

Measurement of the top quark mass (m_t) in single top enriched events at $\sqrt{s} = 13$ TeV

CMS Experiment at LHC, CERN Data recorded: Tue Jul 14 11:47:11 2015 CEST Run/Event: 251721 / 22303466 Lumi section: 21

untagged jet

muon

мет

b-tagged jet

LHCTopWG Meeting, 2021

CMS-PAS-TOP-19-009

Soureek Mitra (Karlsruher Institut für Technologie)

On behalf of CMS collaboration

- Top quark mass (m_t) is an important parameter of SM
- \rightarrow Largest contributor in <u>radiative corrections</u> to W mass and Higgs self-coupling among SM particles \Rightarrow stability of EW vacuum • $\Delta m_t = m_t - m_{t^-} \rightarrow \text{test of CPT invariance} \Rightarrow \text{Lorentz symmetry}$
- Traditionally m_t measurements performed with tt⁻ events
- Measurement in single top provides
 - measurement in an independent process
 - \rightarrow lower energy scale (>170 GeV) compared to tt⁻ (> 300 GeV)
 - \rightarrow partially uncorrelated systematics from tt⁻ measurements
- ATLAS@8TeV (<u>ATLAS-CONF-2014-055</u>) :
 - → Measurement: $m_t = 172.2 \pm 0.7$ (stat.) ± 2.0 (syst.) $GeV = 172.2 \pm 2.1 GeV$
 - → Dominant Unc.: JES ($\pm 1.5 \text{ GeV}$), t ch. Had. modeling ($\pm 0.7 \text{ GeV}$)
- CMS@8TeV (EPJC 77 (2017) 354) :
 - → Measurement: $m_t = 172.95 \pm 0.77 \text{ (stat.)} + 0.97 \text{ (syst.)} \text{ GeV} = 172.95 + 1.24 \text{ GeV}$
 - → Dominant Unc.: JES $(^{+0.68}_{-0.61} \text{ GeV})$, Fit Calibration $(\pm 0.39 \text{ GeV})$

Motivation

Summary of *m_t* measurements (so far)

Direct measurements $\rightarrow m_t$ reconstructed from daughters \Rightarrow running mass

ATLAS+CMS Preliminary LHCtopWG	m _{top} summary, √s = 7-13 TeV	April 2021			
World comb. (Mar 2014) [2]					
stat	total stat				
total uncertainty	m., ± total (stat ± svst)	vs Ref.			
LHC comb. (Sep 2013) LHCtopWG	173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [1]			
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [2]			
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [3]			
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [3]			
ATLAS, all jets	175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [4]			
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [5]			
ATLAS, dilepton	172.99 ± 0.85 (0.41 ± 0.74)	8 TeV [6]			
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [7]			
ATLAS, I+jets	172.08 ± 0.91 (0.39 ± 0.82)	8 TeV [8]			
ATLAS comb. (Oct 2018)	H 172.69 ± 0.48 (0.25 ± 0.41)	7+8 TeV [8]			
ATLAS, leptonic invariant mass (*)	174.48 ± 0.78 (0.40 ± 0.67)	13 TeV [9]			
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [10]			
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [11]			
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [12]			
CMS, I+jets	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [13]			
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [13]			
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [13]			
CMS, single top	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [14]			
CMS comb. (Sep 2015) ⊢ দ ⊣	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [13]			
CMS, I+jets	172.25 ± 0.63 (0.08 ± 0.62)	13 TeV [15]			
CMS, dilepton	172.33 ± 0.70 (0.14 ± 0.69)	13 TeV [16]			
CMS, all jets	172.34 ± 0.73 (0.20 ± 0.70)	13 TeV [17]			
CMS, single top (*)	172.13 ± 0.77 (0.32 ± 0.70)	13 TeV [18]			
* Preliminary	[1] ATLAS-CONF-2013-102 [7] JHEP 09 (2017) 118 [2] arXiv:1403.4427 [8] EPJC 79 (2019) 290 [3] EPJC 75 (2015) 330 [9] ATLAS-CONF-2019-046 [4] EPJC 75 (2015) 158 [10] JHEP 12 (2012) 105 [5] ATLAS-CONF-2014-055 [11] EPJC 72 (2012) 2202 [6] PL B 761 (2016) 350 [12] EPLC 74 (2014) 2378	[13] PRD 93 (2016) 072004 [14] EPJC 77 (2017) 354 [15] EPJC 78 (2018) 891 [16] EPJC 79 (2019) 368 [17] EPJC 79 (2019) 313 [18] CMS PAS TOP 19.000			
	[0] FLB /01 (2010) 350 [12] EPJC /4 (2014) 2/58	10] 0103-FA3-10F-19-00			
165 170	175 180	185			
m _{top} [GeV]					

Indirect measurements

 $\rightarrow m_t^{pole}$ determined from cross section measurements

ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top}	from cross-section measur S	ements ep 2019		
total st	▼ I at	m _{top} ± tot (stat ± syst ± theo)	Ref.		
ਰ(tīt) inclusive, NNLO+NNLL					
ATLAS, 7+8 TeV	•	172.9 ^{+2.5} -2.6	[1]		
CMS, 7+8 TeV		173.8 ^{+1.7} -1.8	[2]		
CMS, 13 TeV		169.9 $^{+1.9}_{-2.1}$ (0.1 ± 1.5 $^{+1.2}_{-1.5}$)	[3]		
ATLAS, 13 TeV		173.1 ^{+2.0} _{-2.1}	[4]		
σ(tt+1j) differential, NLO					
ATLAS, 7 TeV		173.7 $^{+2.3}_{-2.1}$ (1.5 ± 1.4 $^{+1.0}_{-0.5}$)	[5]		
CMS, 8 TeV	-	169.9 $^{+4.5}_{-3.7}$ (1.1 $^{+2.5}_{-3.1}$ $^{+3.6}_{-1.6}$)	[6]		
ATLAS, 8 TeV		171.1 $^{+1.2}_{-1.0}$ (0.4 ± 0.9 $^{+0.7}_{-0.3}$)	[7]		
σ (tt̄) n-differential, NLO					
ATLAS, n=1, 8 TeV	┝╴ <mark>╸╶┼╶┨</mark>	$173.2 \pm 1.6 \ (0.9 \pm 0.8 \pm 1.2)$	[8]		
CMS, n=3, 13 TeV		170.9 ± 0.8	[9]		
m _{top} from top quark decay	[1] EPJC 74	(2014) 3109 [5] JHEP 10 (2015) 121 [9] arXiv:190	4.05237 (2019)		
CMS, 7+8 TeV comb. [10]	[2] JHEP 08 [3] EPJC 79	(2016) 029 [6] CMS-PAS-TOP-13-006 [10] PRD 93 (2019) 368 [7] arXiv:1905.02302 (2019) [11] EPJC 79	(2016) 072004 9 (2019) 290		
ATLAS, 7+8 TeV comb. [11]	[4] ATLAS-C	ONF-2019-041 [8] EPJC 77 (2017) 804			
55 160 165 170	175	180 185 19	90		
m _{top} [GeV]					

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

1

Event Topology and Dominant bkgs.

$t - ch : \sigma(13 \text{ TeV}) = 217.0^{+9.1}_{-7.7} \text{ pb}$

2-jets-1-tagged (2J1T)

- Large cross section but low selection efficiency \Rightarrow require very high stat. MC sample for accurate templates after event selection
- \bigcirc QCD-enriched side-band (SB) in data \rightarrow invert rel. isolation (identification) criteria of the muon (electron) in the final state
- ML fit to data in Signal region to extract normalization using QCD template from SB \rightarrow Proof of concept in 2J0T and estimation in 2**J**1**T**
- Shape derived from SB and post-fit yield $m_T^W > 50$ GeV for QCD bkg. considered for further analysis
- \sim 50% variation (shape + normalization) on the estimated QCD bkg. contribution as a systematic for final measurement

Estimation of QCD multijet bkg.

Event yields separated by lepton charge and flavor

- Determine neutrino four-momenta from lepton and Missing p_{T}
- Estimate neutrino p_{τ} from lepton four-momentum and Missing p_{T}

$$m_W^2 = \left(E_\ell^2 + \sqrt{\not p_T^2 + p_{z,\nu}^2}\right)^2 - \left(\vec{p}_{T,\ell} + \vec{\not p}_T\right)^2 - \left(p_{z,\ell} + p_z\right)^2$$

• Quadratic solution for neutrino p_7 : ☞ For real case (~ 65%):

 \rightarrow choose the one with lowest | p₇ | (accuracy ~ 64%) For imaginary case (~ 35%):

- Set radical equal to $0 \Rightarrow$ quadratic Eqn. in neutrino p_x and p_y
- \rightarrow vary neutrino p_x and p_y keeping above Eqn. satisfied so that neutrino p_T has lowest $\Delta \varphi$ with Missing p_T

Reconstruct W-boson from lepton and neutrino four-momenta \bigcirc Reconstruct top quark from b-jet and W-boson four-momenta

Four-momentum of the b-quark from top quark decay approximated using b-tagged jet $\Rightarrow m_t^{MC}$

BDT discriminators

• Selected cut value corresponds to $\approx 60\%$ signal purity

BDT selection threshold optimized at minimum unc. due to calibration vs true mass

*m*_t after BDT selection

• m_t distribution <u>highly skewed</u> \rightarrow difficult to model accurately using parametric shapes \Rightarrow Use *In m_t* for fit \rightarrow low skewness, more symmetric and easy to model

Extraction of *m*_t

- QCD bkg. contribution is subtracted from data \rightarrow 50% variation (shape + norm.) in estimated QCD bkg. contribution added as separate systematic source
- Simultaneous ML fit using $y = ln m_t$ distributions in μ and e final states $F(y; y_0, f_{t-ch.}, f_{Top}, f_{EWK}) = f_{t-ch.} \cdot F_{t-ch.}(y; y_0) + f_{Top} \cdot F_{Top}(y; y_0) + f_{EWK} \cdot F_{EWK}(y)$
 - $> y_0$: POI, represents the peak position of the combined template of t ch. and Top $> m_{Fit} = TMath::Exp. (y_0)$ $> F_{t-ch}$ = asymm. Gauss. core + Landau tail \succ F_{Top} = Crystal ball

 $> F_{EWK} = Novosibirsk$

Signal and bkg. rates added as nuisance parameters to the fit & constrained using log-normal priors based on respective cross sections

$$f_{t-ch} \rightarrow 15\%, f_{Top}$$

- Parametric fit model validated in bkg. enriched control region defined by -0.2 < BDT < 0.8</p>
- Separate fits for ℓ^+ , ℓ^- , ℓ^\pm final states

 $\rightarrow 6\% \& f_{EWK} \rightarrow 10\%$

- Peak region well-modeled by fit
- Higher relative bkg. contribution in the ℓ^- final state
 - charge asymmetry of W boson radiated from the initial state quark in the signal process
 in the sin the signal process
 in the signal

Offset calibration w.r.t true mt

- Signal and bkg. rates are added as nuisance parameters in the fit (profiled systematic sources)
- \sim All other syst. sources externalized \rightarrow fit repeated with varied templates (conservative approach)
- Asymmetric uncertainties on the measurements
- Largest shift relative to the nominal result quoted in case of one-sided impact (conservative approach)
- Dominant sources on the ℓ^{\pm} case highlighted by shaded region
- Larger syst. uncertainties in case of ℓ^- final state due to higher relative bkg. contribution

Uncertainty Table

=	Source		δm_{ℓ^\pm}	$\delta \mathrm{m}_{\ell^+}$
	Statistical + profiled systematic		±0.32	±0.37
		Correlation Group Intercalibration	± 0.09	± 0.07
	IFS	Correlation Group MPFInSitu	± 0.02	± 0.02
	JLO	Correlation Group Uncorrelated	±0.39	± 0.17
JER		total (quadrature sum)	± 0.40	± 0.18
			$< \pm 0.01$	$< \pm 0.01$
Experimenta	Unclustered energy		$< \pm 0.01$	$< \pm 0.01$
	Muon efficiencies		$< \pm 0.01$	$< \pm 0.01$
Svst.	Electron efficiencies		± 0.01	± 0.01
	Pileup		± 0.14	± 0.04
	b tagging		± 0.20	±0.18
	QCD multijet normalization		±0.02	± 0.01
	Offset correction		±0.11	±0.13
	Luminosity	A	$< \pm 0.01$	$< \pm 0.01$
	CR model and ERD		±0.24	±0.39
n		gluon	+0.52	+0.75
		light quark (uds)	-0.18	+0.18
	Flavor-dependent JES	charm	+0.01	+0.08
		bottom	-0.48	-0.29
		total (linear sum)	-0.13	+0.72
		b frag. Bowler-Lund	± 0.03	± 0.06
	h quark hadronization model	b frag. Peterson	+0.14	+0.11
	b quark nationization model	semileptonic B decays	± 0.18	± 0.17
		total (quadrature sum)	+0.23 -0.18	$^{+0.21}_{-0.18}$
		ISR	± 0.01	± 0.01
	Signal modeling	FSR	± 0.28	± 0.31
Modelina		$\mu_{\rm R}/\mu_{\rm F}$ scale	±0.09	± 0.13
Svst		$PDF + \alpha_S$	± 0.06	± 0.06
		total (quadrature sum)	± 0.30	± 0.34
tī modeling	ISR	±0.11	± 0.02	
		FSR	± 0.10	± 0.14
		ME/PS matching scale	± 0.10	± 0.10
	t ī modeling	$\mu_{\rm R}/\mu_{\rm F}$ scale	± 0.03	± 0.03
		$PDF + \alpha_S$	$<\pm 0.01$	$< \pm 0.01$
		Top $p_{\rm T}$ - reweighting	-0.04	-0.08
		Underlying event	± 0.07	± 0.04
	- - Signal and background shane	total (quadrature sum)	±0.20	$^{+0.18}_{-0.20}$
		signal shape	± 0.05	± 0.03
		Top bkg. shape	± 0.07	± 0.04
	Signal and background shape	EWK bkg. shape	± 0.03	± 0.01
V		total (quadrature sum)	± 0.09	± 0.05
	Total systematic		+0.69 -0.71	+0.97 -0.65
-	Grand total		+0.76 -0.77	+1.04 -0.75
14			-0.77	-0.75

$$m_t^{\ell^{\pm}} = 172.13 \pm 0.32 \,(\text{stat} + \text{prof})$$

$$m_{\bar{t}} = 171.79 \pm 0.58 (\text{stat} + \text{prof})$$

$$R_{m_t} = \frac{m_{\bar{t}}}{m_t} = 0.995 \pm 0.004 \text{ (stat + p)}$$
$$\Delta m_t = m_t - m_{\bar{t}} = 0.83 \pm 0.69 \text{ (stat - p)}$$

 Δm_t measured by CMS at $\sqrt{s} = 8$ TeV using tt⁻ events <u>Phys. Lett. B 770 (2017) 50</u> $\Delta m_{\rm t} = -0.15 \pm 0.19 \,({\rm stat.}) \pm 0.09 \,({\rm syst}) \,{\rm GeV}$

Final Results

f) $^{+0.69}_{-0.70}$ (syst) GeV = $172.13^{+0.76}_{-0.77}$ GeV

- $m_t = 172.62 \pm 0.37 (\text{stat} + \text{prof})^{+0.97}_{-0.65} (\text{syst}) \text{ GeV} = 172.62^{+1.04}_{-0.75} \text{ GeV}$
 - $G(syst) = \frac{1.32}{-1.30} (syst) GeV = \frac{171.79^{+1.44}_{-1.51} GeV}{-1.51}$
 - $\operatorname{prof}\left(\operatorname{syst}\right) = 0.995^{+0.005}_{-0.006}$
 - + prof) $^{+0.35}_{-0.74}$ (syst) GeV = $0.83^{+0.77}_{-1.01}$ GeV
 - Consistent with CPT invariance

- \sim First m_t measurement to achieve sub-GeV precision in single top enriched event sample
- First measurement of R_{m_t} and Δm_t in single top enriched phase space test of CPT invariance and no violation is observed
- \bigcirc Dominant uncertainties in the ℓ^{\pm} result:
 - → JES (± 0.40 GeV)
 - \rightarrow signal FSR scale (± 0.28 GeV)
 - \rightarrow color reconnection (± 0.24 GeV)
 - \rightarrow b-quark had. model (^{+0.23} -0.18 GeV)

Thank You

Summary

• First m_t measurement with data taken at $\sqrt{s} = 13$ TeV in single top enriched event sample

Back Up

BOSONS ----

- Higgs Potential:

- Evolve λ_H up to Planck scale (~10¹⁹ GeV)
- Knowing the top mass accurately might just reveal the fate of our universe
- $\Delta m_t = m_t m_{t^-} \rightarrow \text{test of CPT invariance} \Rightarrow \text{Lorentz symmetry}$

m_t & Electroweak symmetry

	T
er Institut für Teo	hnologie
· ·	2
GeV	7
	_
	_
and the second s	
i	
	_
fitter sm	ل ۱۳. ال
190	
m _t [Ge	V]
m _t [Ge	V]
m _t [Ge	V]
m _t [Ge	V]
m _t [Ge'	V]
m _t [Ge y) red)	V]
y) red)	V]
m _t [Ge y) red) ie)	V]
m _t [Ge y) ed)	V]
m _t [Ge y) red) ie)	V]
m _t [Ge y) ed)	V]
m _t [Ge y) red) ie)	V]
m _t [Ge y) red) ie)	V]
m _t [Ge y) red) ie)	V]
m _t [Ge y) ed) ie) 1.1 GeV = 0.1205-	
m _t [Ge y) red) ie) 1.1 GeV = 0.1205-	
m _t [Ge y) ed) ie) 1.1 GeV = 0.1205- = 0.1163	
m _t [Ge y) red) ie) 1.1 GeV = 0.1205- = 0.1163- 5.6 GeV	
m _t [Ge y) ed) ie) 1.1 GeV = 0.1205- = 0.1163 5.6 GeV	

oara seuc
seuc
lass
ie ai
uar
Wb
Fox
seuc
of p
seuc

- ation in $\eta \phi$ space between the b-tagged and untagged jets dorapidity of the untagged jet
- of the system comprising of the b-tagged and untagged jets ngle between the lepton and untagged jet in the rest frame k
- poson mass as described in Eq. (6)
- -Wolfram moment [46, 47]
- dorapidity difference between the lepton and b-tagged jet
- _T of the b-tagged and untagged jets dorapidity of the lepton (muon)

Arrow indicate region of better separation between signal and bkgs. Area under ROC ~ 16 % (Lower is Better)

Signal *m_t* shape due to different BDT cut

Systematic Uncertainty Estimation

- Signal and bkg. rates are added as nuisance parameters in the fit (profiled systematic source) • All other sources externalized \rightarrow fit repeated with varied templates (conservative approach) **Experimental**
- **JES**: sub-categorized into different correlation groups according to <u>JME-15-001</u>
- Unclustered energy: 10% variation
- Lepton efficiencies: Total unc. on the efficiency SFs due to identification, isolation and trigger
- \square Pileup re-weighting: 4.6% unc. on $\sigma_{\min \text{ bias}} = 69.2 \text{ mb}$
- **b-tagging**: unc. on efficiency SFs based on jet kinematics and tagger discriminators
- See QCD bkg.: 50% unc. on the estimated QCD bkg.
- rightarrow offset correction: $\pm 1\sigma$ unc. from the offset calibration curve
- ☞ Luminosity: 2.5% unc. according to LUM-17-001

Modeling

Flavor-dependent JES: Correlated across jet flavors (gluon, light [uds],

charm and bottom) as well as *signal and bkg. processes*

b-quark had. model: Dedicated <u>event weights</u> for

- \rightarrow ±1 σ variations of Bowler-Lund parameters
- comparison with Peterson parameterization
- → unc. on semi-leptonic branching ratio of B hadrons from PDG

Color Reconnection (CR): 2 alternate CR models considered for *t* - *ch*.

and *tt*⁻simultaneously using *dedicated MC samples*

Signal modeling: Dedicated <u>event weights</u> corresponding to

- → ISR and FSR scale variations
- $\rightarrow \mu_{\rm B}/\mu_{\rm F}$ scale variations
- \rightarrow **PDF (NNPDF3.0)** + α_{s} variations
- *[™] tt*[−]Modeling:
 - → using <u>dedicated MC samples</u> for variations of ISR & FSR scales, ME-PS matching scale & UE tune
 - \rightarrow <u>event weights</u> for $\mu_{\rm B}/\mu_{\rm F}$ scale, PDF+ $\alpha_{\rm S}$ & top $p_{\rm T}$ re-weighting

 $rightarrow Signal and bkg. shape: \pm 3\sigma$ variation of shape parameters