TESTING BELL INEQUALITIES AT THE LHC WITH TOP PAIRS

Marco Fabbrichesi, INFN, Italy

a LHC Top Work Group presentation

May 21, 2021

Shift of emphasis from QM to QFT

QM

- Energy levels
- Measurements
- Non-commuting observables

QFT

- S-matrix
- Fixed representations
- Commuting observables

where is the quantum in QFT?

entanglement, Bell inequalities

framing Bell inequalities in a easy-to-use form

CHSH inequality

Clauser-Horne-Shimony-Holt

probabilities

$$\mathcal{P}(\uparrow_{\hat{n}_i};-)$$

spin of one quark up in the direction n_j

$$\mathcal{P}(\uparrow_{\hat{n}_i};\downarrow_{\hat{n}_j})$$
 spin of one quark up in the direction n_i other quark spin down in the direction n_j

CHSH inequality

stocastic variables

$$\mathcal{P}(\uparrow_{\hat{n}_1}; -) = \int d\lambda \, \eta(\lambda) \, p_{\lambda}(\uparrow_{\hat{n}_1}; -)$$

$$\int d\lambda \, \eta(\lambda) = 1$$

$$\mathcal{P}(\uparrow_{\hat{n}_1}; \uparrow_{\hat{n}_2}) = \int d\lambda \, \eta(\lambda) \, p_{\lambda}(\uparrow_{\hat{n}_1}; \uparrow_{\hat{n}})$$

$$p_{\lambda}(\uparrow_{\hat{n}};\downarrow_{\hat{m}}) = p_{\lambda}(\uparrow_{\hat{n}};-) p_{\lambda}(-;\downarrow_{\hat{m}})$$

locality assumption

probability independence

CHSH inequality

any four non-negative numbers

$$x_1 x_2 - x_1 x_4 + x_3 x_2 + x_3 x_4 \le x_3 + x_2$$

$$\mathcal{P}(\uparrow_{\hat{n}_1};\uparrow_{\hat{n}_2}) - \mathcal{P}(\uparrow_{\hat{n}_1};\uparrow_{\hat{n}_4}) + \mathcal{P}(\uparrow_{\hat{n}_3};\uparrow_{\hat{n}_2}) + \mathcal{P}(\uparrow_{\hat{n}_3};\uparrow_{\hat{n}_4}) \leq \mathcal{P}(\uparrow_{\hat{n}_3};-) + \mathcal{P}(-;\uparrow_{\hat{n}_2})$$

CHSH inequality

quantum state of two spin 1/2 particles

$$\rho = \frac{1}{4} \left[1 \otimes 1 + \sum_{i} A_{i}(\sigma_{i} \otimes 1) + \sum_{j} B_{j}(1 \otimes \sigma_{j}) + \sum_{ij} C_{ij}(\sigma_{i} \otimes \sigma_{j}) \right]$$

$$|\hat{n}_1 \cdot C \cdot (\hat{n}_2 - \hat{n}_4) + \hat{n}_3 \cdot C \cdot (\hat{n}_2 + \hat{n}_4)| \le 2$$

take

$$n_1 = \hat{z}$$
 $n_2 = \frac{-1}{\sqrt{2}}(\hat{z} + \hat{x})$ $n_3 = \hat{x}$ $n_4 = \frac{1}{\sqrt{2}}(\hat{z} - \hat{x})$

for maximal entanglement $C_{ij} = -\delta_{ij}$

Wikipedia

$$|\hat{n}_1 \cdot C \cdot (\hat{n}_2 - \hat{n}_4) + \hat{n}_3 \cdot C \cdot (\hat{n}_2 + \hat{n}_4)| = 2\sqrt{2}$$

violation

Tests of violation of Bell inequalities

entangled photons

Freedman&Clauser 1972 Fry&Thomson, 1976 Aspect group, 1982 Zeilinger group, 1998 Kaon system

Benatti&Floreanini, 1998 Bertlmann et al., 2001 other HEP systems

Positronium,
Charmonium,
neutrino oscillations

direct CP violation = Bell inequalities violation

from the CHSH inequality to a single observable

Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Rev. Mod. Phys. 81, 865-942 (2009)

$$\left| \hat{n}_1 \cdot C \cdot (\hat{n}_2 - \hat{n}_4) + \hat{n}_3 \cdot C \cdot (\hat{n}_2 + \hat{n}_4) \right| \le 2$$

$$M = C^T C$$

$$m_1 \geq m_2 \geq m_3$$

$$m_1 + m_2 < 1$$

Implementing at the LHC

$$pp \to t + \bar{t} \to \ell^{\pm}\ell^{\mp} + \text{jets} + E_T^{\text{miss}}$$

$$\hat{r} = \frac{1}{r}(\hat{p} - y\hat{k})$$
 $y = \hat{p} \cdot \hat{k}$
 $r = \sqrt{1 - y^2}$
 $\hat{n} = \frac{1}{r}(\hat{p} \times \hat{k})$

MadGraph5 (NNPDF23) DELPHES (fast simulation ATLAS detector)

exactly two opposite sign leptons (e,mu) of different flavor

- at least 2 anti-k_t jets with R=0.4
- at least 1 b-tagged jet
- $p_T > 25 \text{ GeV} \quad |\eta| < 2.5 \quad \text{jets}$
- $p_T > 20 \text{ GeV} \quad |\eta| < 2.47 \quad \text{leptons}$
- neutrino weighting technique (top quark momenta)

Implementing at the LHC

W. Bernreuther, D. Heisler and Z. G. Si, JHEP 12, 026 (2015) Y. Afik and J. R. M. de Nova, [arXiv:2003.02280 [quant-ph]].

$$pp \to t + \bar{t} \to \ell^{\pm}\ell^{\mp} + \text{jets} + E_T^{\text{miss}}$$

$$\xi_{ab} = \cos \theta_+^a \cos \theta_-^b$$

3	X	3	mat	trix
---	---	---	-----	------

	label	â	ĥ
transverse	n	$\operatorname{sign}(y_p) \; \mathbf{\hat{n}}_p$	$-\mathrm{sign}(y_p) \; \mathbf{\hat{n}}_p$
r axis	r	$\operatorname{sign}(y_p) \; \mathbf{\hat{r}}_p$	$-\mathrm{sign}(y_p) \; \mathbf{\hat{r}}_p$
helicity	k	$\hat{\mathbf{k}}$	$-\mathbf{\hat{k}}$

$$C_{ab}\left[\sigma(m_{t\bar{t}},\cos\Theta)\right] = -9 \frac{1}{\sigma} \int d\xi_{ab} \frac{d\sigma}{d\xi_{ab}} \xi_{ab}$$

diagonalization for each value of invariant mass and scattering angle

$$m_1 + m_2 > 1$$

analysis

both qq and gg give top pair max. entangled

$\frac{2\Theta}{\pi}\gtrsim 0.7$	$m_{t\bar{t}} \gtrsim 0.9 \text{ TeV}$
$\overline{\pi}$ \sim 0.1	$mtt \sim 0.3 \text{ LCV}$

1.1	1.3	1.6
1.0	1.2	1.4
0.9	1.1	1.2

null hypothesis: $m_1 + m_2 \le 1$

Hypothesis test

$$\chi^2 = \sum_{i} \frac{(1 - m_1^i - m_2^i)^2}{s_i^2}$$

violation: 98% CL w/ Run II data (139 fb-1) 99.99% CL with Run III

systematic uncertainties (e.g. from unfolding) not included

Bell inequalities can be tested with LHC data already acquired it is an important test never performed at these energies

it consists in straightforward physical analysis of just one observable

in case someone asks

$$\Psi \rangle = \frac{1}{\sqrt{2}} \left(|+\frac{1}{2}\rangle_1 |-\frac{1}{2}\rangle_2 - |-\frac{1}{2}\rangle_1 |+\frac{1}{2}\rangle_2 \right)$$

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|+\frac{1}{2}\rangle_1 |-\frac{1}{2}\rangle_2 - |-\frac{1}{2}\rangle_1 |+\frac{1}{2}\rangle_2 \right) \qquad |\Psi\rangle = \frac{1}{\sqrt{2}} \left(|+\frac{1}{2}\rangle_1 |-\frac{1}{2}\rangle_2 - |-\frac{1}{2}\rangle_1 |+\frac{1}{2}\rangle_2 \right)$$

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|+\frac{1}{2}\rangle_1 |-\frac{1}{2}\rangle_2 - |-\frac{1}{2}\rangle_1 |+\frac{1}{2}\rangle_2 \right)$$

advantage

the study of the spin correlation matrix C, without the need of any a priori commitment about efficiencies of detectors

loophole

a deterministic theory that predetermines the statistics of future spin measurements at the moment of the quark-antiquark production

s-channel, spin quarks both 1/2

at threshold: $q \bar{q}$ maximally correlated but separable

99 anti-corrrelated and entangled

large $m_{t\bar{t}}$ both maximally entangled

higher angular momentum states

Y. Afik and J. R. M. de Nova, [arXiv:2003.02280 [quant-ph]].

PHYSICAL REVIEW D **100**, 072002 (2019)

Measurement of the top quark polarization and $t\bar{t}$ spin correlations using dilepton final states in proton-proton collisions at $\sqrt{s} = 13$ TeV

A. M. Sirunyan *et al.** (CMS Collaboration)

(Received 8 July 2019; published 8 October 2019)

Measurements of the top quark polarization and top quark pair $(t\bar{t})$ spin correlations are presented using events containing two oppositely charged leptons $(e^+e^-, e^\pm\mu^\mp, \text{ or } \mu^+\mu^-)$ produced in proton-proton collisions at a center-of-mass energy of 13 TeV. The data were recorded by the CMS experiment at the LHC in 2016 and correspond to an integrated luminosity of 35.9 fb⁻¹. A set of parton-level normalized differential cross sections, sensitive to each of the independent coefficients of the spin-dependent parts of the $t\bar{t}$ production density matrix, is measured for the first time at 13 TeV. The measured distributions and extracted coefficients are compared with standard model predictions from simulations at next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD), and from NLO QCD calculations including electroweak corrections. All measurements are found to be consistent with the expectations of the standard model. The normalized differential cross sections are used in fits to constrain the anomalous chromomagnetic and chromoelectric dipole moments of the top quark to $-0.24 < C_{\rm tG}/\Lambda^2 < 0.07 \, {\rm TeV}^{-2}$ and $-0.33 < C_{\rm tG}^I/\Lambda^2 < 0.20 \, {\rm TeV}^{-2}$, respectively, at the 95% confidence level.

DOI: 10.1103/PhysRevD.100.072002

tt Spin Density-Matrix Measurement Analysis overview and unfolding

Théo Megy, on behalf of the analysis team

Laboratoire de Physique de Clermont 07.10.2020

