Quarkonium Results at the LHC

Giulia Manca (University of Cagliari and INFN , Italy) On behalf of the Alice, Atlas, CMS and LHCb Colla<u>borations</u>

Onia Contributions

Speaker	Title	Experiment	Day
G.Manca	Quarkonium results at the LHC	Alice, Atlas, CMS, LHCb	7.06.2011 (morning)
K.Piotrzkowski	Exclusive measurements (di-leptons and vector mesons) at CMS	CMS	7.06.2011 (evening)
V.Niess	Exclusive Dimuon measurements at LHCb	LHCb	7.06.2011 (evening)
K.Reeves	Quarkonium production at Atlas	Atlas	9.06.2011
H.Woehri	Quarkonia production at CMS	CMS	9.06.2011
C.Hadjidakis	J/psi measurements in p-p and Pb-Pb collisions at LHC with ALICE	Alice	9.06.2011

...And four posters!

Outline

Motivation

- Cern and the LHC
- The experiments
- Some selected results
- Conclusions and outlook

CERN and the LHC

(generated 2011-05-30 08:10 including fill 1815)

The four LHC Detectors

Rapidity Range

tracking, ECAL, HCAL, counters lumi, muon, hadron PID

Luminosity

- LHC running well, all experiments have an efficiency ≈90%
- 2010+2011: pp≈200-500 pb⁻¹
- These analyses :
 - $L \approx 0.1 40 \text{ pb}^{-1} \text{ (pp)}$

Why Quarkonium Physics ?

- The production mechanism in pp collisions still unclear
- Several models around :
 - Color singlet(CS) and color octet(CO) mechanisms (NRQCD) describe the $p_{\rm T}$ spectrum and cross section of the J/ψ as measured by Tevatron, but not the polarization
 - Other models such as color evaporation model (CEM), kt factorization, soft color interaction model cannot describe the data either
- New data from LHC experiments will help to resolve this issue

Dimuon Spectrum

J/ψ Production

PHYSICAL REVIEW LETTERS

80 r one with approximate-242 Events-┣-d with a lead convertn planes ($2 \times A_0$, $3 \times A$, SPECTROMETER chambers rotated ap-70 t to each other to re-At normal current To further reduce the ambers at high rate, -10% current 60 izontal hodoscope chambers A and B. C (1 m×1 m) there 50 iss counters of 3 ra-EVENTS / 25 MeV ed by one bank of ther reject hadrons ove track identifica-40 t all the counters are 5 computer and all very 30 min. 30 red with a three-dital of 10⁵ points were settings. The accep-20 $s \Delta \theta = \pm 1^\circ, \Delta \varphi = \pm 2^\circ,$ trometer enables us n from 1 to 5 GeV in 10 e-of-flight spectrum in the mass region للمحجم الع peak of 1.5-nsec width 2.75 3.0 3.25 us to reject the accime+e-[GeV] nstruction between the in we have a clear-FIG. 2. Mass spectrum showing the existence of J.

2 DECEMBER 1974

3.5

J/ψ Production in pp

1 st step	2 nd step	3 rd step	Production type
	$c\overline{c} \rightarrow J/\psi + X$		Prompt,direct
$pp \rightarrow c\overline{c}, b\overline{b} + X$	$c\overline{c} \rightarrow \psi', \chi_c + X$	$\psi', \chi_c \rightarrow J/\psi + X$	Prompt,indirect
	$b\overline{b} \rightarrow B + X$	$B \rightarrow J/\psi + X$	Delayed,indirect

BR(J/ψ→μμ)≈6%

Inclusive J/ ψ cross section results

Inclusive J/ ψ cross section results

Prompt J/ ψ cross section results

Prompt J/ ψ cross section results

"J/ ψ from B" cross section results

Fraction of J/ψ from B

ICHEP 2010 : LHC experiments confirm the trend seen from CDF

Fraction of J/ψ from B

- → Spring 2011 :
 - new data from Atlas show some saturation at high p_T
 - LHCb shows decreasing trend at forward rapidity

$J/\psi \rightarrow \mu\mu$: outlook

LHCb : Double J/ ψ production

LHCb : $\psi(2S)$ Production

Main systematics : polarisation (up to 12%), trigger (18%) & tracking efficiencies (16%)

χ_c first appearance

07.06.2011

Upsilon family

\rightarrow Three states decay into $\mu\mu$

 $25 30 p_T^{Y(1S)}$ [GeV/c]

20

Ó

5

10

15

Upsilon family: outlook

X(3872)

- First observation of X(3872) at LHC !!
- Its decay channel into $J/\psi \pi \pi$
- Measured mass (LHCb) and cross section relative to $\psi(2S)$ (CMS):
 - R = 0.087 ± 0.017 (stat) ± 0.009 (syst)
- With 2012 data will be able to study the properties

Results and Prospects

- Quarkonium physics flowering with new interesting results and investigating a completely new area!
 All four experiments extremely active and productive
- → Statistics of 2011 will start to be enough
 - to strenghten production measurements
 - to explore XYZ spectroscopy
- New physics could be just round the corner!

Prompt J/ ψ cross section results

J/ψ from B cross-section

LHCb : Integrated Cross-section Results

 $\sigma(prompt - J/\psi, p_T < 14GeV/c, 2.0 < y < 4.5) = 10.52 \pm 0.04 \pm 1.40^{+1.64}_{-2.20} \mu b$

 $\sigma(J/\psi - from - b, p_T < 14 GeV/c, 2.0 < y < 4.5) = 1.14 \pm 0.01 \pm 0.16 \mu b$

Using the LHCb acceptance from Pythia, we extrapolated : $\sigma(pp \rightarrow b\bar{b}X) = \alpha_{4\pi} \frac{\sigma(J/\psi - from - b, p_T < 14 \, GeV/c, 2.0 < y < 4.5)}{2Br(b \rightarrow J/\psi X)}$ $\sigma(pp \rightarrow b\bar{b}X) = 288 \pm 4 \pm 48 \mu b$ $\sigma(pp \rightarrow b\bar{b}X) = 288 \pm 4 \pm 48 \mu b$ In good agreement with: $\sigma(pp \rightarrow b\bar{b}X) = 284 \pm 20 \pm 49 \mu b$ measured in B->D^oµvX at LHCb

Integrated J/ ψ -> $\mu\mu$ cross section measurements

Experiment Range Luminosity	LHCb (in μb) pT<15 GeV, 2.0 <y<4.5 5.2 pb⁻¹</y<4.5 	CMS (in nb) 6.5 <pt<30 gev,<br=""> y <2.4 312 nb⁻¹</pt<30>	ATLAS (in nb) y <2.4, p _T >7 GeV 1.5< y <2, pT>1 GeV 2.2 pb ⁻¹	ALICE(in μb) 2.5 <y<4.0, 0<pt<12 gev<br="">13.3 nb⁻¹</pt<12></y<4.0,
Inclusive J/ψ		97.5±1.5±3.4±10.7 (lum)	81.1±1±10 ⁺²⁵ -20±3 510±70+84-123+919- 134±17	$6.31 \pm 0.25 \pm 0.80^{+0.95}$ -1.9
Prompt J/ψ	10.52 ± 0.04 ± 1.40 ^{+1.64} -2.20	70.9 ± 2.1 (stat) ± 3.0 (syst) ± 7.8 (lum.)	59±1±8+9-6±2 450±67+85-114+741- 105±15	
J/ ψ from B	$1.14 \pm 0.01 \pm 0.16$	26.0 ± 1.4 (stat) ± 1.6 (syst) ± 2.9 (lum.)	23.0±0.6±2.8±0.2±0.8 61±24±19±1±2	
Total bb*	288 ± 4 ± 48			

* Extrapolating to the LHCb acceptance using Pythia 6.4

Uncertainties : First stat, second syst, third spin, fourth lum

Systematics on J/ ψ cross section measurement

Source of systematic uncertainties considered:

Source	Systematic uncertainty (%)		
Correlated between bins			
Inter-bin cross-feed	0.5		
Mass fits	1.0		
Radiative tail	1.0		
Muon identification	1.1		
Tracking efficiency	8.0		
Track χ^2	1.0		
Vertexing	0.8		
GEC	2.0		
$\mathscr{B}(J/\psi ightarrow \mu^+\mu^-)$	1.0		
Luminosity	10.0		
Uncorrelated between bins			
Bin size	0.1 to 15.0		
Trigger	1.7 to 4.5		
Applied only to J/ψ from b cross-sections, correlated between bins			
GEC efficiency on B events	2.0		
t_z fits	3.6		
Applied only to the extrapolation of the $b\overline{b}$ cross-section			
b hadronisation fractions	<i>b</i> hadronisation fractions 2.0		
$\mathscr{B}(b ightarrow J/\psi X)$	9.0		

- CMS :Main systematic uncertainties:
 - Resolution model (0.8 up to 30% for the lowest p_T bin in the endcap)
 - Primary vertex (0.3 up to 60% for the lowest p_T bin in the endcap)

J/ψ @2.76 TeV: systematic uncertainties

Source of systematic uncertainty	J/ ψ→μ+μ-	J/ ψ → e⁺e⁻	
signal extraction	6 %	8.5 %	
Acceptance inputs	2.5%	1 %	
Trigger efficiency	4%	-	
Reconstruction efficiency	4%	11 %	
Trigger enhancement	3%	-	
Luminosity	8%	8 %	
Total systematic uncertainty	12.1 %	16.1%	
Polarization	$\lambda = -1 \lambda = +1$	$\lambda = -1 \lambda = +1$	
Collins-Soper	+32 -16 %	+19 -13 %	
Helicity	+24 -12 %	+21 -15 %	

Total systematic uncertainties similar to the ones at 7 TeV

Atlas jpsi : Systematic studies: "acceptance"

Acceptance map MC statistics:

Obtained from dedicated MC simulation. Statistical uncertainties on maps bin-to-bin propagated through to final result (contribution at level of 1-2%)

Bin migration effects

Bin migration effects were studied, corrections applied (0.1-3%) and variation of bin migration within bin considered as systematic on correction

ID track reconstruction

ID track reco efficiency correction 99.5% per muon track with 0.5% uncertainty per track added linearly

Kinematic dependence

Variation of MC spectra to make acceptance maps, and correction for slight differences in non-prompt/prompt acceptance assigned as systematic (max 1.5%)

Final state radiation

Central result is corrected back to J/ ψ kinematics rather than final state muon kinematics, systematic due to FSR is <0.1% (NB: taking effect of FSR on/off is overestimate)

Atlas jpsi : Systematic studies: "other components"

Spin alignment Spin-alignment uncertainty is maximum envelope of cross-section re-casted under different spin-alignment hypothesis

Luminosity Quoted 3.4% uncertainty from Van der Meer scans

Muon reconstruction efficiency Uncertainties on J/ ψ reco. efficiency maps from data and uncertainties on MC/data scale factors propagated through to final result (5—10%)

Fit uncertainty Derived via pseudo-experiments – approx. I—3% contribution

Trigger efficiency Similarly, uncertainties from data maps propagated through to final result (~5% effect)

 J/ψ vertex finding and primary vertex efficiencies Both these efficiencies retain more than 99.9% signal, no uncertainty assigned

Atlas jpsi :

Systematic

studies

Sources of systematic uncertainty, and bin each analysis ⊇. total uncertainties

 $108.3 \pm 0.7(\text{stat}) + 18.8(\text{pola}) \pm 22.0(\text{osys}) \pm 10.8(\text{lumi}) \text{ nb} = 108.3 \pm 0.7(\text{stat}) + 30.9(\text{syst}) \text{ nb}$

LHCb : $\Upsilon(1S)$ Systematic Uncertainties

SOURCE	METHOD	VALUE	COMMENTS
luminosity	see section 3.2.2	10%	correlated among bins
ϵ^{trig} calculation	difference MC-MC truth	2-67%	correlated among bins
polarisation on A	extreme polarisation scenarios	0-33%	correlated among bins
polarisation on ϵ^{rec}	extreme polarisation scenarios	0-21%	correlated among bins
choice of fit function	different function	1%	correlated among bins
unknown p_T spectrum	p_T spectrum distribution	1%	correlated among bins ²
GEC	statistical uncertainty of data	2%	correlated among bins
$\epsilon^{trackquality}$	difference data-MC	0.5% per track	correlated among bins
$\epsilon^{track-finding}$	difference data-MC	4% per track	correlated among bins
vertexing	difference data-MC	1%	correlated among bins
ϵ^{muonID}	tag and probe [20]	1.1%	correlated among bins

CMS: Y(1S) Systematic Uncertainties

Y(nS) Cross Section Results

Measured cross section for |y| < 2:

$$\begin{split} &\sigma(\mathrm{pp} \to \mathrm{Y}(1\mathrm{S})X) \cdot \mathcal{B}(\mathrm{Y}(1\mathrm{S}) \to \mu^+\mu^-) = 7.37 \pm 0.13(\mathrm{stat.})^{+0.61}_{-0.42}(\mathrm{syst.}) \pm 0.81(\mathrm{lumi.}) \, \mathrm{nb} \,, \\ &\sigma(\mathrm{pp} \to \mathrm{Y}(2\mathrm{S})X) \cdot \mathcal{B}(\mathrm{Y}(2\mathrm{S}) \to \mu^+\mu^-) = 1.90 \pm 0.09(\mathrm{stat.})^{+0.20}_{-0.14}(\mathrm{syst.}) \pm 0.24(\mathrm{lumi.}) \, \mathrm{nb} \,, \\ &\sigma(\mathrm{pp} \to \mathrm{Y}(3\mathrm{S})X) \cdot \mathcal{B}(\mathrm{Y}(3\mathrm{S}) \to \mu^+\mu^-) = 1.02 \pm 0.07(\mathrm{stat.})^{+0.11}_{-0.08}(\mathrm{syst.}) \pm 0.11(\mathrm{lumi.}) \, \mathrm{nb} \,. \end{split}$$

- Values shown for unpolarized assumption
 - Extreme scenarios yield variations at the 20% level
- Dominant systematic uncertainties:
 - Luminosity normalization (11%) [note: a 4% level has been more recently achieved]
 - Muon reconstruction/trigger efficiency from T&P (8%)

Double J/ψ production

$J/\psi J/\psi$ Invariant Mass

Efficiency

- → Each event : weight w= ε^{-1} , with $\varepsilon = \varepsilon_{rec} x \varepsilon_{trig} xacceptance$
- Assume factorisation : $\varepsilon_{J/\psi J/\psi} = \varepsilon_{J/\psi} x \varepsilon_{J/\psi}$, ε binned vs. p_T , y and $\cos \theta^*$

J/ψ polarization: $\cos\theta^*$

Pileup: $J/\psi J/\psi$ versus $J/\psi + J/\psi$

How to prove that it is NOT pileup?

Monte Carlo

Look for data:

Distance between J/ψ vertices
 Track in PV: ×2 larger for pileup
 PV-multiplicity: -1 for pileup
 Wide range χ²_{DTF}/nDoF scan

$J/\psi J/\psi$ distance

$J/\psi J/\psi$ distance

$\Rightarrow \sigma^{|\delta z|} = 470 \pm 62 \ \mu m$

→ All signal is collected from 1.5/2mm

→ Monte Carlo:

- take events with J/y+J/y in inclusive J
 Different pp-collisions!
- signal window
- correct for cross-section
- [CONSERVATIVELY]: ~9.4 events in 2mm
- apply trigger & reconstruction efficiency
 <1.5 events

#tracks in PV

$J/\psi \rightarrow \mu\mu$ Acceptance

Exclusive Production

Exclusive Production

LHCb X Mass Measurement

Signal Modeling

- Vary fit range
- Vary natural width from 0 2.6 MeV
- Embed MC in same-sign background and check for bias from background fit model Calibration
- Vary momentum scale by ± 0.1 per mille [quoted uncertainty]
- Parameterize residual η bias and make dependent scale factor
- Vary amount of material by 10 % Alignment
- Drop TT hits and repeat procedure
- Scale track slopes in velo by per mille

Source of uncertainty	Value $[MeV/c^2]$
Mass fitting:	
Natural width	0.02
Background model	0.02
Fit range	0.01
Momentum calibration:	
Average momentum scale	0.05
η dependence of momentum scale	0.03
Detector description:	
Energy loss correction	0.05
Detector alignment:	
Tracking stations (TT information)	0.05
Vertex detector (track slopes)	0.01
Quadratic sum	0.10

LHCb : Chic ratio syst (I)

Four types of systematics

- Systematics coming from the fit
 - From fixed parameters: s1, si/s1, mi-m1
 - From background shape: fit range, χ_{c0} in the fit
- Systematics from efficiencies
 - Error from Monte Carlo statistic
- Systematics from MC fit
 - Uncertainty from the difference in percentage between generated and reconstructed $N(\chi_{c2})/N(\chi_{c1})$. Due to wrong MC photon association.
- Systematic From the Br($\chi_c(1,2) \rightarrow J/\psi \gamma$)
 - Correlated systematic
- Evaluation of all the systematics for results in converted and not converted samples
- Combination of the results with the statistical errors
- Combination of the uncorrelated systematics
- Evaluation of the correlated systematic using the combined results

LHCb Chic ratio : syst (II)

γ not converted

γ converted

$p_T^{J/\Psi}$ (GeV/c)	2 - 3	3 - 4	4 - 5
$Br(\chi_c \rightarrow J/\psi\gamma)$	_	$^{+0.070}_{-0.070}$	$^{+0.070}_{-0.053}$
Efficiencies	_	$^{+0.012}_{-0.011}$	$^{+0.015}_{-0.011}$
Systematics from fit	-	$^{+0.040}_{-0.040}$	$^{+0.029}_{-0.033}$
$p_T^{J/\Psi}$ (GeV/c)	5 - 6	6 - 7	7 - 8
$Br(\chi_c \rightarrow J/\psi\gamma)$	$^{+0.070}_{-0.061}$	$^{+0.079}_{-0.061}$	$^{+0.061}_{-0.053}$
Efficiencies	$^{+0.015}_{-0.013}$	$^{+0.021}_{-0.019}$	$^{+0.021}_{-0.020}$
Systematics from fit	$^{+0.029}_{-0.033}$	$^{+0.043}_{-0.036}$	$^{+0.029}_{-0.033}$
$p_T^{J/\Psi}$ (GeV/c)	8 - 9	9 - 10	10 - 11
$Br(\chi_c \rightarrow J/\psi\gamma)$	$^{+0.061}_{-0.044}$	$^{+0.061}_{-0.044}$	$^{+0.070}_{-0.061}$
Efficiencies	$^{+0.025}_{-0.024}$	$^{+0.034}_{-0.032}$	$+0.058 \\ -0.053$
Systematics from fit	$^{+0.027}_{-0.024}$	$^{+0.024}_{-0.029}$	$^{+0.027}_{-0.036}$
$p_T^{J/\Psi}$ (GeV/c)	11 - 12	12 - 13	13 - 15
$Br(\chi_c \rightarrow J/\psi\gamma)$	$^{+0.061}_{-0.035}$	$^{+0.017}_{-0.018}$	$^{+0.044}_{-0.035}$
Efficiencies	$^{+0.053}_{-0.046}$	$^{+0.026}_{-0.023}$	$+0.055 \\ -0.052$
Systematics from fit	$^{+0.020}_{-0.020}$	$^{+0.022}_{-0.013}$	$^{+0.022}_{-0.043}$

$p_T^{J/\Psi}$ (GeV/c)	2 - 3	3 - 4	4 - 5
$Br(\chi_c \rightarrow J/\psi\gamma)$	-	$^{+0.105}_{-0.079}$	$^{+0.061}_{-0.044}$
Efficiencies	-	$^{+0.024}_{-0.022}$	$^{+0.018}_{-0.013}$
Systematics from fit	-	$^{+0.066}_{-0.089}$	$^{+0.045}_{-0.045}$
$p_T^{J/\Psi}$ (GeV/c)	5 - 6	6 - 7	7 - 8
$Br(\chi_c \rightarrow J/\psi \gamma)$	$^{+0.061}_{-0.053}$	$^{+0.053}_{-0.053}$	$^{+0.070}_{-0.053}$
Efficiencies	$^{+0.018}_{-0.019}$	$^{+0.021}_{-0.018}$	$^{+0.032}_{-0.031}$
Systematics from fit	$^{+0.045}_{-0.038}$	$^{+0.036}_{-0.040}$	$^{+0.052}_{-0.087}$
$p_T^{J/\Psi}$ (GeV/c)	8 - 9	9 - 10	10 - 11
$Br(\chi_c \rightarrow J/\psi\gamma)$	$^{+0.044}_{-0.035}$	$^{+0.044}_{-0.017}$	$^{+0.035}_{-0.026}$
Efficiencies	$^{+0.028}_{-0.028}$	$^{+0.029}_{-0.025}$	$^{+0.040}_{-0.036}$
Systematics from fit	$^{+0.047}_{-0.052}$	$^{+0.040}_{-0.047}$	$^{+0.029}_{-0.036}$
$p_T^{J/\Psi}$ (GeV/c)	11 - 12	12 - 13	13 - 15
$Br(\chi_c \rightarrow J/\psi\gamma)$	$^{+0.087}_{-0.061}$	$^{+0.053}_{-0.035}$	$^{+0.026}_{-0.026}$
Efficiencies	$^{+0.125}_{-0.098}$	$^{+0.091}_{-0.078}$	$+0.055 \\ -0.050$
Systematics from fit	$^{+0.158}_{-0.045}$	$^{+0.029}_{-0.024}$	$^{+0.038}_{-0.070}$

arkonium 2011

a) Number of $\Upsilon(1S)$ candidates

• N^{fit}: function=3 Crystal Balls(CB)+exponential for background. Fixed (α =2,n=1) and width (2S,3S) to scale with the masses.

Inclusive cross section measurements

Cross section measurements

J/ψ proper time/decay lenght

Influence of J/ ψ Polarisation

Detector acceptance as a function of helicity angle $\cos\theta$

- → acceptance generates an artificial polarisation
 → large influence of polarisation on measurement
- First step: Treat polarisation as systematic error; present results in three different polarisation scenarios

G.Manca, Physics@LHC, Perugia (IT)

Different polarisation scenarios

2010 Ion Run Predictions

The Injectors ready

• The Pb⁸²⁺ beam was injected into the LHC (first beam after the 2008 incident)

The basic machine parameters are similar

- But the collimation system needed some setting up
- The behavior of the beam instrumentation- the low intensities make life difficult

It will not look as impressive as protons as far as absolute performance is concerned:

- *Peak Luminosity* ~10⁺²⁵ cm⁻² s⁻¹(c.f. 2x10⁺³² for protons)
- Integrated Luminosity ~3-10 μb^{-1} (c.f. 50,000,000 μb^{-1} for protons)
- But each collision will look pretty impressive!

The LHCb detector

Angular acceptance : 10<0<300 mrad

- Performance numbers relevant to quarkonium analyses:
 - Charged tracks $\Delta p/p$ = 0.35 % 0.55%, σ (m)=10–25 MeV/c²
 - ECAL $\sigma(E)/E=$ 10% (E/GeV)^{-1/2} \oplus 1 %
 - Muon ID: $\varepsilon(\mu \rightarrow \mu) = 97\%$, mis-ID rate $(\pi \rightarrow \mu) = 1-3\%$
 - Vertexing: proper time resolution 30-50 fs
 - Trigger: dominantly software

possibility to reverse field polarity to check for detector asymmetries

Muon Reconstruction Efficiency

Muon mis-identification

This plots shows the probability to misidentify a pion from Ks and a proton from Lambda as a muon as a function of momentum.

Primary Vertex resolution

