theory contains remnants if there exists a set
of objects with mass and size less than given bounds

m < mremnant, l < lremnant (19)

but allowing an arbitrarily high entanglement with systems far away from the object.

It is easy to see that an object can be entangled with Sentanglement = n ln 2 with another
system only if the number of possible states of the object is& n. Thus remnants have unbounded
degeneracy while having energy and size within given bounds. This is not the expected behavior
of quantum systems in normal physics. It has been argued that existence of remnants gives rise
to loop divergences from the infinite number of possible objects circulating in the loop.

We now see that our slicing of the traditional black hole geometry has forced us to the
choose between the following possibilities:

(1) Mixed states: The black hole evaporates away completely. The quanta {bi} have
entanglement entropy Sent ∼ N ln 2 6= 0. But since there is nothing left that they are entangled
with, the final state is not described by any quantum wavefunction. The final state can only
be described by a density matrix.

(2) Remnants The evolution stops when Mhole ∼ mremnant. Given the entanglement
(18), we find the theory contains remnants.
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Possibility (1) leads to a loss of unitarity of quantum mechanics, since a pure initial state
evolved to a mixed final state. Possibility (2) is not a violation of quantum mechanics as such,
but still differs from expected physics, since normally we expect only a finite number of states
if both the energy and spatial extent are bounded. The Hawking argument cannot say which
of possibilities (1) and (2) will occur since the niceness conditions N are violated near the
endpoint of evolution. Thus we will lump both these possibilities into one which we call ‘mixed
states/remnants’.

As mentioned at the start of this section, the above discussion is not really the full Hawking
theorem yet because we have not considered possible small corrections that will in general exist
to the state (17). Thus what we have seen so far is a first outline of the Hawking argument.
To recapitulate this outline, what we have seen is that at each stage of the evolution the
entanglement entropy of the bi in this leading order state increases by ln 2. The evolution is
very unique to the black hole because the radiation is created by the stretching of the ‘middle
part’ of each spacelike slice. It is the peculiar nature of the black hole geometry which creates
such persistent stretching of spacelike slices. When normal hot bodies radiate, the radiation
quanta are not created by stretching of spacelike slices. Thus for normal hot bodies the radiation
quanta depend on the nature of the atomic state at the surface of the body. By contrast, in
black hole evolution we see that the matter making the hole (|ψ〉M in the above discussion)
stays far away from the place where the Hawking pairs are being created. In fact with each
successive stage of stretching, this matter is moved further away from the place where the next
pair would be produced.

How far away is this matter for the creation of the typical Hawking pair for a solar mass
black hole? After each stage of stretching, the matter moves a distance of order M ∼ 3 km
away from the place where the pairs are being created. The number of radiation quanta is
(M/mp)

2. Thus after about half the evolution, the distance of the matter (measured along the
spacelike slice) from the place where the pairs are being created is of order

L ∼M(
M

mp
)2 ∼ 1077 light years (20)

This shows the sharp contrast between the case of normal hot bodies and the case of the black
hole. For normal hot bodies, the distance L between the matter in the body and the place
where the radiation is created would be zero since the radiation leaves from the atoms in the
body.

One might think that even though the matter |ψ〉M is very far away from where the pairs
are being created, the pairs which have been created recently are close to the new pair being
created, and this may help to generate correlations. Again, one finds that this does not happen.
For one thing, the earlier created b, c quanta also move away from the pair creation region at
each step. Thus the typical b or c quantum is also a distance of order L ∼ 1077 light years
from the place where the new pairs are being created. Of course the pairs that have been
recently created are at a distance ∼ 3 km from the newly created pair. But the nature of the
pair creation process is such that this nearness does not help. The new pair is created by the
stretching of a new fourier mode, and the earlier created pair is simply pushed away in this
process. To see this fact more explicitly, one has to write down the actual wavemodes and the
wavefunctional describing their overall state. The reader who wishes to get a full understanding
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of this point should take the full wavefunctional given in [3] and use it to understand why the
simplified state (17) gives the same essential physics of correlations as the full wavefunctional.

5 Stability of the Hawking state

We saw above the essence of the Hawking argument: repeated stretching at the horizon leads
to repeated creation of pairs in a particular entangled state (17). This forces us to mixed
states/remnants.

There will of course be small corrections to the leading order state (17). These can come
from small interactions between earlier created pairs and the newly created pair. The matter
shell which made the hole |ψ〉M is very far away on the spacelike slice, but the entire black hole
is a gravitational solution with radius M , and there can be instanton effects that lead to small
effects of |ψ〉M on the pair being created. Such instanton effects would be exponential small

Ainstanton ∼ e−Sinstanton , Sinstanton ≈ GM2 (21)

where we have used the action of the standard instanton found in black hole physics: the
Euclidean solution

ds2 = (1− 2M

r
)dτ2 + (1− 2M

r
)−1dr2 + r2dΩ2

2 (22)

with identification τ = τ + 8πGM .
It is logical to ask if such small corrections can perhaps invalidate Hawking’s argument,

and remove all entanglement between the quanta bi and the (M, ci) quanta in the hole. If this
happens, there would be no paradox, since the hole containing (M, c) can vanish, and we will
be left with a pure state of the bi quanta, presumably carrying all the information of the initial
matter |ψ〉M .

It is a very important fact that such small corrections do not change the conclusion reached
in the Hawking argument. We will call this fact the ‘stability of entanglement of the Hawking
state’. In this section we will first define the meaning of small corrections, then prove a set of
three lemmas that will lead to the proof of the stability theorem. In the next section we will
use this theorem to state and prove Hawking’s theorem on mixed states/remnants.

5.1 Deformations of the leading order state

Let the state of the modes in the box at time step tn be written as |ΨM,c, ψb(tn)〉. Here ΨM,c

denotes the state of the matter shell that fell in to make the black hole, and also all the c quanta
that have been created at earlier steps in the evolution. ψb denotes the set of all b quanta that
have been created in all earlier steps. This state is entangled between the (M, c) and (b) parts;
it is not a product state. We assume nothing about its detailed structure.

In the leading order evolution we would have at time step tn+1:

|ΨM,c, ψb(tn)〉 → |ΨM,c, ψb(tn)〉
[ 1√

2
|0〉cn+1

|0〉bn+1
+

1√
2
|1〉cn+1

|1〉bn+1

]

(23)

where the term in box brackets denotes the state of the newly created pair.
In this section we will write down the most general deformation of this leading order state,

and analyze the entanglement entropy that results. Thus in a sense the computations here are
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at the heart of the Hawking theorem, since they will prove that it is not possible to avoid mixed
states/remnants by the small corrections which will always be present to a leading order result
like (23).

(1) We have seen that the stretching of spacetime creates a new region on the spacelike slice,
and moves the regions to the left and right of this region apart, without distortion. The full state
of the created pairs is given in [3], but we will continue to use our simplified model of this state:
we allow only occupation number of a mode to only be 0 or 1, and we discretize the evolution
into steps where pairs get created in one mode at each step. These simplifications allow a
presentation that is possible to follow easily. (If the reader is worried that some generality has
been lost then he should start with the full state in [3] and repeat the steps below.)

We assume that state in the newly created region is spanned by 2 vectors, for which we can
take the basis

S(1) =
1√
2
|0〉cn+1

|0〉bn+1
+

1√
2
|1〉cn+1

|1〉bn+1

S(2) =
1√
2
|0〉cn+1

|0〉bn+1
− 1√

2
|1〉cn+1

|1〉bn+1

(24)

We could have included other vectors to enlarge this space, but the nature of the argument
that follows would not change, so we leave it to the reader to change the equations below to
reflect a larger choice of possibilities if he wishes.

(2) The state at time tn is |ΨM,c, ψb(tn)〉. This has entanglement between the the bi and the
state inside the hole, which is composed of the matter making the shell (M) and the infalling
members of pairs ci that have been created till now. We can choose a basis of orthonormal
states ψn for the (M, c) quanta inside the hole, and an orthonormal basis χn for the quanta bi
outside the hole, such that

|ΨM,c, ψb(tn)〉 =
∑

m,n

Cmnψmχn (25)

It is convenient to make unitary transformations on the ψi, χj so that we get

|ΨM,c, ψb(tn)〉 =
∑

i

Ciψiχi (26)

We compute the reduced density matrix describing the bi quanta outside the hole

ρij = |Ci|2δij (27)

The entanglement at time tn is then

Sent(tn) = −
∑

i

|Ci|2 ln |Ci|2 (28)

(3) We now consider the evolution to the next timestep tn+1. The only constraint we put
on the evolution is that the bi which have been created in all earlier steps be not affected by
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this step of the evolution. This is because these bi quanta have left the vicinity of the hole,
and can be collected outside; in any case they can no longer be influenced by the hole without
invoking some magical ‘action at a distance’ that would violate any locality condition that we
assume. We can write these quanta bi in terms of creation operators for outgoing modes, and
in this basis the state does not evolve further (the quanta keep moving out to larger r, but this
is along a line of fixed t− r).

(If the reader wishes to argue that the most recent bi quanta are still not far enough from
the hole and can be influenced, he should try to build the argument in detail using a larger
space than (24) which includes several pairs instead of just one.)

Thus the most general evolution to timestep tn+1 is given by

χi → χi (29)

ψi → ψ
(1)
i S(1) + ψ

(2)
i S(2) (30)

where the state ψi of the (M, ci) evolves to a tensor product of states ψ
(i)
i describing (M, ci)

and the S(i) which described the newly created pair. Note that unitarity of evolution gives

||ψ(1)
i ||2 + ||ψ(2)

i ||2 = 1 (31)

In the leading order evolution we had

ψ
(1)
i = ψi, ψ

(2)
i = 0 (32)

and we will use this fact below to define what we mean by ‘small’ corrections and ‘order unity’
corrections.

Putting all this together, the state (26) evolves at tn+1 to

|ΨM,c, ψb(tn+1)〉 =
∑

i

Ci[ψ
(1)
i S(1) + ψ

(2)
i S(2)] χi (33)

(4) We wish to compute the entanglement entropy in the state (33), between the b quanta
that are outside the hole and the (M, c) quanta that are inside the hole. The b quanta outside
include the bi from all steps upto tn as well as the quantum bn+1 created in this last step of
evolution. We now wish compute Sent(tn+1) in terms of Sent(tn) given by (28) and the states

ψ
(α)
i in (33).

We now define explicitly what we mean by a ‘small’ change in the evolution of a new pair.
Write the state (33) as

|ΨM,c, ψb(tn+1)〉 = S(1)
[

∑

i

Ciψ
(1)
i χi

]

+ S(2)
[

∑

i

Ciψ
(2)
i χi

]

≡ S(1)Λ(1) + S(2)Λ(2) (34)

Here we have defined the states

Λ(1) =
∑

i

Ciψ
(1)
i χi, Λ(2) =

∑

i

Ciψ
(2)
i χi (35)
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Since S(1), S(2) are orthonormal, normalization of |ΨM,c, ψb(tn+1)〉 implies that

||Λ(1)||2 + ||Λ(2)||2 = 1 (36)

Definition D2: We will call corrections small if

||Λ(2)|| < ǫ, ǫ≪ 1 (37)

If there is no such bound, then we will say that the corrections are ‘order unity’.

The physical significance of this definition is simple to understand. When put the in the
context of the black hole problem, we have seen that the creation of the new pair occurs in
a spacetime satisfying the niceness conditions N. We will see in the proof of the Hawking
theorem below that if the traditional black hole structure is assumed at the horizon, then the
effect of quanta already present on the spacelike slice is supposed to be small under these
conditions N. This means that we can reliably find the state S(1) when the pair is created, and
the probability to find the orthogonal state S(2) has to be much less than unity. Thus we get
(37) as the definition of small corrections. Note that this condition still allows that for special
states ψi of the hole we can have a large amplitude for S(2); this is still consistent with the
requirement of small corrections if Ci be sufficiently small. Thus (37) says that corrections are
small if for probable states of the hole we have close to unity probability for generating the new
pair in the state S(1).

5.2 Entropy bounds

The entropy at step tn of the evolution is given by (28). Let us call this value S0. Our goal
is to show that at step tn+1 the entropy of entanglement of the b quanta with the quanta in
the hole (M, c) increases if we satisfy the requirement of ‘small corrections’ defined above. It
may seem obvious that if corrections are small then the increase in entropy will be close to
the value ln 2 that we find in the leading order evolution. The reason that this may not be
completely clear though is that there is a very large number of c quanta that the newly created
pair (cn+1, bn+1) can entangle with, and one might think that a very delicate entanglement with
this large number of quanta may allow the overall entanglement entropy to go down while still
allowing the state of (cn+1, bn+1) to be close to the one demanded by the niceness conditions.
Here we will prove three lemmas leading to the following theorem:2 if we are given the bound
(37), then at each stage of the evolution the entanglement entropy will increase by at least
ln 2 − 2ǫ. As can be imagined, this theorem will then be crucial to establishing the Hawking
argument that the niceness conditions N force mixed states/remnants.

Let us recall some standard notation. Suppose we have a system with subsystems A,B,C.
(We assume that the overall system is in a pure state, though this is not needed for the inequal-
ities below.) Then S(A) ≡ −trρA ln ρA where ρA is the density matrix describing subsystem
A. S(A) thus gives the entropy of entanglement of subsystem A with the rest of the system.
Similarly S(A + B) is the density matrix of the union of subsystems A and B; it gives the
entanglement of A+B with C.

2I thank Patrick Hayden for suggesting the use of entropy inequalities in deriving this result.
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Our black hole system has the following subsystems:

(i) The radiation quanta {b1, . . . bn} emitted in all steps upto and including step tn. We call
this set {b}. As noted above, we always assume that quanta emitted at earlier steps do not
participate in the dynamics of pair creation at the next timestep.

(ii) The black hole interior contains at timestep tn the shell state |ψ〉M and the quanta
{c1 . . . cn}. We lump these together into the symbol (M, {c}). The pair created at timestep
tn+1 can interact weakly with (M, {c}) creating entanglements which were not present in the
leading order Hawking state; these are the effects that we are trying to consider now.

(iii) The pair p that will be created at the timestep tn+1. We write this as p ≡ (cn+1, bn+1).

Now consider the entropies of these subsystems. Let the entropy (28) be called S0. Thus
at time step tn we have S{b} = S0. Our assumption that the earlier emitted quanta {b} cannot
be influenced any further implies that even at the timestep tn+1 we continue to have

S{b} = S0 (38)

Our final goal will be to show that S({b}, bn+1) > S0 − 2ǫ, so that we establish that despite
small corrections, the entanglement entropy increases at the timestep tn+1. First we prove

Lemma L1: If (37) holds, then the entanglement of the pair (cn+1, bn+1) with the rest of
the system is bounded as

S(cn+1, bn+1) ≡ −trρ(cn+1,bn+1) ln ρ(cn+1,bn+1) < ǫ (39)

Proof: The density matrix for the system (cn+1, bn+1) is

ρ(cn+1,bn+1) =

(

〈Λ(1)|Λ(1)〉 〈Λ(1)|Λ(2)〉
〈Λ(2)|Λ(1)〉 〈Λ(2)|Λ(2)〉

)

(40)

From (37) we are given that

||Λ(2)||2 = 〈Λ(2)|Λ(2)〉 ≡ ǫ21 < ǫ2 (41)

Then by the Schwartz inequality

|〈Λ(1)|Λ(2)〉| ≡ ǫ2 < ǫ (42)

Now note that if we have a density matrix

ρ =
1

2
I + ~α · ~σ (43)

then we can make a unitary transformation to bring it to the form

ρ =
1

2
I + |~α|σ3 (44)
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The entropy of this density matrix is then seen to be

S = −trρ ln ρ = ln 2− 1

2
(1 + 2|~α|) ln(1 + 2|~α|)− 1

2
(1− 2|~α|) ln(1− 2|~α|) (45)

Applying this relation to (40), with (41), we find

S(cn+1, bn+1) = (ǫ21 − ǫ22) ln
e

(ǫ21 − ǫ22)
+O(ǫ3) < ǫ (46)

for ǫ≪ 1. �

We write the result of the above lemma as

Sp < ǫ (47)

where p = (bn+1, cn+1) denotes the pair created at timestep tn+1. This result shows that the
entire pair p is weakly entangled with the remainder of the system. Next we prove

Lemma L2:
S({b}+ p) ≥ S0 − ǫ (48)

Proof: We use the subadditivity property relating the entropy of two systems A,B

S(A+B) ≥ |S(A)− S(B)| (49)

Let A = {b} and B = p. Then (48) follows immediately from (38),(47). �

Lemma L3:
Scn+1

> ln 2− ǫ (50)

Proof: To prove this look at the state (34) and write it in the form

|ΨM,c, ψb(tn+1)〉 =
[

|0〉cn+1
|0〉bn+1

1√
2
(Λ(1) + Λ(2))

]

+
[

|1〉cn+1
|1〉bn+1

1√
2
(Λ(1) − Λ(2))

]

(51)

The density matrix describing cn+1 is

ρcn+1
=

( 1
2〈(Λ(1) + Λ(2))|(Λ(1) + Λ(2))〉 0

0 1
2〈(Λ(1) − Λ(2))|(Λ(1) − Λ(2))〉

)

(52)

Using 〈Λ(2)|Λ(2)〉 = ǫ22, 〈Λ(1)|Λ(1)〉 = 1− ǫ22, we get

ρcn+1
=

1

2
I +

(

Re〈Λ(1)|Λ(2)〉 0
0 −Re〈Λ(1)|Λ(2)〉

)

+O(ǫ2) (53)

and
S(cn+1) = ln 2− 2[Re(〈Λ(1)|Λ(2)〉)]2 ≥ ln 2− 2ǫ2 +O(ǫ3) > ln 2− ǫ (54)

for ǫ≪ 1.
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We now use the above lemmas to prove the stability of entanglement of the leading order
Hawking state:

Theorem 1: Suppose at time step tn the quanta {b1 . . . bn} have been emitted, and their
total entanglement entropy with the hole is S0. Suppose the next pair emitted at timestep tn+1

departs from the leading order Hawking state 1√
2
(|0〉cn+1

|0〉bn+1
+ |0〉cn+1

|0〉bn+1
) by an amount

less than ǫ ≪ 1; this condition being defined precisely in (37). Then after this time step the
entropy of the emitted quanta {b1, . . . bn+1} will satisfy

S({b}+ bn+1) > S0 + ln 2− 2ǫ (55)

Thus the entanglement entropy of the emitted quanta necessarily increases with each emission
if the departures from the leading order Hawking state are small.

Proof: We use the strong subadditivity theorem [8] which governs the entropies of three
systems

S(A+B) + S(B + C) ≥ S(A) + S(C) (56)

We set A = {b}, B = bn+1, C = cn+1. This gives

S({b} + bn+1) + S(p) ≥ S({b}) + S(cn+1) (57)

We have from (47) that S(p) < ǫ. From (38) we have S({b}) = S0. From (50) we have
S(cn+1) > ln 2− ǫ. This gives

S({b} + bn+1) > S0 + ln 2− 2ǫ � (58)

This is the result that we wished to establish. It proves that whenever we have ‘normal
physics’ at the horizon (i.e. the parameter giving departures from the leading order state is
ǫ≪ 1) then the entanglement always increases by at least ln 2−2ǫ after each stage of evolution.
The entanglement thus cannot go down at any of these stages. Thus small corrections do not
change the conclusion of Hawking’s leading order result, and we will get mixed states/remnants
when the traditional black hole evaporates, unless we can show that the corrections to evolution
are really order unity and not order ǫ≪ 1.

Why have we taken so much trouble to establish this ‘stability of entropy increase’? A
principal confusion about black holes arises from the following (erroneous) argument:

(a) When a piece of paper burns away the information is captured by the radiation, but
it is very hard to read this information from the radiation because it is encoded in delicate
correlations between radiation quanta. In fact Page [7] has shown that almost no information
about the paper can be read off unless we look at a subsystem including at least half the
radiation quanta.

(b) Because the information is encoded in delicate correlations, a similar situation can hold
in the case of Hawking radiation. Hawking computed only the leading order state, and did not
look at tiny corrections to this state. Even though these corrections may be only exponentially
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small (rather than order unity), they can be enough to solve the information paradox because
only very delicate correlations were needed anyway.

While (a) is correct, the followup step (b) is completely wrong, as we see by Theorem 1. Let
us pinpoint the error more precisely. Consider a toy model of the burning paper. If the atom
on the surface is in state |1〉a, then let this evolve to an entangled state of atom plus radiated
photon as follows

|1〉a → 1√
2
|1〉a| ↑〉ph +

1√
2
|2〉a| ↓〉ph ≡ S(1) (59)

where |2〉a is another state of the atom orthogonal to |1〉a, and the spin states of the photon
are given with a subscript ‘ph’. If the atom was in state |2〉a, let this evolve as

|2〉a → 1√
2
|1〉a| ↑〉ph −

1√
2
|2〉a| ↓〉ph ≡ S(2) (60)

Note that S(2) is orthogonal to S(1) as it must be, since a unitary evolution will map orthogonal
states |1〉a, |2〉a to orthogonal states. In fig.5 we show the evolution of this system: the state
produced at time step tn+1 depends, to leading order, on the state at time step tn. Thus in this
toy model we get with equal probability the states

S(1), S(1); 〈S(1)|S(2)〉 = 0 (61)

By contrast, the black hole case was sketched in fig.4. In each time step we create, to leading
order, the same state S(1). This is the crucial difference between the black hole case and
the radiation from any hot body. The emission from the hot body must necessarily be an
interaction leading to a vector space of states with dimension d > 1 ; we have d = 2 in the
above toy example (61). We get one state or the other from this vector space depending on
the state of the atom near the surface. Of course interactions within the body can make this
emission much more complicated, but this requirement d > 1 is what allows the information to
come out. By contrast, the black hole case has d = 1 to leading order, so the state produced at
the interaction point is the same regardless of the state of the black hole. This leads to growing
entanglement with each emission, and small corrections do not change the conclusion, as the
above theorem shows.

Thus the essential mistake that one makes in step (b) of the above argument is in not
specifying more carefully the term ‘delicate correlations’. There is nothing delicate about these
correlations in the emission process from a hot body: the emitted state changes radically from
S(1) to an orthogonal state S(2) depending on the nature of the radiating atom. What is delicate
is the difficulty of extracting the state of the burning paper from the state of the radiation,
since the data of the state is shared among many radiation quanta. In the black hole the state
of the created pair does not change radically from one emission to the next; the corrections
away from the leading orders state S(1) are themselves delicate (i.e., very small), and this leads
to a very different outcome from the hot body case.

6 The Hawking ‘Theorem’

We now have all the tools needed to establish
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Figure 5: A toy model of radiation from a normal hot body, showing the evolutions given in
eqs.(59),(60). The left side of the vertical bar shows atoms in the body, the right side shows
radiated photons with the arrow depicting their spin. If the atom near the boundary is in state
1 (unfilled circle) then we get the linear combination of states on the right, and if the atom is
in state 2 (filled circle), then we get an orthogonal different linear combination.

Hawking’s ‘Theorem’: If we assume

(i) The Niceness conditions N give local Hamiltonian evolution

(ii) A traditional black hole (i.e. one with an information-free horizon) exists in the theory

Then formation and evaporation of such a hole will lead to mixed states/remnants.

Proof: We proceed in the following steps:

(1) Consider the metric (12) of the traditional black hole. By the observation noted in
section 3.3 this black hole admits a slicing satisfying the niceness conditions N in the domain
of interest. By assumption (i) of the theorem, this implies that we have ‘solar system physics’
in the region around the horizon where particle pairs will be created.

(2) In a region with ‘solar system physics’ we can identify and follow the evolution of an
outgoing normal mode with wavelength λ = M

µ
with µ > 1 a number of order unity (we depict

this evolution of modes in figures 6,7). For concreteness, take µ = 100. Again using the fact
that we are in the domain of standard solar system physics, we know that the state in this
mode can be expanded in terms of a Fock basis of particles. Thus when λ ∼ M

100 we can write

|ψ〉mode = α0|0〉+ α1|1〉+ α2|2〉 . . . (62)

There are two possibilities:
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(a)
∑

i>0

|αi|2 ∼ 1 (63)

This means that there are particles with wavelength M
100 at the horizon. This means that the

state at the horizon is not the vacuum, and so we do not have the traditional black hole, and
are thus in violation of condition (ii) of the theorem. (Recall from the discussion in section (3)
that there is no ambiguity in deciding if modes with wavelength M

100 are populated by quanta;
this ambiguity comes only when λ ∼M .)

(b)
∑

i>0

|αi|2 < ǫ′, ǫ′ ≪ 1 (64)

In this case the state in the mode is the vacuum when λ = M
100 . The requirement of solar system

physics tells us that the evolution of this vacuum mode will have to be agree with the leading
order evolution of vacuum modes on this geometry to within some accuracy governed by a small
parameter ǫ. Thus there will exist an ǫ ≪ 1 such that (37) is satisfied by the evolution where
the wavelength grows from λ = M

100 to λ ∼M and particle pairs populate this mode.

(3) Since we have the niceness conditions N, the requirement of ‘solar system physics’ under
these conditions forces us to the fact that the particle pairs in option (b) above will be produced
in a state close to the state S(1) in (24). By Theorem 1, the entropy of entanglenment increases
by at least ln 2− 2ǫ with each timestep. It is crucial that unlike the case of normal hot bodies,
this entanglement entropy cannot start decreasing after the halfway evaporation point; this
difference was discussed in detail at the end of section (5.1).

(4) The evaporation process produces N ∼ ( M
mpl

)2 pairs before the hole reaches a size ∼ lpl.

At this point we have a large entanglement entropy, for which we can write

Sent >
N

2
ln 2 (65)

since ǫ ≪ 1. Following the argument in section (4) we find that we are forced to mixed
states/remnants (i.e. if the planck sized hole evaporates away we get a radiation state ‘entangled
with nothing’ violating quantum unitarity, and if a planck sized remnant remains, then we have
to admit remnants with arbitrarily high degeneracy in the theory).

This establishes the Hawking theorem, �

We have taken care to state Hawking’s argument in a way that is a ‘theorem’, so that if we
wish to bypass the conclusion that we get mixed states/remnants then we have to violate one of
the assumptions stated in the theorem. Thus we can either argue that the niceness conditions
N need to be supplemented by further conditions (in which case we have to say what they are),
or we have to argue that we do not obtain the traditional black hole in the theory (i.e. there
will not be an information free horizon).

We emphasize the essential strength of Hawking’s argument in the following corollary:
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Figure 6: A fourier mode on the initial spacelike surface is evolved to later spacelike surfaces.
In the initial part of the evolution the wavelength increases but there is no significant distortion
of the general shape of the mode. At this stage the initial vacuum state is still a vacuum state.
Further evolution leads to a distorted waveform, which results in particle creation. (τ is a
schematic time coordinate; since this is not a Penrose diagram illustrating the actual spacetime
structure of the geometry.)

Corollary 1 If the state of Hawking radiation has to be a pure state with no entanglement
with the rest of the hole then the evolution of low energy modes at the horizon has to be altered
by order unity.

The proof follows from Theorem 1. A small change in the state at the horizon changes this
entanglement by only a small fraction, and cannot reduce it to zero. Conversely, if we wish this
entanglement to be zero then we have to change the state of the created pairs to a state that
is close to being orthogonal to the semiclassically expected one. �

When people first come across Hawking’s argument, it appears that there are several ways
around it. So we now discuss aspects of the argument in more detail to understand why the
information problem stayed unresolved for so long.

7 Consequences of the Hawking ‘theorem’

Given the theorem, we have three choices:

1. New physics: We can accept the assumptions made in the theorem as natural, and thus
accept the conclusion that some new physics will be encountered when black holes evaporate.

2. No traditional holes: We can try to argue that the traditional hole does not form;
i.e., the horizon has distortions (hair) which depend on the state of the hole. There were
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Figure 7: On the initial spacelike slice we have depicted two fourier modes: the longer wave-
length mode is drawn with a solid line and the shorter wavelength mode is drawn with a dotted
line. The mode with longer wavelength distorts to a nonuniform shape first, and creates an
entangled pairs b1, c1. The mode with shorter wavelength evolves for some more time before
suffering the same distortion, and then it creates entangled pairs b2, c2.

several attempts to look for such hair, by solving the linear wave equations for scalars, vectors,
tensors etc. in the black hole background and looking for solutions with nontrivial support
around r = 2M . In general one finds that any such hair would have a divergent energy-
momentum tensor at the horizon, and so would not be an acceptable solution. While the
failure of these attempts did not prove that hair could not exist, the negative results came to
be collectively dubbed the ‘no-hair theorem’ for black holes, which says that the black hole
geometry is characterized only by its global conserved quantum numbers like mass, charge and
angular momentum.

3. Incompleteness of niceness conditions N:We can argue that the niceness conditions
N are insufficient to guarantee local Hamiltonian evolution, and must be supplemented with a
new condition. The reason to do this would be the following. Consider a spacelike slice in fig.2.
The matter |ψ〉M is ∼ 1077 light years from the place where the pairs are being created, but
this distance is one measured along the slice. We know that in some way this entire length of
the slice is packed into the a region r . 2M ∼ 3 Km, which is the radius of the hole as seen
from outside. This is of course a peculiarity of the black hole geometry: because space and time
interchange roles inside the horizon, we can make arbitrarily long spacelike slices r = constant
while staying inside the hole. We may therefore like to argue that the niceness conditions N
do not guarantee local Hamiltonian evolution in gravity: we can have nonperturbative effects
involving the entire region r < 2M which will ‘nonlocally’ connect physics at one point of the
slice with another point of the slice.
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A gravitation instanton describing the black hole has been known from early days of black
hole physics: the Euclidean ‘cigar’ solution which has action SE = GM2. This suggests instan-
ton effects of order

e−GM2 ∼ e
−( M

mp
)2

(66)

But we need corrections of order unity in the state of entangled pairs. The traditional relativist
can look at the state (17) obtained in his ‘nice slices evolution’, and ask how instanton effects,
continued back to Lorentzian signature, change this state to a state with no entanglement
between the radiation and the hole. Until he is shown how such a change can happen, he is
stuck with the Hawking theorem which gives mixed states/remnants at the end of evaporation.

7.1 Mixed states and information

In all our discussion of the Hawking theorem we have not used the term ‘information’. Even
though the Hawking argument is usually called the ‘information paradox’, the problem raised
by his computation is not really centered on information, but rather on the mixed nature of the
radiation state. In fact one can make radiation states that have full information about the hole
but are still mixed (and so violate unitarity), and conversely one can have the radiation state a
pure unmixed state and yet carry no information about the hole. Let us see this in some detail
since it leads to one of the main confusions about the nature of Hawking’s paradox.

Example 1: Suppose the matter state is |ψ〉M = (α| ↑〉 + β| ↓〉)M . Suppose that the
process of evolution creates two b, c pairs, with the full state being described as follows:

(

α| ↑〉+ β| ↓〉
)

M
→

( 1√
2
| ↑〉M | ↓〉c1 +

1√
2
| ↓〉M | ↑〉c1

)

⊗
(

α| ↑〉b1 + β| ↓〉b1
)

⊗
( 1√

2
| ↑〉c2 | ↓〉b2 +

1√
2
| ↓〉c2 | ↑〉b2

)

(67)

Note that we have made a toy model with a hypothetical evolution; the state on the RHS
is nowhere near the state we get from semiclassical evolution. With this evolution, the first
Hawking quantum b1 carries the full information about the initial state, so the information
comes ‘out’. But there is a second quantum b2 which is entangled with c2, so that the Hawking
radiation has entanglement entropy ln 2 with the matter inside the hole. If the hole evaporates
away then the final state of radiation will be a mixed state, and we will get loss of unitarity
even though the information has been retrieved.

This toy example may appear unnatural because we let a second Hawking quantum be
emitted after the first one carried out all the information. But in fact the entropy of Hawking
radiation quanta is some ∼ 30% larger than the Bekenstein entropy of the hole [4], due to the
fact that the radiation free-streams out of the hole instead of emerging quasi-statically in a
reversible manner. Thus the number of emitted quanta is larger than the minimum number
needed to carry the information of the hole.

Example 2: Let the initial matter state |ψ〉M = (α| ↑〉+ β| ↓〉)M evolve as

(

α| ↑〉+ β| ↓〉
)

M
→

(

α| ↑〉M | ↓〉c + β| ↓〉M | ↑〉c
)

⊗
( 1√

2
| ↑〉b +

1√
2
| ↓〉b

)

(68)
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This time the state outside (given by the b quantum) is a pure state with no entanglement with
the state inside the hole. But this state carries no information about the initial matter state
|ψ〉M , so if the black hole disappears we will be left with a pure state and yet lose information.

When we burn a piece of coal we have normal quantum evolution, so the radiation is in an
unmixed state and also has the information of the coal. In black hole evaporation the state
(17) has both the problems of examples 1,2: the radiation state is entangled with the state in
the black hole interior, and also the radiation has only an infinitesimal amount of information
about about the matter |ψ〉M (this infinitesimal amount of information arises from the small
corrections of order ǫ that we have allowed). It is natural to expect that a solution to Hawking’s
paradox will resolve both problems at the same time, but it is helpful to keep in mind the above
two examples when discussing information because the terms information loss and mixed state
formation are sometimes used without distinction.

8 AdS/CFT and the information paradox

AdS/CFT [9, 10, 11] duality is arguably one of the most interesting insights to emerge from
string theory. It is also a very useful tool in understanding black hole behavior. But we cannot
simply invoke this duality to bypass the information paradox. Since this is a very common
confusion among students of string theory, we present it as the following discussion:

Student: I dont see why I should worry about Hawking’s paradox. Now that we know that
gravity is dual to a CFT, and the CFT is unitary, there can cannot be any information loss,
and so there is no problem.

Hawking believer: That is an entirely circular argument, as I can easily show. Suppose I
say: Quantum mechanics is unitary, so there can be no information loss. Would I have resolved
Hawking’s paradox?

Student: No, that would be silly. Hawking agrees that quantum mechanics is valid in all
laboratory situations. All he argues is that once we make a black hole, then quantum mechanics
is violated. So we cannot use our tests of quantum mechanics in the everyday world to argue
that there will be no problem when black holes form.

Hawking believer: Good, that is correct. So now me let me ask the same question about
AdS/CFT. You have computed the spectrum , 2-point functions, 3 point functions etc. and
found agreement between the CFT and gravity descriptions. I understand that you have nu-
merous such computations. But these processes do not involve black hole formation, and so do
not address Hawking’s argument. Is that correct?

Student: Yes, that is correct. But we also have a black hole solution, called AdS-Schwarzschild,
which is similar to the metric (12) in its essential respects.

Hawking believer: Excellent. So I will now apply the Hawking theorem, proved in the
above sections, and prove that normal assumptions about locality gives mixed states/remnants.
Since your black hole has an ‘information free horizon’ just like the Schwarzschild hole, my
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arguments go through in exactly the same way. Thus you have three choices: (a) You can tell
me why local Hamiltonian evolution breaks down under the niceness conditions N (b) you can
agree to mixed states arising from pure states, which violates quantum theory; in that case you
lose AdS/CFT and string theory as well, since these are built on a foundation of usual quantum
theory (c) You can agree to have remnants in your theory, and explain why they do not cause
the problems that people feared. Now which will it be?

Student: I don’t know ... I see that you have forced me into a corner by using the Hawking
theorem, and I will have to work as hard to solve it in my AdS case as I would have had to
in the usual asymptotically flat case. So let me try to evade the problem by trying a different
argument. I will use the CFT to define my gravity theory. Then I will get a gravity theory
that has the expected weak field behavior, and I will never violate quantum mechanics, and I
can never get information loss.

Hawking believer: Excellent. With this definition of your gravity theory, you will by con-
struction never have the ‘mixed state’ possibility in Hawking’s theorem. So now tell me: (a)
Will you claim that traditional black holes do not form in this gravity theory (b) The black hole
horizon forms, but the niceness conditions N do not give locality; in this case you should be sure
to tell me how this happens and what niceness conditions you will add to recover conditions
for the solar system limit (c) Do neither of the above but say that the theory has long lived
remnants.

Student: Well ... I always assumed that I could have a normal black hole horizon, usual
notions of niceness conditions, and still get all the information out in Hawking radiation so
there are no remnants. But I see now that the Hawking theorem forbids exactly this possibility.
I dont know how I can say anything about the options you list without studying the black hole
formation/evaporation process in detail in either the CFT or the gravity theory.

Hawking believer: Exactly. You are welcome to do your analysis in either the CFT or the
gravity theory, but at the end you must show me what happens when a black hole forms and
evaporates in the gravity description.

Student: I see now that to solve Hawking’s paradox I will have to understand the interior
structure of the black hole. I cannot get by with any abstract argumments like ‘AdS/CFT
removes the paradox.’

Hawking believer: Exactly; in fact abstract arguments in general cannot distinguish be-
tween whether locality broke down and information came out in the Hawking radiation or if
information leaked out from a long lived remnant. Solving the information paradox implies
that you tell us which happens, and if you want the information to come out in the radiation,
to show explicitly the process by which ‘solar system physics’ broke down while the niceness
conditions N were still valid.
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9 Resolving the paradox: results from string theory

In recent years string theory has provided a set of results which together give a comprehensive
picture of how information can come out of black holes. Let us list the results first, and then
discuss the qualitative picture of black hole formation and evaporation suggested by these
results.

(1) Fractionation: In the early days of studying black holes in string theory it was as-
sumed that at weak coupling we have a collection of branes, while at strong coupling we would
get a black hole. This black hole was supposed to arise because the brane bound state stayed
small (planck size of string size) while the gravitational radius became big, generating the tra-
ditional horizon around a central mass. But a closer analysis of string bound states shows that
this is not the case, because of an effect termed ‘fractionation’. If we make a bound state of
different kinds of branes, then the effective excitations occur in fractional units [12]; these are
therefore light, and if we estimate the ‘effective size’ of the brane bound state then it grows
with the number of branes as well as with the coupling [14]. This growth is such that the size of
the brane bound state (for the D1D5P system [13]) remains order horizon size at all couplings
where a black hole can form. This suggests a picture where we do not get a traditional black
hole because the degrees of freedom of the hole distribute themselves throughout a horizon sized
ball.

(2) 2-charge microstates: The above picture was just based on a very crude estimate,
but we can now start with simple holes and start constructing all their microstates. The
simplest holes are extremal 2-charge holes: the D1D5 system. Entropy counts in string theory
are based on using arguments that give a count in a weak coupling model, and using invariance
of a supersymmetric index to argue that we have the correct count at strong coupling where a
black hole is supposed to form. To solve the information paradox we need to understand the
structure of the D1D5 system at at strong coupling where the black hole is supposed to form.

How can we hope to do this? First, string dualities allow us to map the D1D5 system
to the NS1P system: this is just a multiwound string (NS1) carrying momentum (P). Next,
we start by looking at very simple states of this momentum carrying string. The momentum
excitations are distributed like a 1-dimensional gas of excitations on the string. What if we
take all the momentum to be in the lowest harmonic? This is certainly not a generic state, but
it is a convenient starting point. It is analogous to studying the problem of electromagnetic
radiation in a box, where the photons can be distributed among all normal modes. If we take a
state where all the photons are in the lowest mode we get a ‘laser beam’ which we can describe
by classical ~E, ~B fields, even though the generic state of the radiation cannot be so described
since the fluctuation in these fields will be O(1). For the string carrying momentum a similar
thing happens, and the solution with all excitations in the lowest harmonic is well described
by supergravity fields even at strong coupling. We can write down the solution and transform
it back by dualities to the D1D5 frame. This particular state of the D1D5 system is known to
have a geometry with no horizon and no singularity [15].

We can now move towards more generic states: for example we can distribute the momentum
among two different harmonics. In the electromagnetic radiation case we still get well defined
~E, ~B fields, though the fluctuations are slightly higher than before since the occupation number
in each mode is somewhat less. For our problem of the string carrying momentum, the solution
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is still well described by a supergravity approximation (though the fluctuations will be slightly
higher); again the solution (mapped back to the D1D5 duality frame) can be explicitly written
down and is found to have no horizon and no singularity [16, 17, 18]. An alternative description
of these states can be obtained through the study of ‘supertubes’.

This is interesting: when we look at these (nongeneric) states of the 2-charge D1D5 black
hole we do not find the traditional black hole structure; instead the structure is modified all
the way to where the horizon would have been, and in fact no horizon exists. Let us continue
towards states that are still less generic: all we have to do is to continue distributing the
momentum of the string among more and more modes till we reach the generic states described
by bose and fermi distribution functions for the bosonic and fermionic excitations respectively.
As we approach these generic states, we still see no formation of a horizon or singularity, but
the fluctuations of the supergravity fields approach order unity. At the same time stringy
corrections start appearing in the solution. First order corrections were analyzed in [20, 21]
and interestingly, were found to be bounded; this is significant because if a correction diverged
somewhere then it could convert a smooth solution to one with a horizon or a singularity. As
it is, we just get a picture of a messy, quantum ‘fuzzball’ as we approach the generic solution
starting from the nongeneric ones. One now finds an interesting observation: the surface area
A of this fuzzball satisfies a Bekenstein type relation [22]

A

G
∼ √

n1n5 ∼ S (69)

where S is the Bekenstein-Wald entropy of the extremal hole made with n1 D1 branes and n5
D5 branes.

(3) 3-charge microstates: The 2-charge hole is called the ‘small black hole’, and one
might wonder if similar constructions can be extended to 3-charge and 4-charge holes, which
have ‘classical sized horizons’. Starting again from the nongeneric solutions and working towards
less generic ones, we find a similar picture to the 2-charge case [23, 24]. We write down all the
microstates of the 3-charge hole at weak coupling, and start by finding the gravity description
of the simplest ones at strong coupling. Again, instead of getting a black hole with horizon,
we get a solution with no horizon and no singularity. Large classes of such solutions are known
now, and it is possible that there are enough to account for the entropy

√
n1n2n3 of the 3-charge

Strominger-Vafa hole [25].

(4) Hawking radiation: The information paradox began with the study of Hawking
radiation. The above results on extremal holes show that the in string theory the microstates
of the hole do not have the traditional horizon structure expected from the classical geometry.
But extremal holes do not radiate, and it would be more satisfactory to explicitly see the entire
process by which black holes emit information carrying radiation. Following the same approach
as above, we start with the simplest nonextremal microstate, and construct its geometry at
strong coupling [26]. It is found that this geometry has an ergoregion, and thus emits energy
by ergoregion emission [27]. In [28] it was shown that this emission is exactly the Hawking
radiation expected from this specific microstate. This agreement is very important, so let us
examine it in a little more detail.

The D1D5 system is described by an ‘effective string’, and the nonextremal D1D5 states
carry left and right moving excitations along this effective string. Collision of these excitations
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lead to emission of radiation, with a rate which has the following schematic form:

Γ(ω) = V (ω)ρL(ω)ρR(ω) (70)

Here V is the emission vertex, ρL is the occupation number of the left moving excitations and
ρR is the occupation number of the right moving excitations. Each microstate has somewhat
different ρL, ρR in general, and will radiate a little differently. If we set ρL = ρB , ρR = ρB

where ρB is the bose distribution function describing the generic excitation state for the given
total energy, then it is known that Γ gives the semiclassically expected Hawking radiation rate
from the near extremal hole [29]. But this semiclassical computation of course gives a radiation
that violates unitarity; its only the rate of emission Γ(ω) which agrees between the microscopic
computation (which is unitary) and the gravity computation (which is not). But now we are
in a position go do much more: we have an explicit construction of a nonextremal microstate
at strong coupling (which is seen to have no horizon) and have computed its emission Γgrav in
the gravity description (which happens by ergoregion emission). The microscopic description
of this microstate has particular values of ρL = ρ̄L, ρR = ρ̄R (which are very nongeneric since
this microstate is very nongeneric). We put ρ̄L, ρ̄R in (70) and compute the Hawking radiation
Γmicro expected for this particular microstate. We find [28]

Γmicro = Γgrav (71)

To reiterate: we explicitly see the Hawking emission from a (nongeneric) microstate of the
extremal hole; we can look at this radiation and see how it carries out the information of the
state. This imprinting of information is straightforward in this simple example: the microstate
has rotation, and the spectrum of radiation depends on the size and orientation of the ergoregion
inside the geometry.

Lessons from the dual CFT: We should also ask what we can learn from the dual
CFT about dynamical black hole formation and evaporation processes. In [36] it was found
that if one uses the CFT at its free orbifold point, then an interesting thing happens as we
track the evolution of a particle till it crosses the position where the horizon would have been
naively expected: the notion of where the particle is becomes ill defined. If we use a definition
of time which is not the one at infinity, but adapted to the ‘infalling frame’, then we see no
change as we cross the location where the horizon would have been, but such a time coordinate
ceases to be definable after the infall time to the center of the hole. This suggests connections
to the idea of ‘complementarity’, something which should be explored further.

If we wish to study not a single particle infall but the collapse of an entire shell to make
a black hole, then we have to do more: the free orbifold CFT does not have the interactions
needed to thermalize the initial state to a generic state of the hole. Thus we have to use
the ‘deformation operator’ which take the CFT away from the orbifold point and makes it
interacting. This operator twists together two strands of the string, adding an insertion of the
supersymmetry operator at the vertex. Qualitatively, we can see that such an operator will
take a pair of quanta in the CFT, and upon their collision, distribute their energy over several
quanta. This process will therefore take a pair of high energy excitations (which would be
created by a single high energy particle falling into the AdS region of the dual geometry) and
convert them to lower and lower energy quanta, a process which looks like the thermalization
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of the initial quantum into a superposition of fuzzballs. One can ask when in the gravity theory
there is enough energy to create a black hole; it was found in [16] that this energy is such that
if we distribute it into lower energy quanta in the CFT then these CFT excitations would cover
the entire ‘effective string’. Thus we get a simple description of black hole formation in the
dual CFT: the initial excitations created by an infalling particle break up into lower energy
excitations; if this process ends before the entire effective string is covered, we do not get a
black hole. (The process can end before black hole formation because we have a given length for
the effective strings in the initial state, and a string of a given length L cannot support quanta
of energy lower than 2π

L
.) One notes in this computation that the criterion for black hole

formation depends only on the length of the components of the effective string. and not on the
effective coupling. Thus this thermlization process is not ‘stringy’, rather it involves multiple
insertions of the gravitational interaction vertex in the gravity description. This suggests that
the formation of fuzzballs happens when the large phase phase space of fuzzball solutions is
explored by gravity interactions, and not by α′ corrections to the metric.

It may seem that such a computation in the CFT using the deformation operator will be
very complicated since the entire process of black hole formation will involve a large number of
interactions. What helps here is that as we increase the coupling, the rate at which thermaliza-
tion can take place does not keep growing: it saturates because if we wish to create quanta of
energy ω/2 from quanta of energy ω then the process will take a time at least O(1/ω) because
of phase space constraints. Since the CFT has no intrinsic length or time scale, the time for
the mean energy ω of quanta to drop to say half its value must be determined by ω alone (if it
is going to remain nonzero as the effective coupling geff → ∞). Thus we get a simple picture
of the thermalization process: quanta split into other quanta as fast as they can given their
wavelengths, and the energy keeps getting redistributed over more and more strands of the
effective string. The interesting thing here is that any strand of the effective string can interact
with any other strand, so we have a huge (order n1n5) coordination number for the interaction,
unlike normal physics where a particle can only talk to a few nearest neighbours. This picture
agrees with the requirement in [37] that the thermalization be exponentially fast to save the
idea of complementarity; this is something that should be explored in more detail.

Phase space: Finally, let us come to the intuitive picture of why black hole microstates
can be quantum fuzzballs when the niceness conditions N required the traditional black hole
with an ‘information-free horizon’. The crucial issue appears to be the analysis of phase space.
In the 2-charge solutions made from a string carrying momentum, we find that an interesting
fact of string theory was crucial: there are no longitudinal waves on the fundamental string.
Thus if we try to add the second charge (momentum) to the first charge (the string), then
we necessarily have to make the string execute transverse oscillations. This is what causes
the string to spread over a nontrivial transverse area, and ultimately to fill up a horizon sized
region. Why does the string need this much transverse space? Suppose we require the string
to execute its oscillations in a much smaller transverse radius. Then the momentum will have
to be carried by a few high frequency modes, and there is a only a small number of such states
[30]. In general we find that if we allow too small a transverse space for the states to live in,
then we cannot fit in the full phase space of solutions contributing to the Bekenstein entropy
[21]. Phase space arguments also tell us that the infinite throat of the classical 3-charge solution
will be cut off at some depth since the infinite throat is only one point in a space of ‘capped
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throats’ [21]. A detailed analysis of phase space measures for the 3-charge case was done in
[31], and it was found that the throats will end at a depth expected by the microscopic analysis
of states.

We now have all the tools that we need to put together a logical picture of black hole for-
mation and evaporation. Suppose a shell collapses to form a black hole. The time independent
states at energy M are fuzzballs, with no horizon. Let us estimate a tunneling amplitude be-
tween the shell state and any of the fuzzball states. These are both macroscopically different
states, so the amplitude A for this tunneling is very small, as was noted in (66):

A ∼ e−Stunnel , Stunnel ∼ 1

16πG

∫

R ∼ GM2 ∼ (
M

mp
)2 (72)

But now comes an interesting twist: the number of fuzzball states N that we can tunnel to is
very large, being given by the Bekenstein entropy

N ∼ eSbek ∼ eGM2

(73)

Thus we see that the smallness of the tunneling amplitude A can be offset by the largeness of
N [32]. The large entropy is of course a characteristic feature of black holes, not present in
other macroscopic bodies like the sun. In any path integral we have the action, and a measure.
Usually the measure factor is ‘small’ (i.e. order ~) in its effect on macroscopic processes, but
the large entropy of the black hole has made its effects comparable to the effects of the classical
action, and thus invalidated classical intuition.

We need one last estimate before the picture is complete. Tunneling is really a spreading of
the wavefunction over available phase space, and we need to know that this happens in a time
shorter than the Hawking evaporation time; otherwise we would not have avoided Hawking’s
paradox and would end up with remnants. Interestingly, a simple estimate of this spreading
time shows that it will always be less that the Hawking evaporation time [33].

To summarize, we have put together three things in this picture: (a) We have recognized
that black hole microstates are fuzzballs with no traditional horizon (b) An estimate of the
tunneling process shows that the smallness of the amplitude to tunnel to fuzzballs can be offset
by the largeness of the number of states available to tunnel to (c) The time for this tunneling is
shorter than Hawking evaporation time, so the collapsing shell becomes a linear combination of
fuzzball states quickly enough so that radiation can now emerge from the fuzzball rather than
a traditional horizon.

10 Lessons from the information paradox

The first point to note about the information paradox is that it is very nontrivial: we cannot
preserve the standard rules for when we have nice local evolution, and still avoid Hawking’s
puzzle. It is a common misconception that small corrections to Hawking radiation, ignored in
the leading order computation, will resolve the problem; we proved explicitly in Theorem 1 that
such is not the case. The resolution of the puzzle is much more nontrivial and involves a deep
lesson of quantum gravity: there can be such a large phase space of solutions in a given region
that path integral is no longer dominated by the extremum of the classical action. Put another
way, the error in earlier black hole work was to assume that quantum gravity effects are always
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confined to within the planck distance lp. While lp is the natural length scale that we can make
from G, ~, c, we need a large number of quanta N to make the black hole, and we have to then
ask if quantum gravity effects stretch over distances lp or distances Nαlp for some α > 0. One
finds from the fuzzball computations that the latter is the case, and α is such that the effects
reach upto horizon scales.

A common question is whether we can now conjecture a picture for the interior of the
Schwarzschild hole. Let us draw our intuition from the nonextremal microstate described in
the last section. The crucial point is that the geometry was independent of t, yet we cannot
make a spacelike slicing that is time-independent. This is because we have an ergoreion; the
killing vector ∂/∂t is timelike at infinity, but is not timelike everywhere. Thus the t = constant
surface is not spacelike everywhere. If we do try to foliate the spacetime with spacelike slices
then we find that these slices ‘stretch’ during the evolution, and create particles leading to
particle creation by the mechanism of ergoregion emission. This emission agreed exactly with
the Hawking radiation expected for this microstate. We can now move towards more generic
microstates, just like we did for the extremal case: we get more and more complicated ergore-
gions [34]. The general classical microstate is found to always have either an ergoregion or time
dependence, and so radiates energy. As we reach the generic state the scale of variation of the
features in the geometry is expected to reach the planck scale, and stringy effects will give us
a quantum fuzzball, just like in the extremal case.

Why doesn’t the energy of the Schwarzschild hole all fall into the origin at r = 0? Consider
the simpler case of a single string in flat space. It would seem that a string in the shape of a circle
must shrink to a point under its tension so there should be no extended string states. But of
course we can get extended states: the string profile is not circularly symmetric, and while each
segment of the string is indeed trying to shrink, the whole exited string maintains a nonzero size
in its evolution. Similarly, the nonextremal microstates are not spherically symmetric, and they
cannot be sliced in a time independent manner. Each part of the geometry is dynamical, and
the whole structure maintains a nontrivial structure without generating a traditional horizon.

It would be interesting to apply these lessons to Cosmology. Near the big bang singularity,
we have a very high density of matter, and thus presumable a large available phase space of
states. Spreading over phase space may again make it incorrect to take any one of these states
and evolve it classically. One approach to analyzing the early Universe using the full entropy
of states was taken in [35]. It would be interesting to analyze possible relations between the
large space of BKL singularities and the possible microstates at the initial singularity; there are
strong similarities between the local behavior at the BKL singularity and the pole structure of
fuzzball states. In general, it would indeed be very exciting to explore relations between black
holes and the physics of the early Universe.
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