Top and Beauty synergies in SMEFT fits

based on works with Stefan Bissmann, Cornelius Grunwald and Kevin Kröninger, 2012.10456 [hep-ph], to appear in JHEP

Gudrun Hiller, TU Dortmund

Supported by the Federal Ministry for Education and Research (BMBF)

DPG spring meeting March 2021: 6 sessions on flavor physics

NA 62	S
Belle, BaBar	c, b
BES III	c
Belle II	c, b
LHCb	c, b, (s)
ATLAS, CMS	b, t (c, s)
Z-factory (CLIC-like)	c,b (t)

Dream time to be in flavor physics

2 anomalies strengthened in past few weeks: R_K : 3.1σ new LHCb result $_{2103.11769}$ (g-2) of muon 4.2σ – new FNAL result

- rates and angular distributions $b \to s\mu\mu$, $b \to s\gamma$ aka "the global fit"
- $-R_{K,K^*}$: ratio of branching fractions $b o s\mu\mu$ vs b o see hep-ph/0310219
- $-R_{D,D^*}$: $b \to c au \nu \nu b \to c(e,\mu) \nu$
- Cabibbo-angle anomaly V_{us} from $s \to u\mu\nu$ vs $d \to ue\nu$
- -(g-2) of muon and electron

common denominator: "something with leptons (in low energy data)"

Flavor continues to be interesting and inspiring; the anomalies require flavor BSM model building and flavorful fits.

Moving ahead getting more global

towards more global approach across the flavors s, c, b, t...

NA 62	s
Belle, BaBar	c, b
BES III	c
Belle II	c, b
LHCb	c, b, (s)
ATLAS, CMS	b,t
	·

The tool to achieve a cross community global analysis are effective field theories: Study correlations among multi-observables from different experiments $(B \to K^{(*)}\mu\mu, B_s \to \mu\mu, B \to X_s\gamma)$ in WET (the global $b \to s$ -fit aka C_7, C_9, C_{10} -fits). ongoing precision program Use SMEFT to include tops, and exploit unbroken SM symmetries $SU(2)_L \times U(1)_Y$ as a lab for flavor links.

top and beauty synergies

SMEFT coefficients $C^{\pm} = C^{(1)} \pm C^{(3)}$ top and beauty, leptons and neutrinos, linked and complementary; flat directions are removed

```
b 	o s \mu \mu (LHC), probes C^+ b 	o s \nu \nu (BelleII), probes C^- e^+e^- 	o t ar t (CLIC-like), probes C^- — quark flavor link implied C_{23} = V_{tb}V_{ts}^*C_{33}, lepton universality,....
```

11 dim 6 operators in fit 2012.10456. Penguins, dipole operators

$$O_{\varphi q}^{(1)} = \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi\right) (\bar{q}_{L} \gamma^{\mu} q_{L}) , \quad O_{\varphi q}^{(3)} = \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi\right) (\bar{q}_{L} \tau^{I} \gamma^{\mu} q_{L}) ,$$

$$O_{\varphi u} = \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi\right) (\bar{u}_{R} \gamma^{\mu} u_{R}) , O_{uG} = \left(\bar{q}_{L} \sigma^{\mu \nu} T^{A} u_{R}\right) \tilde{\varphi} G_{\mu \nu}^{A} ,$$

$$O_{uB} = (\bar{q}_{L} \sigma^{\mu \nu} u_{R}) \tilde{\varphi} B_{\mu \nu}, O_{uW} = \left(\bar{q}_{L} \sigma^{\mu \nu} \tau^{I} u_{R}\right) \tilde{\varphi} W_{\mu \nu}^{I} ,$$

and semileptonic four-fermion operators

$$O_{lq}^{(1)} = (\bar{l}_L \gamma_\mu l_L) (\bar{q}_L \gamma^\mu q_L), O_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L) (\bar{q}_L \gamma^\mu \tau^I q_L), O_{qe} = (\bar{q}_L \gamma_\mu q_L) (\bar{e}_R q_L)$$

Corresponding Wilson coefficients have up to four flavor indices, for instance $C_{lq}^{(1)\boldsymbol{klij}}\cdot\left(\bar{l}_{L\boldsymbol{k}}\gamma_{\mu}l_{L\boldsymbol{l}}\right)\left(\bar{q}_{L\boldsymbol{i}}\gamma^{\mu}q_{L\boldsymbol{j}}\right), \quad i,j,k,l=1,2,3.$

quark flavor considerations

Quark flavor patterns in operators: $\bar{q}_{Li}(..)q_{Lj}$, $\bar{q}_{Li}(..)u_{Rj}$ and $\bar{u}_{Ri}(..)u_{Rj}$.

Top-(beauty)-philic flavor pattern: only $C^{i=3,j=3}$ switched on.

Consider second-third generation only

Top-(beauty)-philic:
$$C_x^{ij}=C_x^{33}\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$$
 for all 11 ops O_x .

Flavor mixing for doublets q_L : $V_{\rm CKM} = V_u V_d^{\dagger}$. In up-mass basis $V_u = 1$. $d_L^{\rm mass} = V_{\rm CKM} d_L^{\rm flavor}$

all $\bar{q}_{Li}(..)q_{Lj}$ ops:

$$C_{lq}^{(1,3)}, C_{\varphi q}^{(1,3)}, C_{qe} \propto \begin{pmatrix} |V_{ts}|^2 & V_{tb}V_{ts}^* \\ h.c. & |V_{tb}|^2 \end{pmatrix} \sim \begin{pmatrix} 0 & -0.04 \\ -0.04 & 1 \end{pmatrix}$$

tree level FCNCs; synergies between top and $b \rightarrow s$ anomalies

lepton flavor considerations

- 1. most of todays data, e.g., $b \to s\ell^+\ell^-$, is for $\ell = \mu$. Therefore, most of the results are "lepton-specific" k = l = 2.
- 2. notable exceptions are bounds on dineutrino modes $B(B \to K^{(*)} \nu \bar{\nu}) = \sum_{k,l} B(B \to K^{(*)} \nu_k \bar{\nu}_l)$, which are flavor-summed.
- 3. To include 2., we assume lepton universality. So, in the semileptonic 4-fermion operators, we assume for the lepton flavor $C^{kl} \propto \delta_{kl}$.

(in view of 1., this is only a mild assumption, however, turns out that $B(B \to K^{(*)} \nu \bar{\nu})$ in particular when observed, is an important constraint)

4. In view of current tensions with R_K etc, it is desirable to perform lepton-specific fits for $ee, \mu\mu$ $(\tau\tau)$ operators as well as LFV ones.

choose your initial state: e^+e^- -collider, muon collider are complementary

top and beauty synergies – a global fit

procedure:

scan 11 C_i at $\Lambda=1$ TeV. 1-loop RGE to m_t , m_W . Matching onto WET, computation of b-observables, flavio, wilson tools

confronting to data; EFT-fitter

Global top-b fit

Process	Observable	Two-fermion operators	sl. four-fermion operators
$pp \to t\bar{t}$	σ^{inc}	$ ilde{C}_{uG}$	-
$pp \to t\bar{t}\gamma$	σ^{fid}	$ ilde{C}_{uB}, ilde{C}_{uW}, ilde{C}_{uG}$	-
$pp \to t \bar{t} Z$	$\sigma^{\sf inc}$	$\tilde{C}_{uB},\tilde{C}_{uW},\tilde{C}_{uG},\tilde{C}_{\varphi q}^-,\tilde{C}_{\varphi u}$	-
$t \to bW$	$F_{0,L}$	$ ilde{C}_{uW}$	-
Top decay	Γ_t	$ ilde{C}_{arphi q}^{(3)}$, $ ilde{C}_{uW}$	-
$Z \to b\bar{b}$	$A_{FB}^{b},R_{b},\sigma_{had}$	$ ilde{C}_{arphi q}^{+}$	-
$b \to s\gamma$	BR	$\left[\tilde{C}_{uB}\right],\left[\tilde{C}_{uW}\right],\left\{\tilde{C}_{uG}\right\},\left[\tilde{C}_{\varphi q}^{(3)}\right]$	-
$b \to s \ell^+ \ell^-$	BR, A_{FB} , $P_i^{(\prime)}$,	$\left[\tilde{C}_{uB}\right], \left[\tilde{C}_{uW}\right], \left\{\tilde{C}_{uG}\right\}, \left(\tilde{C}_{\varphi q}^{+(*)}, \left[\tilde{C}_{\varphi q}^{(3)}\right]\right]$	$\tilde{C}_{lq}^{+(*)},\tilde{C}_{qe}^{(*)}$
$b \to s \nu \bar{\nu}$	BR	$ ilde{C}_{arphi q}^{+(**)}$	$\tilde{C}_{lq}^{-(*)}$
Mixing	ΔM_s	$\left[ilde{C}_{uW} ight]$, $\left\{ ilde{C}_{uG} ight\}$, $\left[ilde{C}_{arphi q}^{(1,3)} ight]$	-
$e^+e^- \to t\bar{t}$	σ , A_{FB}	$\tilde{C}_{uB},\tilde{C}_{uW},\left\{\tilde{C}_{uG}\right\},\tilde{C}_{\varphi q}^{-},\tilde{C}_{\varphi u}$	$\tilde{C}_{eu},\tilde{C}_{qe},\tilde{C}_{lu},\tilde{C}_{lq}^-$

Process	Observable	\sqrt{S}	Int. luminosity	Experime
$\overline{t \overline{t} \gamma}$	$\sigma^{\mathrm{fid}}(t\bar{t}\gamma, 1\ell), \ \sigma^{\mathrm{fid}}(t\bar{t}\gamma, 2\ell)$	13 TeV	36.1 fb^{-1}	ATLAS
$\overline{t \overline{t} Z}$	$\sigma^{ m inc}(tar t Z)$	13 TeV	77.5 fb^{-1}	CMS
$\overline{t} \overline{t}$	$\sigma^{inc}(tar{t})$	13 TeV	36.1 ${\rm fb}^{-1}$	ATLAS
	$F_0,\;F_L$	8 TeV	$20.2 \; \mathrm{fb}^{-1}$	ATLAS
	Γ_t	8 TeV	$20.2~\mathrm{fb}^{-1}$	ATLAS

Table 1: Considered bservables for top- quark processes at the LHC 2012.10456 [hep-ph].

Figure 1: Constraints on SMEFT \tilde{C}_i at $\Lambda=1$ TeV from top measurements in Tab. 1; marginalized smallest intervals containing 90 % posterior probability (left) and the total width of these intervals (right). For all coefficients we choose a uniform distribution in $-1 \leq \tilde{C}_i \leq 1$ as the prior. 6 WCs constrained, all penguins $C_{\varphi x}$ poorly

Figure 2: Constraints on WET coefficients ΔC_i at the scale $\mu=\mu_W$. 5 WET-WCs constrained, new physics hint in C_9

Figure 3: Constraints on SMEFT coefficients (lower plots) from measurements of B observables in Tab. ??. Shown are the marginalized smallest intervals containing 90 % of the posterior probability (left) and the total width of these intervals (right) obtained in a fit of five WET (upper plots) and eight SMEFT coefficients (lower plots) to the data. 8 SMEFT WCs constrained, incl 2 sl 4-fermis with tight constraints, others (penguins, dipoles) except C_{uB} not too great

Figure 4: Constraints on SMEFT coefficients \tilde{C}_i in Eq. (??) obtained in a fit to top-quark data in Tab. 1, Zbb data, and B physics data in Tab. ??. Shown are smallest intervals containing 90 % posterior probability (left) and total width of these intervals (right). For the prior we assume a uniform distribution over the interval $-1 \le \tilde{C}_i \le 1$. 8 WCs constrained, including 2 sl 4-fermis, $C_{lq}^+ \lesssim 10^{-2}$, C_{uB} and penguins improved, $C_{\varphi u}$ still a mess

Figure 5: Examples for two-dimensional posterior distributions of SMEFT coefficients \tilde{C}_i in Eq. (??) obtained in a fit to top-quark data (light blue), B physics data (grey) and the combined dataset including Zbb data (blue). Shown are the smallest intervals containing 90 % of the posterior distribution. For the prior we assume a uniform distribution over the interval $-1 \leq \tilde{C}_i \leq 1$. synergies at work, see also 1909.13632 for C_{uB}

top-b synergies near: w Belle II+HL-LHC

Figure 6: Constraints on coefficients \tilde{C}_i from fits to current top-quark and B measurements in Tabs. 1 and \ref{C}_i (blue) and to current measurements and projections of top-quark and B observables in Tabs. 1- \ref{C}_i (red). Shown are the marginalized smallest intervals containing 90 % posterior probability (left) and the total widths of these intervals (right). 9 WCs constrained; both C_{lq}^{\pm} resolved; BSM solution due to b-anomalies visible in $C_{lq}^{(1)}$ and $C_{lq}^{(3)}$.

top-b synergies future (w CLIC)

Observable	\sqrt{S}	Polarization (e^-, e^+)	Ref. experiment
$\sigma_{tar{t}}$, A_{FB}	380 GeV	(80%, 0)	Abramowicz:2018
$\sigma_{tar{t}}$, A_{FB}	1.4 TeV	(80%, 0)	Abramowicz:2018
$\sigma_{tar{t}}$, A_{FB}	3 TeV	(80%, 0)	Abramowicz:2018

Table 2: Observables at different energies and polarizations for $t\bar{t}$ production at CLIC Abramowicz:2018. SM predictions are taken from Durieux:2018tev.

Figure 7: Constraints on coefficients \tilde{C}_i from fits to CLIC observables in Tab. 2. Shown are the marginalized smallest intervals containing 90 % posterior probability (left) and the total widths of these intervals (right). 4 sl 4-fermis; electron-specific; only C_{lq}^- and $C_{\varphi q}^-$

top-b synergies future (Belle II+HL-LHC+CLIC)

Figure 8: Constraints on coefficients \tilde{C}_i from fits to top-quark and B data and near-future projections at HL-LHC and Belle II in Tabs. 1-?? and CLIC future projections in Tab. 2. Shown are the marginalized smallest intervals containing 90 % posterior probability (left) and the total widths of these intervals (right). synergies for semileptonic 4-fermi operators

b-anomalies today, near, far (Belle II+HL-LHC+CLIC)

1D and 2D (right) projections of the posterior distribution for $\tilde{C}_{lq}^{(1)}$ and $\tilde{C}_{lq}^{(3)}$; star denotes SM. \emph{b} -anomalies become visible in future fit

- Synergies between beauty and top are reality Fox et al 2007, Bissmann '21,
 Brugisser '21 and do work!
- Semileptonic 4-fermion operators connect top to b-anomalies CMS reports constraints on semileptonic four-fermion operators from tops with leptons 2012.04120; weaker than our bounds for C_{qe} , C_{lq}^- , but CMS also probes C_{eu} , C_{lu} which are NOW unconstrained.
- In view of b-anomalies hinting at universality violation lepton specific fits become desirable
- Global fits have sensitivity to flavor exploit more flavor links
- Merge with other sectors (EWK, Higgs,..)