(V+)jets measurements with ATLAS and CMS

Bugra Bilin¹ and Pavel Starovoitov²

FNRS/IIHE-ULB Bruxelles¹, KIP Heidelberg²

May 31, 2021

Introduction

- We present latest Run-1 results at $\sqrt{s} = 8$ TeV and recent Run-2 results at $\sqrt{s} = 13$ TeV
- Measurements are unfolded to particle-level and compared to the state-fo-the-art theory predictions
- Jet production studies are presented in the first part
 - Inclusive jets and dijets
 - Cross section dependence on the jet radius
 - Azimuthal correlations in multi-jet event topologies
 - Strong coupling extraction
- Second part is devoted to the V+jets (γ/W/Z +jet) cross sections measurements

Results shown are selected according to our preference for all jet measurements from ATLAS and CMS.

More Standard Model results: CMS ATLAS

Inclusive jet and dijet cross sections at 13 $\overset{\text{JHEP}\ 05}{\text{TeV}}$

- |y| < 3, six rapidity bins, in steps of 0.5
- Theory: NLOJET++ × NPC × EW
- non-pert. correction : Pythia/Herwig with various tunes
- theory is corrected for EW effects

Good agreement between data and theory over 7 orders of magnitude

Inclusive jet and dijet cross sections at 13 TeV

• Very large χ^2 values for the combined fit

|y| < 0.5

 $0.5 \le |y| \le 1.0$

 $1.0 \le |y| \le 1.5$

 $1.5 \le |u| \le 2.0$

 $2.0 \le |y| < 2.5$

 $2.5 \le |y| \le 3.0$

7.4%

69%

1.3%

8.7%

65%

30%

3.4%

45%

0.1%

1.0%

28%

66%

8.6%

68%

1.4%

7.4%

8.9%

62%

1.6%

6.6%

< 17 ▶

46%

2.0%

54%

0.5%

3.6%

59%

JHEP 05 (2018) 195 Inclusive jet and dijet cross sections at 13 TeV

B. Bilin, P. Starovoitov

(V+)iets measurements with ATLAS and CMS

6.5%

11%

9.4%

all y^* bins

Jets@LHC 5/51

0.1%

<u>=5.1% ⊂</u> ⊂

JHEP 09 (2017) 020

Inclusive jet cross sections at 8 TeV

B. Bilin, P. Starovoitov

(V+)jets measurements with ATLAS and CMS

Jets@LHC 6 / 51

Inclusive jet cross sections at 8 TeV

χ^2/ndf	$p_{T}^{\text{jet,max}}$		$p_{\mathrm{T}}^{\mathrm{jet}}$	
	R = 0.4	R = 0.6	R = 0.4	R = 0.6
$p_{\rm T} > 70 {\rm ~GeV}$				
CT14	349/171	398/171	340/171	392/171
HERAPDF2.0	415/171	424/171	405/171	418/171
NNPDF3.0	351/171	393/171	350/171	393/171
MMHT2014	356/171	400/171	354/171	399/171
$p_{\rm T} > 100 { m ~GeV}$				
CT14	321/159	360/159	313/159	356/159
HERAPDF2.0	385/159	374/159	377/159	370/159
NNPDF3.0	333/159	356/159	331/159	356/159
MMHT2014	335/159	364/159	333/159	362/159
$100 \text{ ; } p_{\mathrm{T}} < 900 \text{ GeV}$				
CT14	272/134	306/134	262/134	301/134
HERAPDF2.0	350/134	331/134	340/134	326/134
NNPDF3.0	289/134	300/134	285/134	299/134
MMHT2014	292/134	311/134	284/134	308/134
$100 \text{ ; } p_{\mathrm{T}} < 400 \text{ GeV}$				
CT14	128/72	149/72	118/72	145/72
HERAPDF2.0	148/72	175/72	141/72	170/72
NNPDF3.0	119/72	141/72	115/72	139/72
MMHT2014	132/72	143/72	122/72	140/72

JHEP 09 (2017) 020

- Compared to NLO calculations
- Reasonable p-values in individual y-bins
- Very large χ^2 values for the combined fit

 $p_{\rm T} > 100~{
m GeV}$

			P_{obs}	
Rapidity ranges	CT14	MMHT2014	NNPDF3.0	HERAPDF2.0
Anti- k_t jets $R = 0.4$				
y < 0.5	44%	28%	25%	16%
$0.5 \le y < 1.0$	43%	29%	18%	18%
$1.0 \le y < 1.5$	44%	47%	46%	69%
$1.5 \le y < 2.0$	3.7%	4.6%	7.7%	7.0%
$2.0 \le y < 2.5$	92%	89%	89%	35%
$2.5 \le y < 3.0$	4.5%	6.2%	16%	9.6%
Anti- k_t jets $R = 0.6$				
y < 0.5	6.7%	4.9%	4.6%	1.1%
$0.5 \le y < 1.0$	1.3%	0.7%	0.4%	0.2%
$1.0 \le y < 1.5$	30%	33%	47%	67%
$1.5 \le y < 2.0$	12%	16%	15%	3.1%
$2.0 \le y < 2.5$	94%	94%	91%	38%
$2.5 \le y < 3.0$	13%	15%	20%	8.6%

JHEP 09 (2017) 020

Inclusive jet cross sections at 8 TeV

Measurement of the $|y^{jet}|$ and p_T^{jet} dependence of dijet azimuthal decorrelations

- 2012 dataset $\sqrt{s} = 8 \text{ TeV}$
- $\mathcal{L}_{int} = 20.1 \text{ fb}^{-1}$
- anti- k_{τ} R=0.6 jets
- $|\eta^{\text{jet}}| < 4.9$

Variable	Value
p_{Tmin}	$100{\rm GeV}$
$y_{\rm boost}^{\rm max}$	0.5
y^*_{\max}	2.0
$p_{\mathrm{T1}}/H_{\mathrm{T}}$	> 1/3

Quantity	Value
$H_{\rm T}$ bin boundaries (in TeV)	0.45, 0.6, 0.75, 0.9, 1.1,
	1.4, 1.8, 2.2, 2.7, 4.0
y^* regions	0.0 – 0.5, 0.5 – 1.0, 1.0 – 2.0
$\Delta \phi_{\rm max}$ values	$7\pi/8, 5\pi/6, 3\pi/4, 2\pi/3$

$$R_{\Delta\phi}\left(H_{T}, y^{*}, \Delta\phi_{\max}\right) = \frac{\frac{d^{2}\sigma_{jj}(\Delta\phi_{jj} < \Delta\phi_{\max})}{\frac{dH_{T}dy^{*}}{\frac{d^{2}\sigma_{jj}(\text{inclusive})}{dH_{T}dy^{*}}}}$$

$H_{\rm T}$ range [GeV]	Trigger type	Integrated luminosity [pb ⁻¹]
450-600	single-jet	9.6 ± 0.2
600 - 750	single-jet	36 ± 1
750 - 900	multi-jet	546 ± 11
>900	multi-jet	$(20.2 \pm 0.4) \cdot 10^3$

Phys Rev D98(2018)092004

Jets@LHC

9/51

Measurement of the $|y^{jet}|$ and p_T^{jet} dependence of dijet azimuthal decorrelations

Measurement of the $|y^{jet}|$ and p_T^{jet} dependence of dijet azimuthal decorrelations

B. Bilin, P. Starovoitov

Jets@LHC 11/51

Measurement of the $|y^{jet}|$ and p_T^{jet} dependence of dijet azimuthal decorrelations

B. Bilin, P. Starovoitov

(V+)jets measurements with ATLAS and CMS

Jets@LHC 12/51

Transverse energy-energy correlation at 13 TeV

ATLAS-CONF-2020-025

Measurements of new event shape taken from the e^+e^- annihilation and extended to hadron-hadron colliders

$$\frac{1}{\sigma}\frac{d\Sigma}{d\cos\phi} = \frac{1}{N}\sum_{A=1}^{N}\sum_{ij}\frac{E_{T_i}^A E_{T_j}^A}{\left(\sum_{k}E_{T_k}^A\right)^2}\delta\left(\cos\phi - \cos\phi_{ij}\right)$$

- anti-k_t R=0.4 jets
- *φ_{ij}* azimuthal angle between jets

Full Run-2 measurement

4 A >

- $\mathcal{L} = 139 \text{ fb}^{-1}$
- High H_T reach

A B F A B F

Transverse energy-energy correlation at 13 TeV

- Percent-level uncertainties in the JES/JER are translated into ~ 2% uncertainty at the final observable
- Modelling is one of the dominant source of uncertainty

4 3 > 4 3

Transverse energy-energy correlation at 13 TeV

|n| < 2.4

• Precision in α_{s} is dominated by the scale uncertainty in NLO calculations

x_s (0) ATLAS R TEEC 13 TeV ATI AS arXiv:1805.0469 CMS Maler 0.14 Preliminary 0 TEEC 8 TeV arXiv:1412.1633 CMS R₁₀ TEEC 7 TeV arXiv:1304.7498 0.12 CMS incl. ier CMS tf arXiv: 1609.0533 DØ R atXiv:1207.4957 DØ incl. jet 0. 0.08 $\alpha_s(m_{\star}) = 0.1181 \pm 0.0011 \text{ (PDG 2018)}$ $\alpha_s(m_{\gamma}) = 0.1196^{+0.0072}_{,0.0105}$ (TEEC global fit) 0.06 10^{2} 10^{3}

 $\alpha_s(m_z)=0.1196\pm0.0004(\text{exp.}) \stackrel{+0.0072}{_{-0.0105}}(\text{theo.})$

Q [GeV]

$\langle Q \rangle$ [GeV]	$\alpha_s(m_Z)$ value (MMHT 2014)	χ^2/N_{dof}
Global	$0.1196 \pm 0.0001 \text{ (stat.)} \pm 0.0004 \text{ (syst.)} ^{+0.0071}_{-0.0104} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$	235.8 / 347
Inclusive	$0.1208 \pm 0.0002 \text{ (stat.)} \pm 0.0006 \text{ (syst.)} ^{+0.0081}_{-0.0101} \text{ (scale)} \pm 0.0009 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$	42.7 / 91
1219	$0.1206 \pm 0.0002 \text{ (stat.)} \pm 0.0006 \text{ (syst.)} ^{+0.0083}_{-0.0105} \text{ (scale)} \pm 0.0009 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$	18.6 / 51
1434	0.1191 \pm 0.0003 (stat.) \pm 0.0007 (syst.) $^{+0.0080}_{-0.0101}$ (scale) \pm 0.0010 (PDF) \pm 0.0002 (NP)	18.0 / 51
1647	$0.1195 \pm 0.0002 \text{ (stat.)} \pm 0.0007 \text{ (syst.)} ^{+0.0077}_{-0.0094} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$	38.2 / 51
1856	0.1186 \pm 0.0003 (stat.) \pm 0.0008 (syst.) $^{+0.0076}_{-0.0094}$ (scale) \pm 0.0011 (PDF) \pm 0.0004 (NP)	25.9 / 51
2064	$0.1183 \pm 0.0004 \text{ (stat.)} \pm 0.0010 \text{ (syst.)} {}^{+0.0071}_{-0.0084} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0005 \text{ (NP)}$	22.4 / 27
2300	$0.1192 \pm 0.0004 ~\rm (stat.) \pm 0.0011 ~\rm (syst.) ~^{+0.0066}_{-0.0075} ~\rm (scale) \pm 0.0012 ~\rm (PDF) \pm 0.0004 ~\rm (NP)$	21.3 / 27
2636	$0.1185 \pm 0.0004 \text{ (stat.)} \pm 0.0012 \text{ (syst.)} ^{+0.0064}_{-0.0072} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$	22.0 / 27
2952	$0.1179 \pm 0.0005 ~\rm (stat.) \pm 0.0014 ~\rm (syst.) ~^{+0.0059}_{-0.0064} ~\rm (scale) \pm 0.0013 ~\rm (PDF) \pm 0.0003 ~\rm (NP)$	25.0 / 27
3383	$0.1194 \pm 0.0007 ~\rm (stat.) \pm 0.0014 ~\rm (syst.) ~^{+0.0052}_{-0.0052} ~\rm (scale) \pm 0.0013 ~\rm (PDF) \pm 0.0002 ~\rm (NP)$	15.3 / 13
4095	$0.1167 \pm 0.0010 ~\rm (stat.) \pm 0.0014 ~\rm (syst.) ~^{+0.0050}_{-0.0053} ~\rm (scale) \pm 0.0015 ~\rm (PDF) \pm 0.0003 ~\rm (NP)$	13.5 / 13

ATLAS-CONF-2020-025

B. Bilin, P. Starovoitov

Dependence of inclusive jet production on the anti- k_{T} distance parameter

: 35.9 fb⁻¹ (13 Te\

196 < p₊ < 272 G

< 35.9 fb⁻¹ (13 TeV

- 2016 data, $\mathcal{L} = 35.9 \text{ fb}^{-1}$
- jet sizes : from R=0.1 to R=1.2
- dedicated JES calibration
- Cross sections and cross section ratios wrt R=0.4 are measured

Dependence of inclusive jet production on the anti- k_{τ} distance parameter

B. Bilin, P. Starovoitov

Jets@LHC

17/51

is fully correlated in the ratio

uncert.

scale

Dependence of inclusive jet production on the anti- k_T distance parameter

- Non-perturbative corrections : ratio of predictions with hadronisation and MPI ON/OFF
- NP uncertainties : envelope of tunes and generators. Cancels to a large extend in the ratio.

•
$$\sqrt{s} = 13 \text{ TeV}, \ \mathcal{L} = 35.9 \text{ fb}^{-1}$$

HLT *p*_T threshold (GeV) 140 200 320 400 450

(fb ⁻¹) 0.024 0.11 1.77 5.2 max region (GeV) 200–300 300–400 400–500 500–600 500						
max region (GeV) 200–300 300–400 400–500 500–600	(fb ⁻¹)	0.024	0.11	1.77	5.2	36
	Tara region (GeV)	200-300	300-400	400 - 500	500-600	>600

- $170^{\circ} < \Delta \phi_{12} < 180^{\circ}$ in bins of the leading jet $p_{\rm T}$.
- Compared to LO and NLO predictions with parton showers and hadronisation

B. Bilin, P. Starovoitov

(V+)jets measurements with ATLAS and CMS

- PH-3j+Pythia 8 agrees better with the data
 PH-2j+Herwig++
 - prediction is similar to PH-3j+Pythia 8, except for the lowest p_T^{max} region.

Jets@LHC

20 / 51

EPJC 79 (2019) 773

- All the considered NLO+PS predictions fail to describe the measurements close to 180°
- PH-3j+Pythia 8 behaves very differently compared to the 2-jet case

EPJC 79 (2019) 773

Jets@LHC

23/51

Azimuthal correlations for inclusive 2-jet, 3-jet, and 4-jet events

$\mathcal{L} = 33.9$	10				
HLT p_T threshold (GeV)	140	200	320	400	450
pTmax region (GeV)	200-300	300-400	400-500	500-600	>600
\mathcal{L} (fb ⁻¹)	0.024	0.11	1.77	5.2	36

- in the π/2 < Δφ₁₂ < π range in bins of p_T lead.jet
- central jets |y| < 2.5

 Data are compared to Pythia 8, Herwig++, MadGraph+Pythia 8, PH-2j matched to Pythia 8 and Herwig++, PH-3j+pythia 8, and Herwig 7.

Azimuthal correlations for inclusive 2-jet, 3-jet, and 4-jet events LO : Herwig deviates most; Madgraph (up to 4 partons) - best

Azimuthal correlations for inclusive 2-jet, 3-jet, and 4-jet events

EPJC 78 (2018) 566

B. Bilin, P. Starovoitov

(V+)jets measurements with ATLAS and CMS

Jets@LHC 26 / 51

Measurement of the cross section for isolated-photon plus jet production

•
$$E_{\gamma}$$
; p_{T}^{jet1} , $\Delta \phi_{\gamma-\text{jet}}$, $m_{\gamma-\text{jet}}$, $\cos \theta^{*}$

 $\begin{array}{l} \label{eq:requirements on photons} \\ E_T^{\gamma} > 125 \ {\rm GeV}, \ |\eta^{\gamma}| < 2.37 \ ({\rm excluding} \ 1.37 < |\eta^{\gamma}| < 1.56) \\ E_T^{\rm iso} < 4.2 \cdot 10^{-3} \cdot E_T^{-} + 10 \ {\rm GeV} \\ \hline \\ \mbox{Requirements on jets} \\ \mbox{anti-}k_t \ \mbox{algorithm with} \ R = 0.4 \\ \mbox{the leading jet within} \ |y^{\rm jet}| < 2.37 \ \mbox{and} \ \Delta R^{\gamma-\rm jet} > 0.8 \ \mbox{is selected} \\ p_T^{\rm jet-lead} > 100 \ \mbox{GeV} \\ \hline \\ \mbox{UE subtraction using} \ k_{\perp} \ \mbox{algorithm with} \ R = 0.5 \ \mbox{(cf. Section ??)} \\ \mbox{Additional requirements for} \ \mbox{d} \sigma / \mbox{d} m^{\gamma-\rm jet} > 450 \ \mbox{GeV} \\ \hline \\ \end{tabular}$

Exp. uncertainties:

- PES (1–4 .5%)
- JES (2–7.5%)
- Showering < 2%
- Other (P_{ID} , P_{iso} ,pileup,bkg) $\leq 1\%$

Measurement of the cross section for isolated-photon plus jet production Phys. Lett. B 780 (2018) 578

- JETPHOX (full NLO pQCD for both direct and fragmentation contributions) +NP corrections
- Sherpa (γ + (1,2)-jet at NLO and γ + (3,4)-jet at LO + PS)
- uncert.: scales (ren,fact.,frag.) and PDF

- Good description by both calculations
- theory is almost always higher than data

ъ

Measurement of the cross section for isolated-photon plus two-jet production

Requirements on photon	$E_{\mathrm{T}}^{\gamma} > 15$	$E_{\rm T}^{\gamma}>150$ GeV, $ \eta^{\gamma} <2.37$ (excluding $1.37< \eta^{\gamma} <1.56)$					
	$E_{\rm T}^{\rm iso} < 0.0042_{\rm T}^{\gamma} + 4.8 \text{ GeV} (\text{reconstruction level})$						
		$E_{\rm T}^{\rm iso} < 0.0042_{\rm T}^{\gamma} + 10 \text{ GeV} \text{ (particle level)}$					
Requirements on jets	at leas	at least two jets using anti- k_t algorithm with $R = 0.4$					
	$p_{\rm T}^{\rm jet} > 100 \text{ GeV}, y^{\rm jet} < 2.5, \Delta R^{\gamma-{\rm jet}} > 0.8$						
Phase space	total fragmentation enriched direct enrich						
	$E_{\mathrm{T}}^{\gamma} < p_{\mathrm{T}}^{\mathrm{jet2}}$ $E_{\mathrm{T}}^{\gamma} > p_{\mathrm{T}}^{\mathrm{jet1}}$						
Number of events	755270	111 666	386846				

Exp. uncertainties:

Range of the relative uncertainty (in %) for each variable								
E_{T}^{γ} p_{T}^{jet} $ y^{\text{jet}} $ $ \Delta y^{\gamma-\text{jet}} $ $\Delta \phi^{\gamma-\text{jet}}$ $ \Delta y^{\text{jet-jet}} $ $\Delta \phi^{\text{jet-jet}}$ $m^{\text{jet-jet}}$ $m^{\gamma-\text{jet}}$								$m^{\gamma-\text{jet-jet}}$
3.5% - 6.5%	4% - 15%	4%-6%	4%-9%	3.5%-6%	4%-8%	3%-7%	4%-9%	4%-11%

Measurement of the cross section for isolated-photon plus two-jet production $$^{\rm JHEP\,\,03\,(2020)\,179}$$

- LO predictions are normalised to data in each phase-space
- Pythia, in general, fail to describe the shape of the data.
- Sherpa LO $(2 \rightarrow n)$ provides a good description
- NLO Sherpa predictions describe the data adequately in shape and normalisation

Measurement of the cross section for inclusive isolated-photon and photon+jets production

- 2015 data 2.26 fb⁻¹
- σ as a function of the photon E_T, photon rapidity and the rapidity of the jet

Event shapes using hadronic jets by ATLAS and CMS

- Measurement of hadronic event shapes in high- $p_{\rm T}$ multijet final states at \sqrt{s} = 13 with the ATLAS detector : JHEP 01 (2021) 188 (ATLAS)
 - Full Run-2
 - Six event-shape variables calculated using hadronic jets. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV.
- Event shape variables measured using multijet final states in proton-proton collisions at $\sqrt{s} = 13$ TeV : JHEP 12 (2018) 117 (CMS)
 - 2015 data
 - several event shape variables calculated using jet four momenta are measured and compared to theory. The agreement generally improves as the energy, represented by the average transverse momentum of the two leading jets, increases.

イロト 不得 トイヨト イヨト

Motivation: V + jets

- Processes involving W & Z boson production are one of the best understood processes at hadron colliders
 - $W^{\pm} \rightarrow \ell^{\pm} \nu$, $Z \rightarrow \ell^{\pm} \ell^{\mp}$, $(\ell = e, \mu)$ are among the cleanest final states experimentally
 - ★ To test pQCD and validate our modelling of it in MC.
 - Probe/measure EW production cross sections.
 - V+jets provide backgrounds to other measurements and BSM searches.
- Various kinematic properties of jets produced with W and Z boson production are studied.
- Measurements carried out in fiducial phase space.

(日)

Z+jet x-sec measurements: Njet ¹³ TeV, 3.16 fb⁻¹ & 35.9 fb⁻¹

- Measurements carried out in fiducial phase-space.
- Corrected for detector effects via unfolding.
- Measured jet multiplicity up to 7 (8) jets.
- Comparisons with state-of-the art generators at different orders in QCD.

Eur. Phys. J. C77 (2017) 361, CMS-SMP-19-009

Jets@LHC 34 / 51

Z+jet x-sec measurements: Jet p_{T}

13 TeV, 35.9 fb⁻¹

- Measured differential kinematics up to 5 jets.
- Good description with MG5_aMC@NLO (NLO $\leq 2p$) and GENEVA (NNLO + NNLC'_{τ_0}).

CMS-SMP-19-009

Jets@LHC 35 / 51

Z+jet x-sec measurements: Jet $p_{\rm T}$

13 TeV, 3.16 fb⁻¹

- Measured differential kinematics up to 4 jets.
- All models give an overall good description of the measurements.
- MG5_AMC@NLO + PYTHIA 8 CKKWL predicts a harder spectrum than FxFx.

Eur. Phys. J. C77 (2017) 361

Jets@LHC 36 / 51

Z+jet x-sec measurements: Angular variables

• Measured $\Delta \phi$ and y_{diff} between jets and also Z.

13 TeV, 35.9 fb⁻¹

 Differences wrt GENEVA predictions at high y_{diff}

CMS-SMP-19-009

Jets@LHC 37 / 51

Z+jet multi-d x-sec measurements

 Doubledifferential cross sections are measured wrt jet and Z *p*_T, *y*.

13 TeV, 35.9 fb⁻¹

 LO MG5_aMC@NLO + PYTHIA 8 (MLM) fails at high y(Z) low y(j).

B. Bilin, P. Starovoitov

(V+)jets measurements with ATLAS and CMS

Jets@LHC 38 / 51

Z + jets: Forward jets

8 TeV, 19.9 fb⁻¹ & 19.6 fb⁻¹

- Multi-d cross sections measured wrt jet and Z p_T, y.
- Extended to forward jets up to 3.5 (4.7)
- Beyond tracker acceptance JES unc dominates

B. Bilin, P. Starovoitov

(V+)jets measurements with ATLAS and CMS

Jets@LHC 39 / 51

W + jets

8 & 13 TeV, 19.9 fb⁻¹ & 2.2 fb⁻¹

- Measurements carried out in fiducial phase-space.
- Corrected for detector effects via unfolding.
- b-tag veto to supress tt contribution.
- Data-driven estimate of QCD background.
- Measured jet multiplicity up to 7 (6) jets.

JHEP 05 (2018) 077, Phys. Rev. D 96 (2017) 072005

Jets@LHC 40 / 51

W + jets

8 & 13 TeV, 19.9 fb⁻¹ & 2.2 fb⁻¹

- Comparison to various models, including NNLO W+1j prediction.
- All models give overall good description of the data.
- Forward jets included in ATLAS measurement.
- Beyond tracker acceptance JES unc dominates.

JHEP 05 (2018) 077, Phys. Rev. D 96 (2017) 072005

Jets@LHC 41 / 51

W/Z+jets, PDF fits

- Carried out a QCD analysis at NNLO (ATLASepWZVjet20)
- Using W/Z (+ jets) at 8 TeV as well as W/Z measurements at 7 TeV.
- Compared to the previous fit, ATLASepWZ20 w/o W/Z+jets.

- Compared the predictions to the input distributions.
- Improved description of W $p_{\rm T}$ with better PDF uncertainties wrt previous fit.

★ ∃ > < ∃ >

arXiv:2101.05095

W/Z+jets, PDF fits

P 0.15 $O^2 = 1.9 \text{ GeV}^2$ ATI AS - ATLASepWZ20 exp. unc. total unc. 0 - ATLASepWZVjet20 exp. unc. itotal unc 0.05 -0.05 10^{-3} 10^{-2} 10^{-1} r" $\Omega^2 = 1.9 \text{ GeV}^2$ ATLAS 2.5 ATLASepWZ20 exp. unc. total unc. ATLASepWZVjet20 exp. unc. 🔯 total unc 1.5 0.5 10^{-3} 10^{-2} 10-1

$\Omega^2 = 1.9 \text{ GeV}^2$ ATI AS 2.5 ATI ASepWZViet20 exp upc total upc MMHT14 total, uno NNPDE2 1 total, unc 1.5 10^{-3} 10^{-2} 10 $x^2 = m_{7}^2, x = 0.013$ ATLAS ABMD16 CT184 MMHT14 NNPDE3 1 NNPDE3.1 strange ATLASenWZ20 ATLASepWZ16 ATLASenWZViet20 exp. uncertainty exp.+mod. uncertainty exp.+mod.+par. uncertainty 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 R,

r"

NNLO QCD Analysis

- Improves the PDFs mainly for $\overline{d} u$.
- More precise estimate for strange supression factor (R_s), closer to other PDF sets wrt previous ATLAS fits.
 - It is better constrained and falls more steeply at high x.
 - At low x confirmed unsuppressed strange PDF as observed in previous ATLAS fit.

arXiv:2101.05095

Jets@LHC 43 / 51

V + HF measurements

Important to study V+ HF production at the LHC

- Probe HF PDFs
- Collinear production of b quarks (gluon splitting)

 More details at the Heavy Flavor session tomorrow.

Eur. Phys. J. C 79 (2019) 269, Eur. Phys. J. C 77 (2017) 751

B. Bilin, P. Starovoitov

Jets@LHC 44 / 51

Z/ γ + jet p_{T} ratio measurement • Mesurements of Z + jets and γ + jets wrt boson p_{T} as well as their ratios have been carried out.

- Low *p*_T boson part is described well except LO MG5_AMC@NLO prediction normalized to NNLO x-sec.
 Good description of the ratio
 - measurement
 - by
 - both Sherpa and MG5_aMC@NLO

arXiv:2102.02238

Z boson emission collinear with a jet

• Measured the $\Delta(R)$ between Z and the closest jet.

Good description by both Sherpa and MG5_AMC@NLO

13 TeV, 35.9 fb⁻¹

B. Bilin, P. Starovoitov

(V+)jets measurements with ATLAS and CMS

arXiv:2102.02238

3j & Z+2j Angular distance and ^{8 &13} TeV, 19.8 & 2.3 fb⁻¹ momentum ratios

 Small- & large-angle, soft & hard radiations are investigated in 3 j and Z + 2 j events

arXiv:2102.08816

47 / 51

Jets@LHC

Electroweak production of Z + 2j

13 TeV,139 fb⁻¹

arXiv:2006.15458

B. Bilin, P. Starovoitov

Jets@LHC 48 / 51

3 > 4 3

Electroweak production of Z + 2j

13 TeV,139 fb⁻¹

- Measured the differential cross section in the EW SR.
 - Both inclusive and σ_{FW}.
 - JES unc dominates for inclusive, modeling uncertainty for σ_{EW}.

arXiv:2006.15458

Jets@LHC 49 / 51

B. Bilin, P. Starovoitov

Electroweak production of W/Z + 2j

13 TeV 35.9 fb⁻¹

 $\sigma_{\rm EW}(\ell\ell jj)[{\rm pb}] = 0.552 \pm 0.019({\rm stat}) \pm 0.055({\rm syst})$

- 35.9 fb⁻¹ (13 TeV) 3ap veto efficiency ents: BDT > 0.95 102 103 Soft H_T [GeV] = 35.9 fb¹, √s = 13 TeV 2_B//\² [TeV²] 100 c_w/Λ² [TeV²]
- Measured the EWK production cross section of W+2j and Z+2j with CMS.
- BDT trained to discriminate the EWK signal from DY.
 - Using several kinematic variables that are sensitive,

 $m_{jj}, \Delta \eta_{jj}.$

- Measured the gap activity veto efficiency.
- Measurement in agreement with the SM expectations, no evidence for ATGCs following an EFT search.
 - Limits on ATGCs associated with dim-six operators.

B. Bilin, P. Starovoitov

(V+)jets measurements with ATLAS and CMS

Jets@LHC 50 / 51

Summary

- A large set of jet and V+jet measurements at 8 and 13 TeV is presented
- State-of-the-art predicitons are used for the data interpretation
- Experiments provide precision of a percent level for most of the observable
 - Measurements provide stringent test of our modeling of the SM.
- Theoretical uncertainties, in general, are larger compared to the experimental ones.
 - Mainly for scale uncertainties, also modeling uncertainties in several cases.
 - Possibility to constrain/improve PDFs and α_s.

