

European Research Council

$t\bar{t}t\bar{t}$ production at ATLAS

ATLAS-CONF-2021-013

- with one or two opposite-sign leptons
- combination with same-sign dilepton and multilepton

Quake Y. Qin on behalf of the ATLAS Collaboration LHC Top WG meeting

Introduction

Leading: $\mathcal{O}(\alpha_S^4)$

- $t\bar{t}t\bar{t}$ production at the LHC has very small cross-section in SM
 - 12.0^{+2.2}_{-2.5} fb from the latest NLO calculation with EW corrections at 13 TeV R. Frederix, D. Pagani and M. Zaro, JHEP 02 (2018) 031
- Sensitive to top-Yukawa coupling $(\sigma_{t\bar{t}H(t\bar{t})} \propto y_t^4)$, both the magnitude and CP
- Extremely high energy scale production makes it naturally sensitive to many BSM models
 - 2HDM, SUSY
 - various four-fermion coupling EFT operators

Introduction

- Final states characterised by the number of leptons, with a large number of jets and b-jets
- Analyses performed using different leptonic final states, motivated by background sources
 - same-sign dilepton and multilepton channel (2LSS/3L)
 - main background from $t\bar{t}X$ and events with non-prompt leptons
 - the cleanest and most sensitive channel
 - single lepton and opposite-sign dilepton channel (1L/2LOS)
 - large branching ratio (57%)
 - large irreducible $tar{t}$ +jets background, mainly $tar{t}bar{b}$
 - overall lower sensitivity, but complementary to 2LSS/3L

ATL-PHYS-PUB-2021-013

Introduction

- Final states characterised by the number of leptons, with a large number of jets and b-jets
- Analyses performed using different leptonic final states, motivated by background sources
 - same-sign dilepton and multilepton channel (2LSS/3L)
 - main background from $t\bar{t}X$ and events with non-prompt leptons
 - the cleanest and most sensitive channel
 - single lepton and opposite-sign dilepton channel (1L/2LOS)
 - large branching ratio (57%)
 - large irreducible $t\bar{t}$ +jets background, mainly $t\bar{t}b\bar{b}$
 - overall lower sensitivity, but complementary to 2LSS/3L

ATL-PHYS-PUB-2021-013

Analysis strategy

- Targeting very high N_{jets} and N_{b-tag} regions
 - 1L signal: expect 4 b-jets and another 6 jets from the 3 hadronic W decays
 - 2LOS signal: expect 4 b-jets and another 4 jets from 2 hadronic W decays
- Challenging modelling of the $t\bar{t}$ +jets background
 - under-estimated $t\bar{t}$ +HF components in MC predictions
 - badly modelled kinematics: 6 additional jets beyond the tree level $tar{t}$ diagram
- Adopted a series of pre-fit level treatment on the $t\bar{t}$ +jets background to mitigate the mismodelling
- Profile likelihood fit to extract the signal
 - sophisticated scheme of systematic uncertainties to absorb the residual mismodelling
 - use MVA to separate signal from the background

$t\bar{t}$ +jets events classification

- The major background $t\bar{t}$ +jets is broken down into different components according to the flavour of the additional jets not from top decay
- the classification is based on a dR-matching between particle level jets and b/c-hadrons
 - tt+≥1b: at least 1 particle level jet matched a b-hadron not from top decay
 - tt+≥1c: at least 1 particle level jet matched a c-hadron not from top decay and not tt+≥1b
 - tt+light: all other events
- Further breakdown of the major component tt+≥1b for the relevant systematics
 - tt+b: a single particle level jet matched to a b-hadron
 - tt+B: a particle level jet matched to 2 b-hadrons
 - tt+bb: 2 particle level jets, each matched to a b-hadron
 - tt+≥3b: all other events, including ttbbb, ttbB, ttBB etc

Event categorisation

- Use b-tagging as the handle of the different $tar{t}$ flavour components
 - define regions with loose to tight b-tagging requirements on the additional jets
- combined with N_{jets} requirement to define control/signal/validation regions

Name	$N_b^{60\%}$	$N_b^{70\%}$	$N_b^{85\%}$
2b	-	= 2	-
3bL	≤ 2	= 3	-
3bH	= 3	= 3	= 3
3bV	= 3	= 3	≥ 4
≥4b (2LOS)	-	≥ 4	-
4b (1L)	-	= 4	-
≥5b (1L)	-	≥ 5	-

- * $N_b^{X\%}$: number of b-tag at X% working point
- * 3bL/H: low or high in truth b-jet purity
- * 3bV: validation

Event categorisation

- Use b-tagging as the handle of the different $tar{t}$ flavour components
 - define regions with loose to tight b-tagging requirements on the additional jets
- combined with N_{jets} requirement to define control/signal/validation regions

Name	$N_b^{60\%}$	$N_b^{70\%}$	$N_b^{85\%}$
2b	-	= 2	-
3bL	≤ 2	= 3	-
3ьН	= 3	= 3	= 3
3bV	= 3	= 3	≥ 4
≥4b (2LOS)	-	≥ 4	-
4b (1L)	-	= 4	-
≥5b (1L)	-	≥ 5	-

- * $N_h^{X\%}$: number of b-tag at X% working point
- * 3bL/H: low or high in truth b-jet purity
- * 3bV: validation

Corrections to $t\bar{t}$ +jets

- Mitigate the $t\bar{t}$ +jets mismodelling prior to the profile likelihood fit
 - Derive rescaling factors for $tt+\ge 1b$, $tt+\ge 1c$ and tt+light to improve the under-estimated $t\bar{t}+HF$ components in MC predictions
 - using a fit to data in the different b-tag regions 2b, 3bL, 3bH and ≥4b (inclusive in N_{jets})

tt+≥1b	t+≥1b tt+≥1c tt-	
1.33 ± 0.06	1.58 ± 0.18	0.99 ± 0.05

Fitted regions

Corrections to $t\bar{t}$ +jets

- Mitigate the $t\bar{t}$ +jets mismodelling prior to the profile likelihood fit
 - Derive rescaling factors for tt+ \geq 1b, tt+ \geq 1c and tt+light to improve the under-estimated $t\bar{t}$ +HF components in MC predictions
 - Derive a sequential kinematic reweighting to improve the badly modelled kinematics
 - derived in the 2b regions, so that overall MC matched data in the 2b regions, and applied to ≥3b regions

$$R = \frac{\text{data} - \text{MC}_{\text{non } t\bar{t}}}{\text{MC}_{t\bar{t}}} \bigg|_{2b}$$

- correct for N_{jets} , $N_{\text{large-R jets}}$, $H_{\text{T}}^{\text{all}}$, and angular distribution $dR_{\text{avg}}(j,j)$
- all $t\bar{t}$ systematic uncertainties are reweighted in the same way, serving as constraints using 2b data

* $H_{\mathrm{T}}^{\mathrm{all}}$: scalar sum of all objects' p_{T}

Corrections to $t\bar{t}$ +jets

- Mitigate the $t\bar{t}$ +jets mismodelling prior to the profile likelihood fit
 - Derive rescaling factors for tt+ \geq 1b, tt+ \geq 1c and tt+light to improve the under-estimated $t\bar{t}$ +HF components in MC predictions
 - Derive a sequential kinematic reweighting to improve the badly modelled kinematics

Signal extraction

- Profile likelihood fit to all control and signal regions to extract the signal
 - $tar{t}$ modelling is further adjusted in the profiling according systematics
 - $H_{\rm T}^{\rm all}$ is fitted in the control regions
 - use the better understood shape to control the systematics
 - BDT in signal regions to provide discrimination against all background
 - using 14 variables: global event variables, kinematics of reconstructed objects and pairs of objects, jet b-tagging information, large-R jets, $E_{\rm T}^{\rm miss}$
 - trained in separate N_{jets} regions: 1L (9j, ≥10j); 2L (7j, ≥8j)
 - most discriminating variables: sum of b-tag scores of the first 6 jets and N_{jets} in 1L ≥10j and 2LOS ≥8j

Systematic uncertainties on $t\bar{t}$ +jets modelling

ttbar modelling systematic Componer		onents		
		tt+b		
tt+HF normalisation:		tt+B		
- 50% prior	tt+bb			
	tt+≥3b			
		tt+≥1c		
	tt+b			
gapayatay abaisa	tt+B	\otimes	shape	
generator choice: - Powheg+Pythia8 vs. aMC@NLO+Pythia8	tt+bb			
- conservative in exploring unknown phase space	tt+≥3b		migration	
anniem priaes spaes	tt+≥1c			
	tt+light			
	tt+b	\otimes	shape	
	tt+B			
parton shower choice:	tt+bb			
- Powheg+Pythia8 vs. Powheg+Herwig7	tt+≥3b		migration	
	tt+≥1c			
	tt+light			
	tt+b			
tt+≥1b 5- vs. 4-flavour scheme (FS):	tt+B			
- 5FS Powheg+Pythia8 vs. 4FS Powheg+Pythia8	tt+bb			
	tt+≥3b			
	tt+≥1b			
all other scale uncertainties	tt+≥1c			
	tt+light			

Pre- and post-fit

Post-fit distributions in the signal regions

 The most signal-enriched regions in 1L and 2LOS channels

Results

Fitted signal strength

$$\mu = 2.2 \pm 0.7 \text{ (stat.)} ^{+1.5}_{-1.0} \text{ (syst.)} = 2.2^{+1.6}_{-1.2}$$

Cross section

$$\sigma_{t\bar{t}t\bar{t}} = 26 \pm 8 \text{ (stat.)} ^{+15}_{-13} \text{ (syst.)} = 26^{+17}_{-15} \text{ fb}$$

observed (expected) significance 1.9 (1.0) σ

Impact from systematic uncertainties

- Dominant uncertainties are from $t\bar{t}t\bar{t}$ modelling and $t\bar{t}$ +HF modelling
- Jet and b-tagging related systematics are also important source of uncertainties

Uncertainty source	$\Delta\sigma_{t\bar{t}t\bar{t}}$ [fb]	
Signal Modelling		
<i>tītī</i> modelling	+8	-3
Background Modelling		
$t\bar{t}+\geq 1b$ modelling	+8	-7
$t\bar{t}+\geq 1c$ modelling	+5	-4
$t\bar{t}$ +jets reweighting	+4	-3
Other background modelling	+4	-3
$t\bar{t}$ +light modelling	+2	-2
Experimental		
Jet energy scale and resolution	+6	-4
b-tagging efficiency and mis-tag rates	+4	-3
MC statistical uncertainties	+2	-2
Luminosity	< 1	
Other uncertainties	< 1	
Total systematic uncertainty	+15	-12
Statistical uncertainty		-8
Total uncertainty		-15

Combination with 2LSS/3L channel

- 2LSS/3L results: <u>Eur. Phys. J. C 80 (2020) 1085</u>
- · Combined profile likelihood fit
 - Detector systematics are mostly correlated between the two channels
 - The most important systematics (mostly modelling related ones) are treated as uncorrelated
 - $t\bar{t}W$ for 2LSS/3L
 - $t\bar{t}$ +jets for 1L/2LOS
- best-fit $\mu = 2.0^{+0.8}_{-0.6}$, compatible with the SM prediction within 2σ
 - consistent results between the two channels and the combination
- measured cross section

$$\sigma_{t\bar{t}t\bar{t}} = 24 \pm 4 \text{ (stat.)}^{+5}_{-4} \text{ (syst.)} = 24^{+7}_{-6} \text{ fb}$$

- observed (expected) significance 4.7 (2.6) σ
 - sizeable improvement w.r.t. 2LSS/3L result

Summary and outlook

- $t\bar{t}t\bar{t}$ production is a rare but interesting process
- Searches have been conducted in different leptonic final states
 - ATLAS reported evidence of the production in the 2LSS/3L channel with a significance of 4.3σ
- This talk presents the analysis in the 1L/2LOS channel
 - challenging final state and modelling of $tar{t}$ +jets background
 - consistent result with 2LSS/3L
- Combining 1L/2LOS and 2LSS/3L channels yields a significance of 4.7σ
- Measured cross section is compatible with the SM prediction within 2σ
- There's space for improvement
 - explore event reconstruction
 - · refinement on the dominant systematic uncertainties

ATL-PHYS-PUB-2021-013

BACKUP

BDT input variables

Name	Description
$\sum b$ -tag	Sum of pseudo-continuous b-tagging score over the six
	jets with the highest score
$N_{\rm jets}$	Jets multiplicity
$N_{ m jets} \ \Delta R_{bb}^{ m min}$	Minimum ΔR among all pair of b-tagged jets
$H_{ m T}^{ m all}$	Jet and lepton activity
$C^{ m all}$	Centrality $(\sum_i p_{T_i}/\sum_i E_i)$ of the leptons and jets
$p_{ m T}^{ m lead}$	Transverse momentum of the leading jet
$\Delta R_{b\ell}^{ m min}$	Minimum ΔR among all pairs of b-tagged jets and leptons
$\Delta R_{jj}^{\text{avg}}$	Average ΔR among all pairs of jets
$m_{ m jjj}$	Invariant mass of the closest triplet of jets
$E_{ m T}^{ m miss}$	Missing transverse momentum
$E_{ m T}^{ m miss} \ m_{ m T}^{ m W}$	W reconstructed transverse mass $m_T(\ell, E_T^{\text{miss}})$ (1L)
$N_{\text{LR-jets}}$	Number of large-R jets with a mass above 100 GeV
$\sum d_{12}$	Sum of the first k_t splitting scale d_{12} of all large- R jets
$\sum d_{23}$	Sum of the second k_t splitting scale d_{23} of all large- R jets

Sum of b-tag scores

2LSS/3L systematics

Uncertainty source		$\Delta \mu$		
Signal modelling				
tttt cross section	+0.56	-0.31		
$t\bar{t}t\bar{t}$ modelling	+0.15	-0.09		
Background modelling				
$t\bar{t}W$ +jets modelling	+0.26	-0.27		
<i>tīt</i> modelling	+0.10	-0.07		
Non-prompt leptons modelling	+0.05	-0.04		
$t\bar{t}H$ +jets modelling	+0.04	-0.01		
$t\bar{t}Z$ +jets modelling	+0.02	-0.04		
Other background modelling	+0.03	-0.02		
Charge misassignment	+0.01	-0.02		
Instrumental				
Jet uncertainties	+0.12	-0.08		
Jet flavour tagging (light-flavour jets)	+0.11	-0.06		
Simulation sample size	+0.06	-0.06		
Luminosity	+0.05	-0.03		
Jet flavour tagging (b-jets)	+0.04	-0.02		
Jet flavour tagging (<i>c</i> -jets)	+0.03	-0.01		
Other experimental uncertainties	+0.03	-0.01		
Total systematic uncertainty	+0.70	-0.44		
Statistical	+0.42	-0.39		
Non-prompt leptons normalisation (HF, Mat. Conv., Low m_{γ^*})	+0.05	-0.04		
$t\bar{t}W$ normalisation	+0.04	-0.04		
Total uncertainty	+0.83	-0.60		

