# Framing energetic top-quark pair production at the LHC

LHC Top WG meeting, 19 May 2021

Fabrizio Caola

Rudolf Peierls Centre for Theoretical Physics & Wadham College

with Frédéric Dreyer, Ross McDonald and Gavin Salam, arXiv:2101.06068







# "Energetic tops": exploring the TeV region



- Significant fraction of events at the TeV scale
- pt ~ 800–900 GV: 15–20% uncertainty

# Energetic tops at the HL-LHC



@HE-HL report, 902.040701

Precise investigations of the TeV region possible at the HL-LHC

### Main philosophy and outline

#### The ultimate goal:

provide a framework for thinking about energetic top-pair production

#### Mandatory feature:

this should be concrete, i.e. at implementable in actual experimental analysis (reconstruction...)

### Main philosophy and outline

#### The ultimate goal:

provide a framework for thinking about energetic top-pair production

#### Mandatory feature:

this should be concrete, i.e. at implementable in actual experimental analysis (reconstruction...)

#### Outline:

- Energetic top-pair production at LO&beyond
- Implications for LHC phenomenology: top-parton studies
- Why is this useful?
- Designing analysis strategies: reconstruction at hadron (particle) level

(In what follows: semileptonic tt decay for concreteness)

| Hardness variable                                                                      | explanation                                                                                                           |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| $p_T^{ m top,had}$                                                                     | transverse momentum of hadronic top candidate                                                                         |
| $p_T^{ m top,lep}$                                                                     | transverse momentum of leptonic top candidate                                                                         |
| $p_T^{\mathrm{top,max}}$                                                               | $p_T$ of the top (anti-)quark with larger $m_T^2 = p_T^2 + m^2$                                                       |
| $p_T^{	ext{top,min}}$                                                                  | $p_T$ of the top (anti-)quark with smaller $m_T^2 = p_T^2 + m^2$                                                      |
| $p_T^{ m ar{t}op,avg}$                                                                 | $\frac{1}{2}(p_T^{\text{top,had}} + p_T^{\text{top,lep}})$                                                            |
| $rac{1}{2}H_T^{tar{t}}$                                                               | with $H_T^{t\bar{t}} = m_T^{\text{top,had}} + m_T^{\text{top,lep}}$                                                   |
| $rac{1}{2}H_T^{tar{t}+	ext{jets}}$                                                    | with $H_T^{\bar{t}\bar{t}+\mathrm{jets}} = m_T^{\mathrm{top,had}} + m_T^{\mathrm{top,lep}} + \sum_i p_T^{j_{\ell,i}}$ |
| $m_T^{J,\mathrm{avg}}$                                                                 | average $m_T$ of the two highest $m_T$ large- $R$ jets $(J_1,J_2)$                                                    |
| $rac{1}{2}m^{tar{t}}$                                                                 | half invariant mass of $p^{t\bar{t}} = p^{\text{top,had}} + p^{\text{top,lep}}$                                       |
| $p_T^{tar{t}} \ p_T^{j_{ mathcal{t},1}}$                                               | transverse component of $p^{t\bar{t}}$                                                                                |
| $p_T^{j_{ ot \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | transverse momentum of the leading small- $R$ non-top jet                                                             |

| Hardness variable                                                                                                             | explanation                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $p_{T}^{ m top,had} \ p_{T}^{ m top,lep} \ p_{T}^{ m top,max} \ p_{T}^{ m top,min} \ p_{T}^{ m top,avg} \ p_{T}^{ m top,avg}$ | Identical at LO                                                                                           |
| $rac{1}{2}H_T^{tar{t}}$                                                                                                      | with $H_T^{t\bar{t}} = m_T^{\text{top,had}} + m_T^{\text{top,lep}}$                                       |
| $rac{1}{2} \overset{ar{t}ar{t}+\mathrm{jets}}{H_T}$                                                                          | with $H_T^{t\bar{t}+\text{jets}} = m_T^{\text{top,had}} + m_T^{\text{top,lep}} + \sum_i p_T^{j_{\ell,i}}$ |
| $m_T^{J,\mathrm{avg}}$                                                                                                        | average $m_T$ of the two highest $m_T$ large- $R$ jets $(J_1, J_2)$                                       |
| $rac{1}{2}m^{tar{t}}$                                                                                                        | half invariant mass of $p^{t\bar{t}} = p^{\text{top,had}} + p^{\text{top,lep}}$                           |
| $p_T^{tar{t}} \ p_T^{j_{\ell,1}}$                                                                                             | transverse component of $p^{t\overline{t}}$                                                               |
| $p_T^{j_{\ell,1}}$                                                                                                            | transverse momentum of the leading small- $R$ non-top jet                                                 |

| Hardness variable                                                                                                                    | explanation                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $p_T^{ m top,had} \ p_T^{ m top,lep} \ p_T^{ m top,max} \ p_T^{ m top,min} \ p_T^{ m top,min} \ p_T^{ m top,avg} \ p_T^{ m top,avg}$ | Identical at LO & high pt                                                                                                                                                                                                                               |
| $rac{1}{2}H_{T}^{tar{t}} \ rac{1}{2}H_{T}^{tar{t}+	ext{jets}} \ m_{T}^{J,	ext{avg}}$                                               | with $H_T^{t\bar{t}} = m_T^{\text{top,had}} + m_T^{\text{top,lep}}$<br>with $H_T^{t\bar{t}+\text{jets}} = m_T^{\text{top,had}} + m_T^{\text{top,lep}} + \sum_i p_T^{j_{\ell,i}}$<br>average $m_T$ of the two highest $m_T$ large- $R$ jets $(J_1, J_2)$ |
| $rac{1}{2}m^{tar{t}}$                                                                                                               | half invariant mass of $p^{t\bar{t}}=p^{\mathrm{top,had}}+p^{\mathrm{top,lep}}$                                                                                                                                                                         |
| $rac{2^{Tt}}{p_T^{tar{t}}} \ p_T^{j_{\ell,1}}$                                                                                      | transverse component of $p^{t\bar{t}}$ transverse momentum of the leading small- $R$ non-top jet                                                                                                                                                        |

| Hardness variable                      | explanation                                                                          |
|----------------------------------------|--------------------------------------------------------------------------------------|
| $p_T^{ m top,had}$                     | transverse momentum of hadronic top candidate                                        |
| $p_T^{ m top,lep}$                     | transverse momentum of leptonic top candidate                                        |
| $p_T^{\mathrm{top,max}}$               | $p_T$ of the top (anti-)quark with larger $m_T^2 = p_T^2 + m^2$                      |
| $p_T^{	ilde{	ext{top}},	ext{min}}$     | $p_T$ of the top (anti-)quark with smaller $m_T^2 = p_T^2 + m^2$                     |
| $p_T^{ m top,avg}$                     | $\frac{1}{2}(p_T^{\text{top,had}} + p_T^{\text{top,lep}})$                           |
| $rac{1}{2}H_T^{tar{t}}$               | with $H_T^{t\bar{t}} = m_T^{\text{top,had}} + m_T^{\text{top,lep}}$                  |
| $\frac{1}{2}H_T^{t\bar{t}+	ext{jets}}$ | with $H_T^{i\bar{t}+jets} = m_T^{top,had} + m_T^{top,lep} + \sum_i p_T^{j_{\ell,i}}$ |
| $m_T^{J,\mathrm{avg}}$                 | average $m_T$ of the two highest $m_T$ large- $R$ jets $(J_1, J_2)$                  |
| $rac{1}{2}m^{tar{t}}$                 | half invariant mass of $p^{t\bar{t}} = p^{\text{top,had}} + p^{\text{top,lep}}$      |

 $p_T^{\iota\iota} \ p_T^{j_{
mathcal{l},1}}$ 

α₅ suppressed, starts at NLO





#### $rac{1}{2}m^{tar{t}}$

#### Very delicate observable at high scales

- Logarithmic enhancement (theoretically delicate beyond LO)
- Contributions from large-y, low-pt tops (issue for boosted reco...)
- Plus: gluon/quark separation

### "Energetic" tops: expectations vs reality



# "Energetic" tops: expectations vs reality



- `LO" expectations do not borne out:
- E.g.:  $m_{tt}/2 > H_t^{tt,jets}/2 \sim p_t^{top,lept} > p_t^{tt}$  [expectation] vs  $m_{tt}/2 \sim H_t^{tt,jets}/2 > p_t^{tt} > p_t^{top,lept}$  [reality]

see backup for full setup]

# Understending energetic tops: 1-topologies

#### flavour creation

#### flavour creation + jet



#### flavour excitation



gluon splitting



$$\mathcal{O}(\alpha_s^2)$$

$$\mathcal{O}(\alpha_s^3)$$

- ``NLO"-topologies suppressed by  $\alpha_s(1 \text{ TeV}) \sim 0.09$
- $ln(p_t/m_t) \sim 2$ , not large enough to compensate for  $\alpha_s$
- However, <u>underlying 2→2 scattering very different</u>

### FCR vs FEX at high pt

Consider high-p<sub>t</sub>  $2 \rightarrow 2$  scattering, i.e. p<sub>t</sub> = 1TeV,  $\theta = \pi/2$ 

#### flavour creation



$$\sum_{i} \mathcal{L}_{q_{i}\bar{q}_{i}} \simeq 0.13$$

$$\times |\mathcal{M}_{q\bar{q}\to t\bar{t}}|^{2} = g_{s}^{4} \frac{C_{F}}{N_{C}} \frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}} = g_{s}^{4} \frac{C_{F}}{N_{C}} \cdot \frac{1}{2}$$

$$\simeq g_{s}^{4} \cdot 0.028$$

#### flavour excitation



$$\sum_{i} \mathcal{L}_{q_{i}\bar{q}_{i}} \simeq 0.13 \qquad \qquad \mathcal{L}_{\Sigma t} + \mathcal{L}_{\Sigma \bar{t}} \simeq 0.0170 \qquad \left[\Sigma \equiv \sum_{i} (q_{i} + \bar{q}_{i})\right] \\ \times |\mathcal{M}_{q\bar{q} \to t\bar{t}}|^{2} = g_{s}^{4} \frac{C_{F}}{N_{C}} \frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}} = g_{s}^{4} \frac{C_{F}}{N_{C}} \cdot \frac{1}{2} \qquad \qquad \times |\mathcal{M}_{qt \to qt}|^{2} = g_{s}^{4} \frac{C_{F}}{N_{C}} \frac{\hat{s}^{2} + \hat{u}^{2}}{\hat{t}^{2}} = g_{s}^{4} \frac{C_{F}}{N_{C}} \cdot 5$$

$$\simeq g_{s}^{4} \cdot 0.028 \qquad \qquad \simeq g_{s}^{4} \cdot 0.038$$

Comparable results, t-channel exchange compensates for as

### FCR vs GSP at high pt

Consider high-p<sub>t</sub>  $2 \rightarrow 2$  scattering, i.e. p<sub>t</sub> = 1TeV,  $\theta = \pi/2$ 

#### flavour creation



$$\mathcal{L}_{gg} \simeq 0.16$$

$$\times |\mathcal{M}_{gg \to t\bar{t}}|^2 = g_s^4 \cdot 0.15$$

$$\simeq g_s^4 \cdot 0.024$$

#### gluon splitting

$$\mathcal{L}_{gg} \simeq 0.16$$

$$\times |\mathcal{M}_{gg \to gg}|^2 = g_s^4 \cdot 30.4$$

$$\times \mathcal{P}_{g \to t\bar{t}} \simeq 0.004$$

$$\simeq g_s^4 \cdot 0.020$$

Again, ME enhancement compensates for as

### FCR vs GSP at high pt

Consider high-p<sub>t</sub>  $2 \rightarrow 2$  scattering, i.e. p<sub>t</sub> = 1TeV,  $\theta = \pi/2$ 

|                             | topology | channel                                                                                       | $ \mathrm{ME} ^2$    | luminosity           | FS splitting                                                                                                                        | product               |
|-----------------------------|----------|-----------------------------------------------------------------------------------------------|----------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| $\equiv$ $p$ $\overline{t}$ | FCR      | $gg \to t\bar{t}$ $q_i\bar{q}_i \to t\bar{t}$                                                 | $0.15 \\ 0.22$       | 0.16<br>0.13         | 1<br>1                                                                                                                              | $0.024 \\ 0.028$      |
|                             | FEX      | $\begin{array}{c} tg \rightarrow tg \\ t\Sigma \rightarrow t\Sigma \end{array}$               | 6.11<br>2.22         | 0.0039 $0.0170$      | 1<br>1                                                                                                                              | 0.024<br>0.038        |
| = =                         | GSP      | $gg \to gg(\to t\bar{t})$ $g\Sigma \to g(\to t\bar{t})\Sigma$ $q\bar{q} \to gg(\to t\bar{t})$ | 30.4<br>6.11<br>1.04 | 0.16<br>1.22<br>0.13 | $\mathcal{P}_{g \to t\bar{t}} \simeq 0.004$ $\mathcal{P}_{g \to t\bar{t}} \simeq 0.004$ $\mathcal{P}_{g \to t\bar{t}} \simeq 0.004$ | 0.020 $0.031$ $0.001$ |

- At high-pt no ``perturbative" hierarchy, all topologies contribute equally
- Similar effects observed for b-production at the Tevatron [Banfi, Salam, Zanderighi 07]
- LHC: crucial role of t-channel enhancements (logs are not large)

- For similar underlying 2 → 2 configurations: FCS ~ FEX ~ GSP
- However: different observables probe different underlying 2 → 2 configurations
- 2  $\rightarrow$  2 cross section decreases very fast,  $\sigma(p_t^{2\rightarrow 2} > X) \sim 1/X^7$
- $\cdot$  Small changes in X lead to large changes in  $\sigma$

Example: pttop, max

If  $p_t^{top, max} = 1$  TeV, then

#### flavour creation



$$p_t^{2\rightarrow 2} = 1 \text{ TeV}$$



#### flavour excitation



$$p_t^{2\rightarrow 2} = 1 \text{ TeV}$$



#### gluon splitting



$$p_t^{2\rightarrow 2} \sim 1.5 \text{ TeV}$$

Suppressed by  $(1/1.5)^7$ 

Example: pttop, min

If  $p_t^{top, min} = 1$  TeV, then

#### flavour creation



$$p_t^{2\rightarrow 2} = 1 \text{ TeV}$$



#### flavour excitation



$$p_t^{2\rightarrow 2} \gtrsim 2 \text{ TeV}$$

Suppressed by  $(1/2)^7$ 

#### gluon splitting



$$p_t^{2\rightarrow 2} \approx 2 \text{ TeV}$$

Suppressed by  $(1/2)^7$ 

Example:  $1/2 H_t^{tt+jets} = 1/2 (m_t^{top,had} + m_t^{top,lep} + \sum p_t^{jet})$ 

If  $H_t^{tt+jets} = 1$  TeV, then

#### flavour creation



$$p_t^{2\rightarrow 2} = 1 \text{ TeV}$$



#### flavour excitation



$$p_t^{2\rightarrow 2} \approx 2 \text{ TeV}$$



#### gluon splitting



$$p_t^{2\rightarrow 2} \approx 2 \text{ TeV}$$



Democratic, all contribute

#### Easy to ``predict" which topologies will contribute

| Hardness variable                                                           | explanation                                                                                               | FCR          | FEX          | GSP          |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|
| $p_T^{ m top,had}$                                                          | transverse momentum of hadronic top candidate                                                             | ✓            | <b>√</b>     |              |
| $p_T^{\overline{	ext{top}},	ext{lep}}$                                      | transverse momentum of leptonic top candidate                                                             | $\checkmark$ | $\checkmark$ |              |
| $p_T^{\mathrm{top,max}}$                                                    | $p_T$ of the top (anti-)quark with larger $m_T^2 = p_T^2 + m^2$                                           | $\checkmark$ | $\checkmark$ |              |
| $p_T^{ m top,min}$                                                          | $p_T$ of the top (anti-)quark with smaller $m_T^2 = p_T^2 + m^2$                                          | $\checkmark$ |              |              |
| $p_T^{\overline{	ext{top,avg}}}$                                            | $\frac{1}{2}(p_T^{\text{top,had}} + p_T^{\text{top,lep}})$                                                | $\checkmark$ |              |              |
| $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | with $H_T^{t\bar{t}} = m_T^{\text{top,had}} + m_T^{\text{top,lep}}$                                       | ✓            |              |              |
| $rac{1}{2} \ddot{H_T^{tar{t}+	ext{jets}}}$                                 | with $H_T^{t\bar{t}+\text{jets}} = m_T^{\text{top,had}} + m_T^{\text{top,lep}} + \sum_i p_T^{j_{\ell,i}}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $m_T^{J,{ m avg}}$                                                          | average $m_T$ of the two highest $m_T$ large- $R$ jets $(J_1, J_2)$                                       | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $rac{1}{2}m^{tar{t}}$                                                      | half invariant mass of $p^{t\bar{t}} = p^{\text{top,had}} + p^{\text{top,lep}}$                           | ✓            |              |              |
| $p_T^{tar{t}}$                                                              | transverse component of $p^{t\bar{t}}$                                                                    |              | <b>√</b>     | <b>√</b>     |
| $p_T^{tar{t}} \ p_T^{j_{\ell,1}}$                                           | transverse momentum of the leading small- $R$ non-top jet                                                 |              | $\checkmark$ | $\checkmark$ |

### Topology definitions: parton level

- 1. Take top partons + aKTO.4 jets, and recluster them into R=1 (aKT) jets
- 2. Assign a topology according to the following

One top in  $J_1$ , one top in  $J_2$ 

One top in either  $J_1$  or  $J_2$ 

J<sub>1</sub> or J<sub>2</sub> has two tops







#### Topologies: validation



POWHEG+Pythia8 predictions in line with expectations

### Back to expectation vs reality



- `LO" expectations  $m_{tt}/2 > H_t tt, jets/2 ~ p_t top, lept > p_t top borne out in FCR$
- Small differences between observables easy to understand

# Applications: 1-highest precision



#### Select FCR-only

Moderate pt: use
``safe'' observables
(pttop,had/lep/avg, NOT
pttop,max/min)

Very high pt: use ``democratic" mt<sup>jj,avg</sup> to avoid logs

# Applications: more general physics studies



All topologies contribute similarly, but probe quite different structure

- → use to maximise information
- FCR/FEX/GSP: sensitive to different EFT operators/BSM scenarios
- Sensitive to different PDFs/PDFs in different regions (e.g. FEX, g→tt probes gluon at larger-x)

•

### Devising measurement strategies







- Usual ``boosted or reconstructed strategy" only works for FCR
- FEX: one low and one high pt top
- GSP: two tops in the same jet

Critical for unfolding to parton level (if analysis is not sensitive to FEX/GSP, unfolding purely based on MC, not data...)

# A realistic particle-level analysis

It is possible to design a realistic algorithm that works for both resolved and (moderately) boosted top decays (see backup slides for its precise definition)



- Algo behaviour is encouraging, both for efficiency and purity
- Our guiding principle: simplicity over optimisation (→ both simple to implement and improvable)

#### Back to the mtt distribution



- Large contribution from low-p<sub>t</sub>, large  $\Delta y \rightarrow$  difficult to reconstruct
- Can lead to poorly controlled unfolding
- TH: a lot of source of (poorly controlled) potentially large corrections (q-induced BFKL...)
- If measuring  $m_{tt}$  at high scale: put a  $|\Delta y| < 2$  cut
- Large enough to exploit features (e.g. gg vs qq), but safer

#### Conclusions

- At large scale, LO (FCR) and NLO (GSP/FEX) topologies give comparable contributions, due to t-channel matrix-element enhancements that compensate for  $\alpha_s$
- Non-trivial interplay between topologies and choice of observable.
   Different observables probe different underlying scattering
- Topology classification/extraction could help maximising info from top data (EFT, PDFs...)
- Simple parton level algorithm can classify topologies
- Interesting to develop algorithms that can deal with both resolved and boosted tops. Simple algo developed for our analysis, promising results
- Careful in TH-EXP comparisons e.g. for mtt

# Backup slides

### Setup

- LHC13
- POWHEGBox v2, hvq (NLO for tt)
- PDF4LHC15\_nnlo\_mc
- Cross-checked using POWHEGBox NLO ttj that agreement on  $O(\alpha_s^3)$  channels is reasonable

### The particle-level algorithm

#### Algorithm 2 Event analysis algorithm at hadron (particle) level

- **Require:** at least one lepton (we require it to have a transverse momentum of at least 25 GeV), missing transverse momentum and hadrons.
  - 1: Cluster the hadronic part of the event with the anti- $k_t$  algorithm with R=0.4 and discard any jets below some  $p_t$  threshold,  $p_{T,\min}$ , as one would normally (we take  $p_{T,\min}=30 \text{ GeV}$ ).
  - 2: Optionally, e.g. if subject to finite detector acceptance, exclude jets and leptons with an absolute rapidity beyond some  $y_{\text{max}}$ . The remaining set of jets is referred to as  $\{j\}$  and the hadrons contained within that set of jets is  $\{H\}$ .
  - 3: For each jet j, recluster its constituents with the exclusive longitudinally invariant  $(R = 1) k_t$  algorithm [61] with a suitable  $d_{\text{cut}}$  (we use  $(20 \text{ GeV})^2$ ), thus mapping the R = 0.4 jets  $\{j\}$  to a declustered set  $\{j_d\}$ . One applies b-tagging to the  $\{j_d\}$  (sub)jets to aid with the subsequent top identification.
  - 4: Use a resolved top-tagging approach to identify the hadronic and leptonic top-quark candidates from the lepton(s) and from the jets  $\{j_d\}$  obtained in step 3. Here, we will adopt the algorithm outlined in Section 4.2.
  - 5: Identify all particles from the set  $\{H\}$  that do not belong to either of the top-quark candidates. Refer to this subset as  $\{H_{\not t}\}$ . Cluster the  $\{H_{\not t}\}$  with the original jet definition (anti- $k_t$ , R=0.4) and apply a transverse momentum threshold  $p_{T,\min}$  to obtain the set of non-top R=0.4 jets,  $\{j_{\not t}\}$ , ordered in decreasing  $p_T$ .
  - 6: Apply step 3 of Algorithm 1 using  $\{j_{\not t}\}$  and the reconstructed top and anti-top candidates as the inputs.