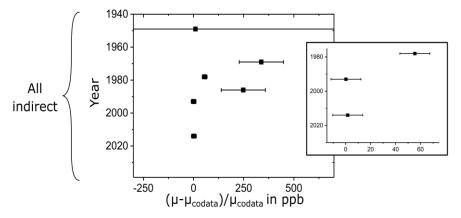
High-precision measurement of the HFS of ³He⁺ in a Penning trap

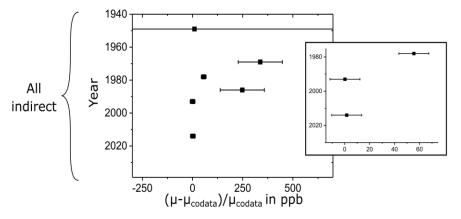
A. Schneider, B. Sikora, S. Dickopf, M. Müller, N. Oreshkina,
A. Rischka, I. Valuev, S. Ulmer, J. Walz, Z. Harman,
C. Keitel, A. Mooser, K. Blaum



SIKEN

First direct high-precision measurement of ³He nuclear magnetic moment with ppb precision

Previous measurements:


- Comparisons of ³He and H₂O or H₂ probe only
- μ_{He} known to 1.2*10⁻⁸ only

limited by knowledge of shielded proton magnetic moment

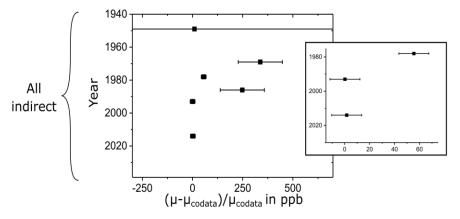
Rudzinski A., et al. *J.Chem. Phys.* **130** 244102 (2009) Nikiel A., *et al.* Eur. Phys. J. D **68** 330 (2014)

First direct high-precision measurement of ³He nuclear magnetic moment with ppb precision

Previous measurements:

- Comparisons of ³He and H₂O or H₂ probe only
- μ_{He} known to 1.2*10⁻⁸ only

limited by knowledge of shielded proton magnetic moment

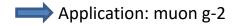

	Water NMR		³ He
Dependence on temperature	1	>	1/100
Dependence on probe shape	1	>	1/1000
Diamagnetic shielding	1 measured	>	1/10 calculated

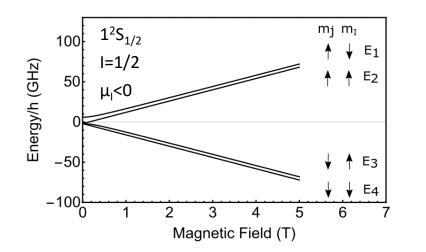
Rudzinski A., et al. *J.Chem. Phys.* **130** 244102 (2009) Nikiel A., *et al.* Eur. Phys. J. D **68** 330 (2014)

Establish hyper-polarized ³He NMR probes as independent standard for precision magnetometry

First direct high-precision measurement of ³He nuclear magnetic moment with ppb precision

Previous measurements:


- Comparisons of ³He and H₂O or H₂ probe only
- μ_{He} known to 1.2*10⁻⁸ only


limited by knowledge of shielded proton magnetic moment

	Water NMR		³ He
Dependence on temperature	1	>	1/100
Dependence on probe shape	1	>	1/1000
Diamagnetic shielding	1 measured	>	1/10 calculated

Rudzinski A., et al. *J.Chem. Phys.* **130** 244102 (2009) Nikiel A., *et al.* Eur. Phys. J. D **68** 330 (2014)

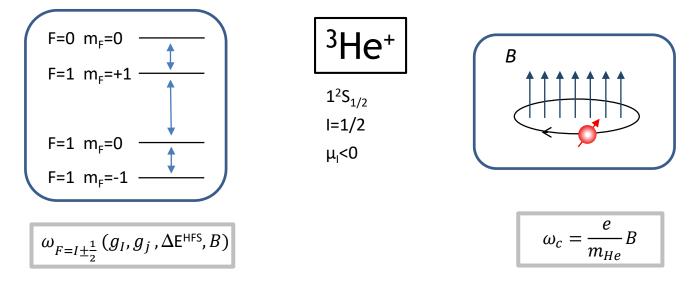
Establish hyper-polarized ³He NMR probes as independent standard for precision magnetometry

Zero-field splitting:

$$\Delta E^{HFS} = E^{F} (1 + \delta^{QED} + \delta^{rec} + \delta^{str} + \delta^{nucl})$$
with Fermi contact energy E^F

determination of e.g. nuclear structure effect δ^{nucl}

 ΔE^{HFS} known to 1.1 ppb (Schuessler et al., Phys. Rev. 187 5 (1968)) We aim for measurement of order 10ppt


Ø

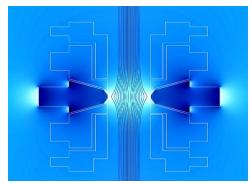
Magnetic Moments in Penning Traps

Determination of energy splitting between spin-states

Simultaneous cyclotron frequency measurement

B-field independent measurement of g_i , g_i and ΔE^{HFS}

Detection of Spin-State - Continuous Stern-Gerlach Effect


Magnetic field inhomogeneity

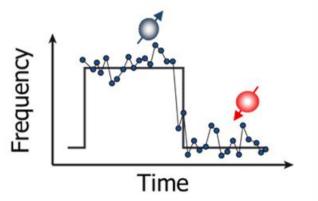
$$B_z = B_0 + B_2 \left(z^2 - \frac{\rho^2}{2} \right)$$

 \Rightarrow

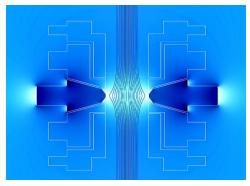
axial frequency dependent on magnetic moment

Ring electrode made of CoFe

Detection of Spin-State - Continuous Stern-Gerlach Effect


Magnetic field inhomogeneity

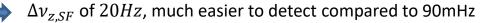
$$B_z = B_0 + B_2 \left(z^2 - \frac{\rho^2}{2} \right)$$

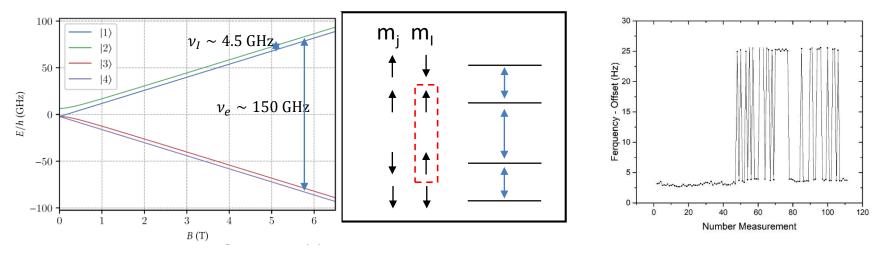


axial frequency dependent on magnetic moment

Spin-transition induces frequency jump

Ring electrode made of CoFe

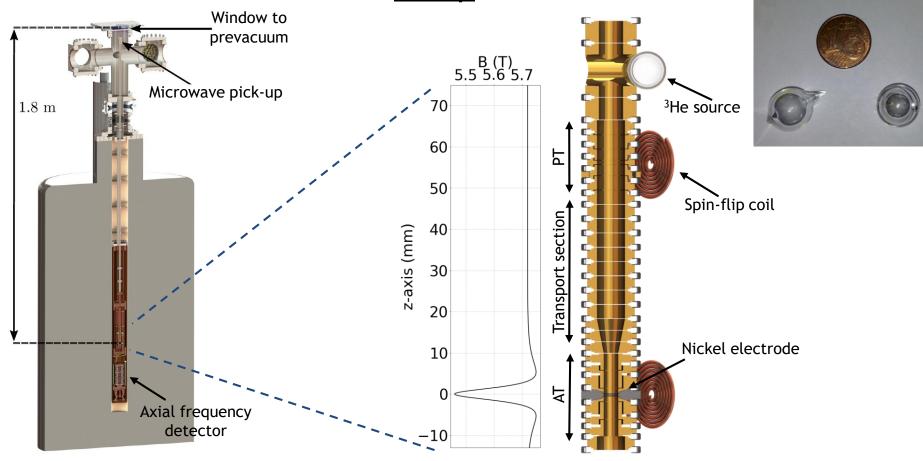



$$\Delta v_{z,SF} \sim \mu/(qm)^{1/2}$$

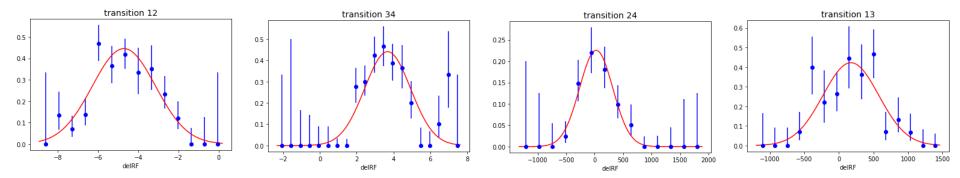
$$\Delta v_p / \Delta v_e = 10^{-4}$$

 $\Delta v_{He} / \Delta v_p = 0.3$

Spin-State Detection ³He⁺



Map readout of nuclear spin-state onto detection of electronic transitions



<u>Setup</u>

<u>Results</u>

	Relative uncertainties	
g _e	3e-10	
g_1	8e-10	
E _{HFS}	2e-11	

Summary

Motivation:

- Calibration for ³He NMR probes independent of water probes
- Check of theoretical shielding by combing ³He²⁺ and ³He⁺ measurements
- Determination of nuclear structure effects

³He⁺ measurement:

- Avoid direct nucl. SF detection by mapping the nucl. state on the electronic transitions
- Measured four HFS transitions

Next steps:

- Building new setup for ${}^{3}\text{He}^{2+}$ *g*-factor measurement
- requires sympathetic laser cooling to allow nucl. spin-state detection

