ML landscape of top tagging

Gregor Kasieczka (gregor.kasieczka@uni-hamburg.de) Jets @ LHC June 1st, 2021

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Emmy

Noether-Programm

> Bundesministerium für Bildung und Forschung

Partnership of Universität Hamburg and DESY

Overview

SciPost Physics

Submission

The Machine Learning Landscape of Top Taggers

G. Kasieczka (ed)¹, T. Plehn (ed)², A. Butter², K. Cranmer³, D. Debnath⁴, B. M. Dillon⁵, M. Fairbairn⁶, D. A. Faroughy⁵, W. Fedorko⁷, C. Gay⁷, L. Gouskos⁸, J. F. Kamenik^{5,9}, P. T. Komiske¹⁰, S. Leiss¹, A. Lister⁷, S. Macaluso^{3,4}, E. M. Metodiev¹⁰, L. Moore¹¹, B. Nachman,^{12,13}, K. Nordström^{14,15}, J. Pearkes⁷, H. Qu⁸, Y. Rath¹⁶, M. Rieger¹⁶, D. Shih⁴, J. M. Thompson², and S. Varma⁶

1 Institut für Experimentalphysik, Universität Hamburg, Germany 2 Institut für Theoretische Physik, Universität Heidelberg, Germany **3** Center for Cosmology and Particle Physics and Center for Data Science, NYU, USA 4 NHECT, Dept. of Physics and Astronomy, Rutgers, The State University of NJ, USA 5 Jozef Stefan Institute, Ljubljana, Slovenia 6 Theoretical Particle Physics and Cosmology, King's College London, United Kingdom 7 Department of Physics and Astronomy, The University of British Columbia, Canada 8 Department of Physics, University of California, Santa Barbara, USA 9 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia 10 Center for Theoretical Physics, MIT, Cambridge, USA 11 CP3, Universitéxx Catholique de Louvain, Louvain-la-Neuve, Belgium 12 Physics Division, Lawrence Berkeley National Laboratory, Berkeley, USA 13 Simons Inst. for the Theory of Computing, University of California, Berkeley, USA 14 National Institute for Subatomic Physics (NIKHEF), Amsterdam, Netherlands 15 LPTHE, CNRS & Sorbonne Université, Paris, France 16 III. Physics Institute A, RWTH Aachen University, Germany

> gregor.kasieczka@uni-hamburg.de plehn@uni-heidelberg.de

> > July 24, 2019

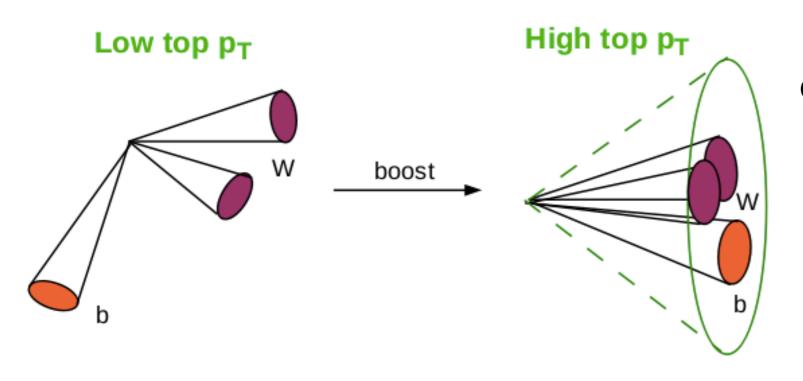
Abstract

Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.

- Tagging hadronically decaying tops is a well established benchmark for ML at LHC
- Broad comparison of methods in <u>1902.09914</u>
- Outline
 - Introduction of task / dataset
 - Landscape of taggers
 - Going beyond

Introduction

Heavy Resonance Tagging



- Hadronically decaying top/Higgs/W/Z
- Contained in one (large-R) jet
 - m/pT >= ~1
- How to distinguish from light quark/gluon jets (and from each other)
- Used for new physics searches (and SM studies)

Classical handles:

- Mass e.g., using a grooming algorithm
- Centers of hard radiation e.g., n-subjettiness or energy correlation functions
- Flavour
 b tagging of large-R jets or subjets
- Combinations

 Well-defined problem with simple performance metric: Great environment to test algorithms

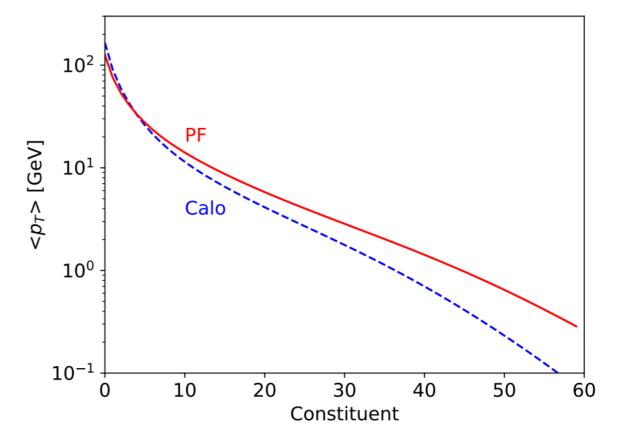
Dataset

For consistent tests, need a **common dataset**:

- Based on <u>1701.08784</u>
- Pythia simulated light quark+ gluon (background) vs hadronically decaying top quarks (signal) with pT = 550..650 GeV
- Delphes simulation, simple particle flow (PF)
- FastJet, AntiKt R=0.8, truth-matched
- 1.2M training examples, 400k each for testing and validation
- Store up too 200 constituent four-vectors of leading pT jet

Data available at:

https://desycloud.desy.de/index.php/s/llbX3zpLhazgPJ6



Starting from four-vectors allows a large number of approaches to be compared (more on that soon)

Limitations / possible improvements

- Inclusion of pile-up
- Track/vertex information
- Statistics
- Realistic detector model
- Systematic uncertainties

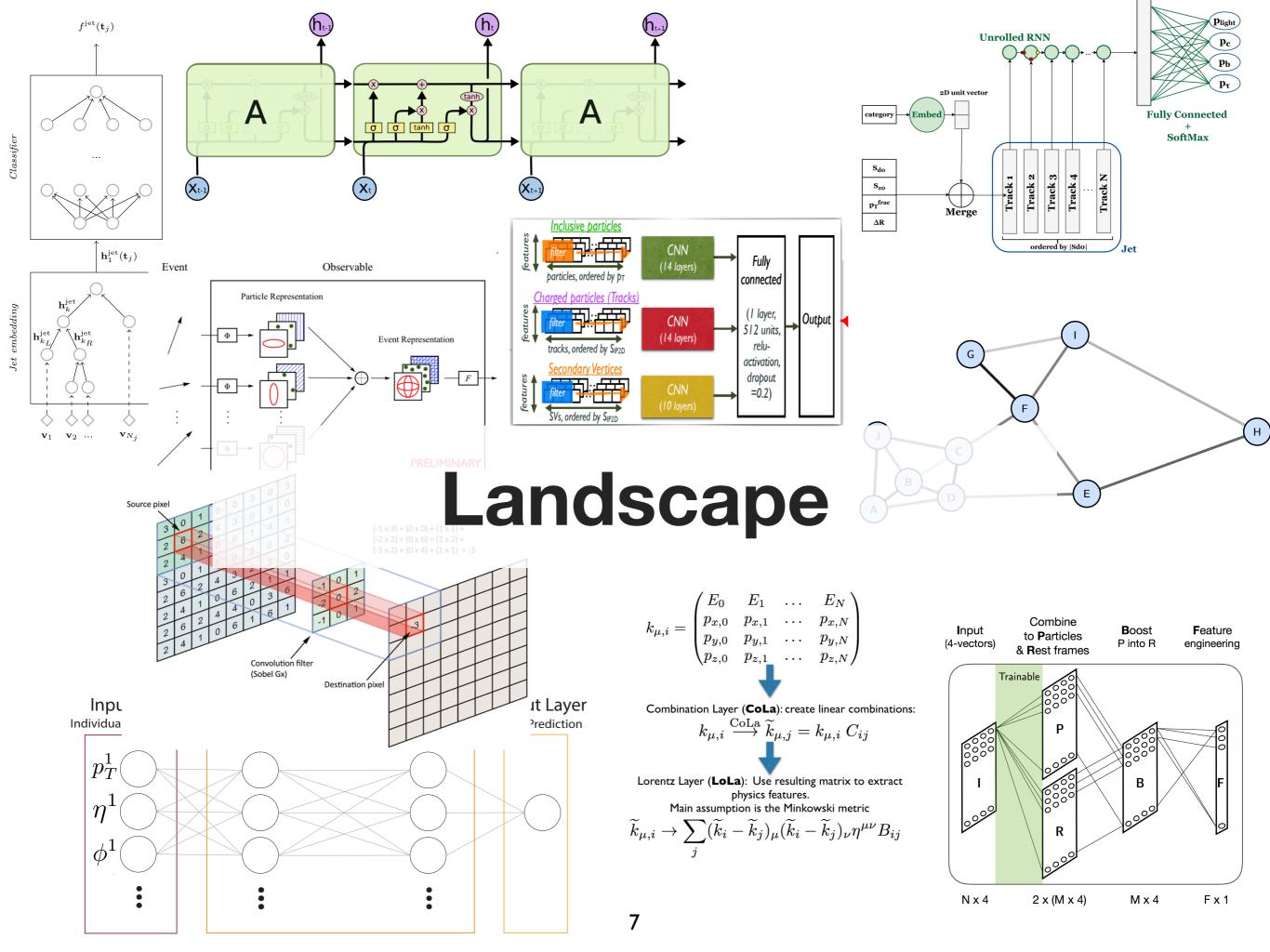
Machine Learning Mini-Intro

• Formulate task as a minimisation problem and solve

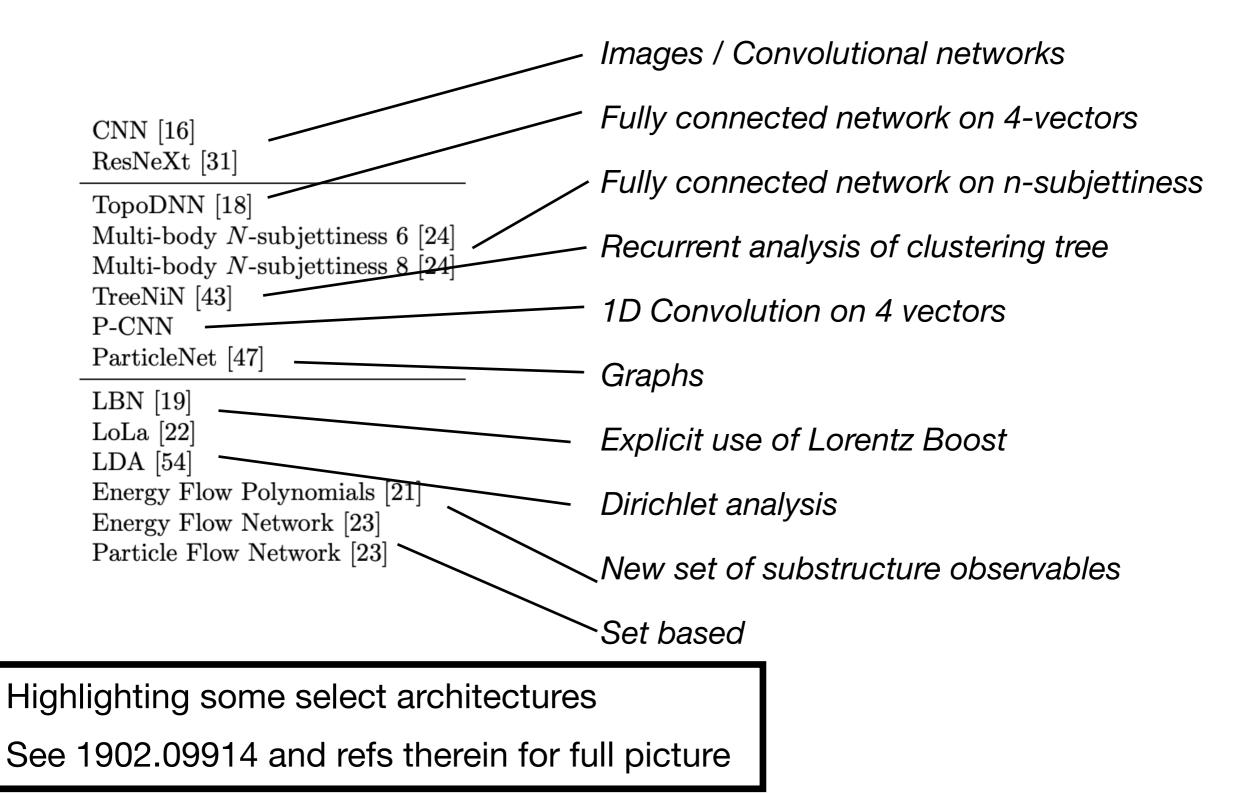
$$\theta^* = \operatorname{argmin}_{\theta} \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\mathcal{L}(f_{\theta}(\mathbf{x}), \mathbf{x}) \right]$$

Loss function \mathcal{L} Neural network f_{θ} Parameters θ Opt. Parameters θ^* Data \mathbf{x} Data distribution $p(\mathbf{x})$

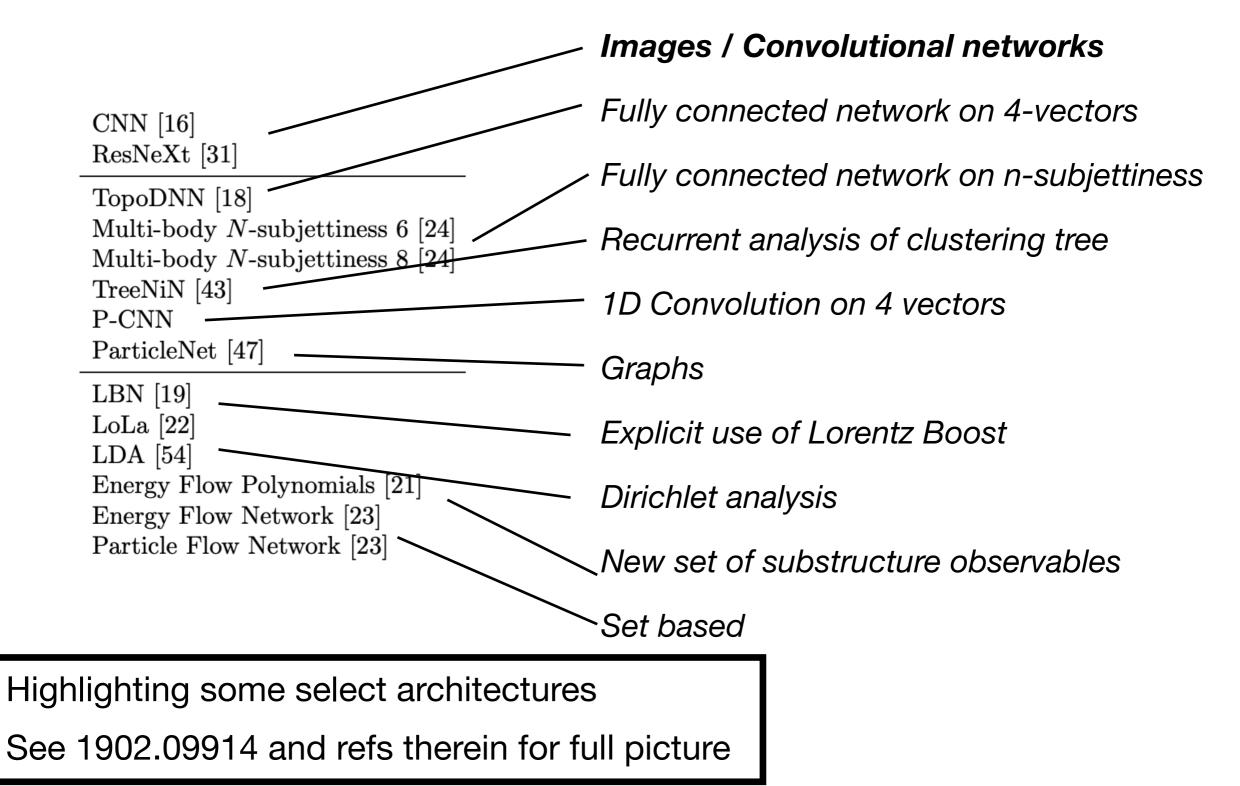
- Neural networks are a convenient way of building expressive functions with many tuneable parameters (10s to millions) that can efficiently be optimised via gradient descent
- Loss function to distinguish two classes: cross-entropy
 - (We'll come back to that)
- If networks have many parameters:
 - Interesting choices how to structure them (architecture)
 - Which ways of connecting the nodes in a neural network work well for physics data?



Methods included



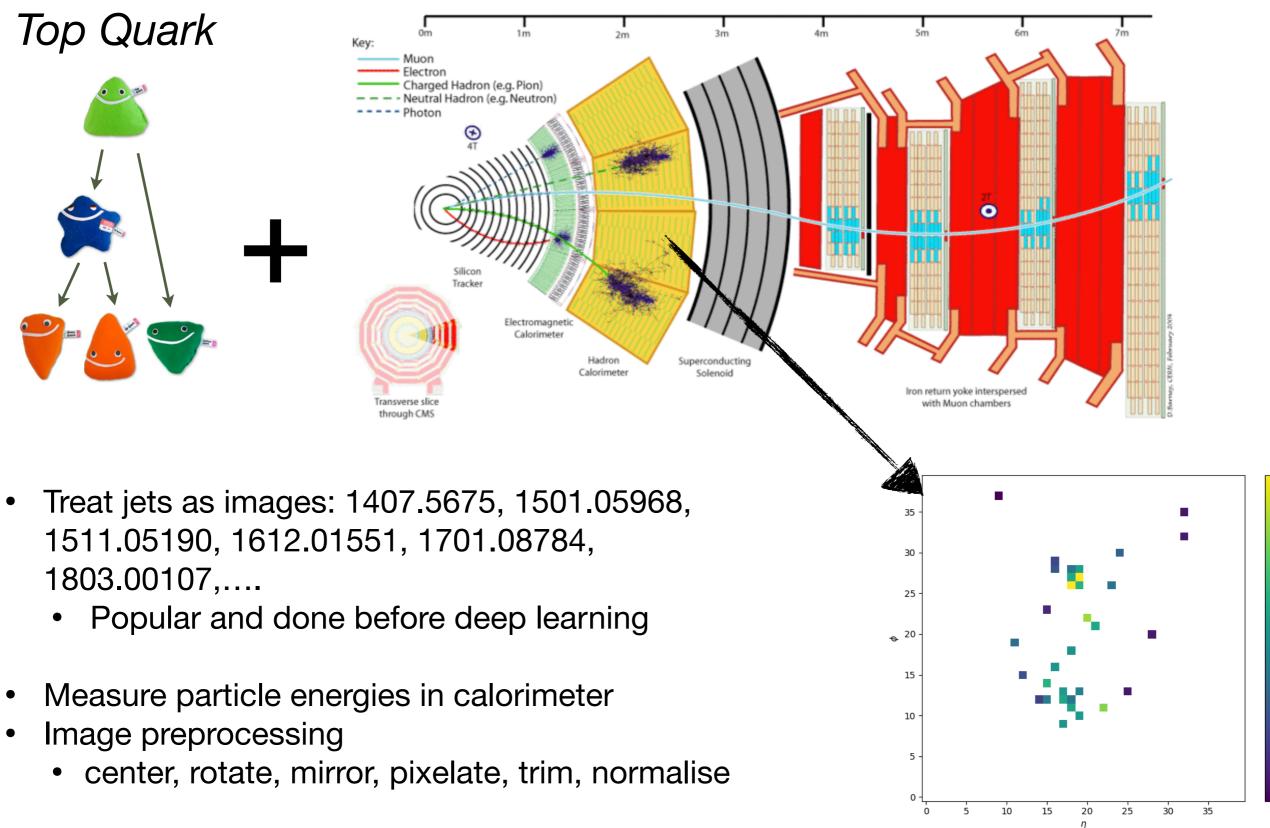
Methods included

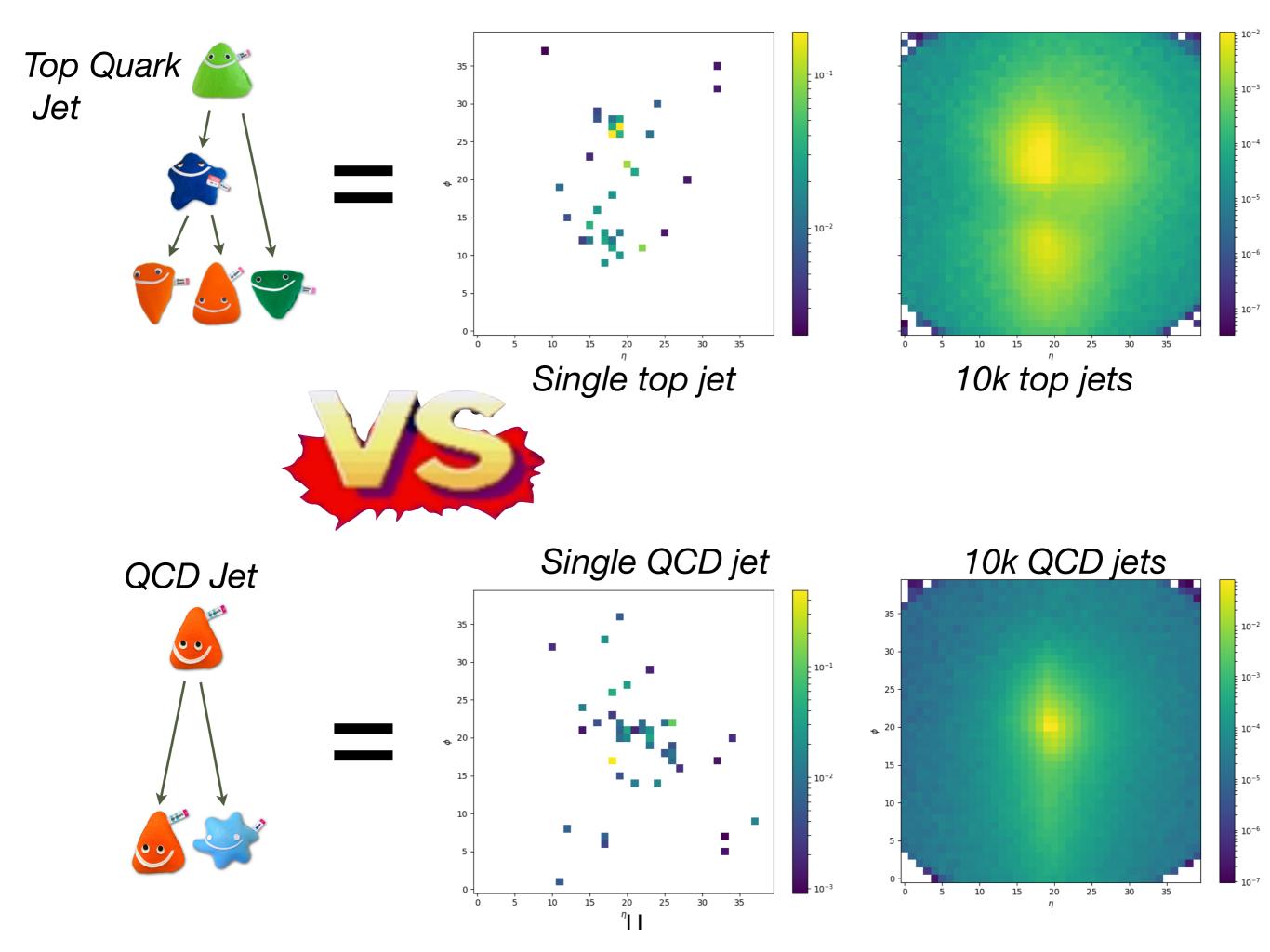


- 10-1

- 10-2

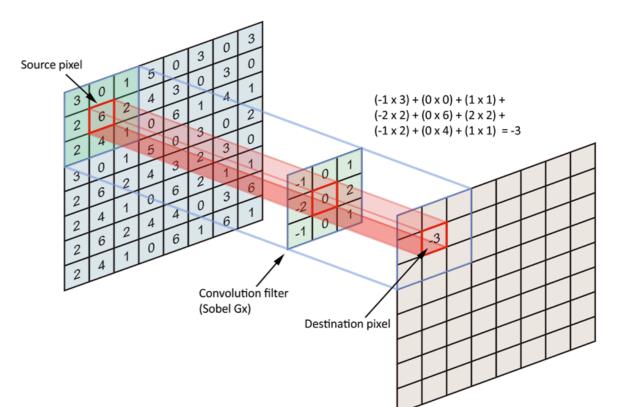
Jet Images

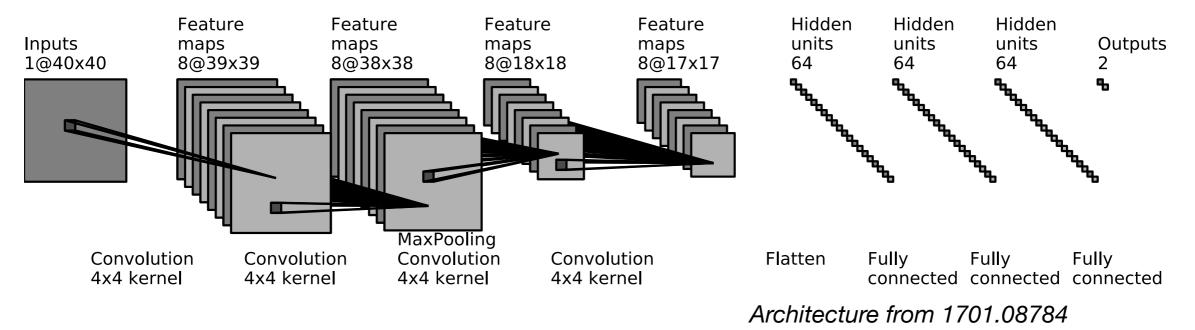




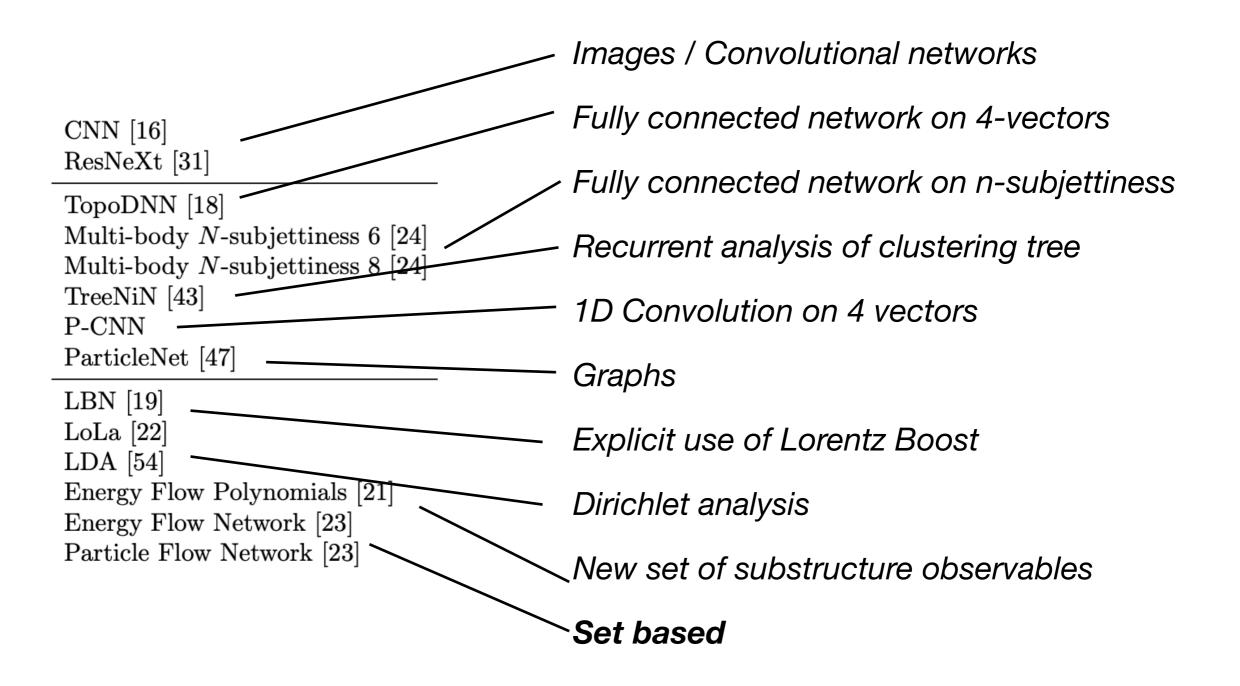
Convolutional network

- Analyse grid-like data with convolutional networks
 - Same architectures as for computer vision
- Accounts for locality (correlation of nearby pixels) and *translation invariance*
- Potential limitation due to sparsity/pixelisation for high resolution data
 - No strong effect observed in this study
 - Careful how to pre-process (1803.00107)

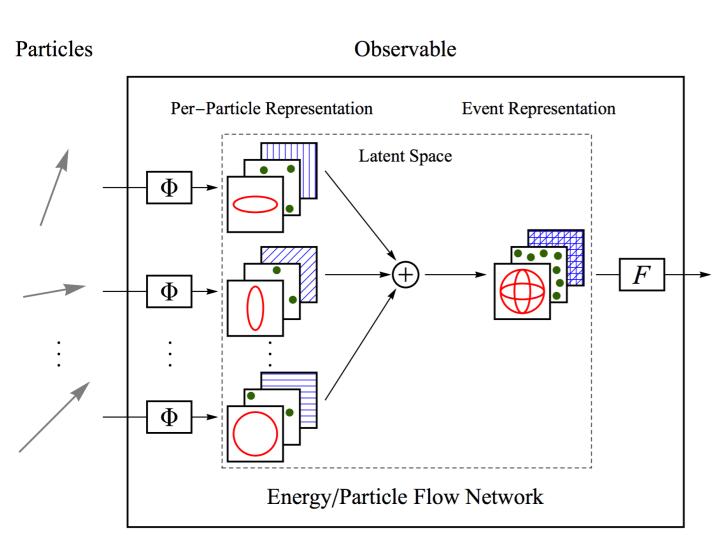




Methods included



Deep Sets



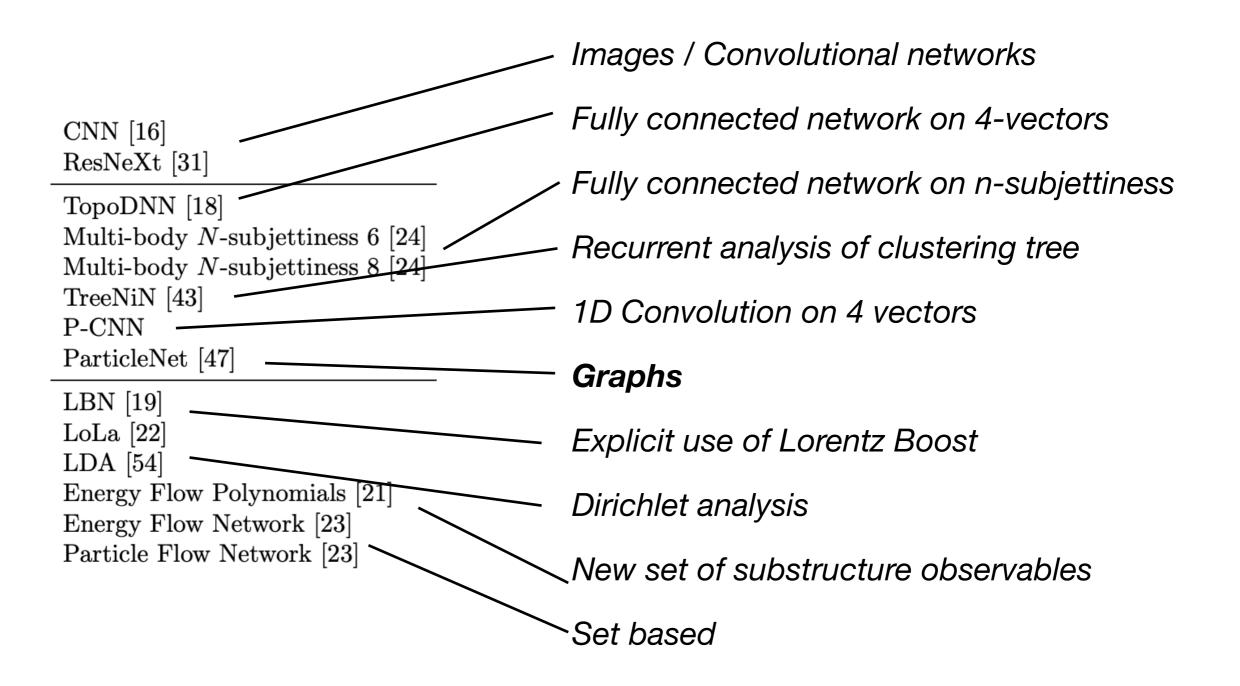
General :
PFN:
$$F\left(\sum_{i=1}^{M} \Phi(p_i)\right)$$

- To reduce pre-processing, might want to work with four-vector inputs of particles
- How to make independent from ordering of four vectors?
 - Use permutation invariance of sum
 - \rightarrow Deep set architecture (1703.06114)
 - Apply to jets: energy flow network (EFN) / particle flow network (PFN) (1810.05165)
- Simple and straightforward to implement but limited use of neighbourhood information

IRC safe:

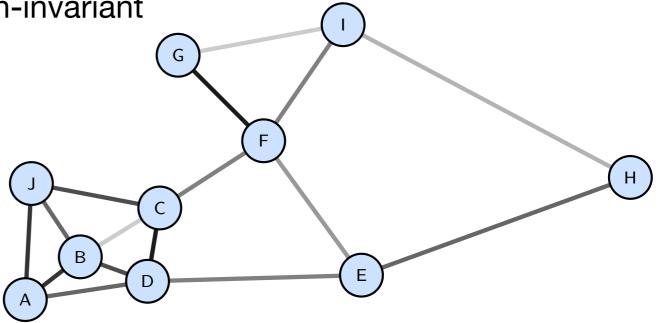
EFN:
$$F\left(\sum_{i=1}^{M} z_i \Phi(\hat{p}_i)\right)$$

Methods included

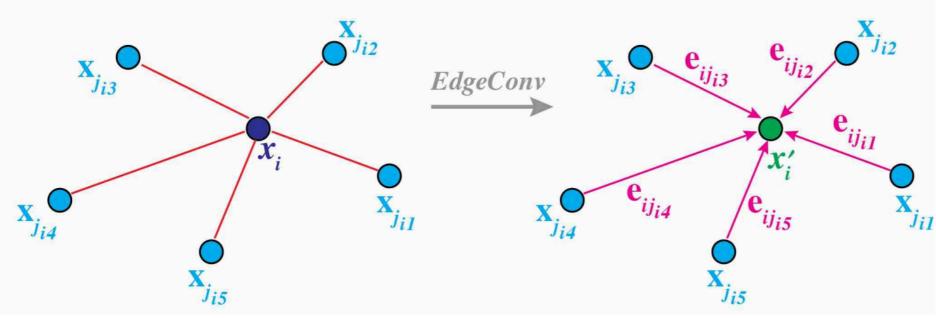


Graphs

- Combine locality of images with permutation-invariant handling of four-vectors →Graphs
- How to build a graph
 - Vertex: particle (e.g., four-vector)
 - Edge: distance (for example geometric)
- Works with:
 - Data that naturally comes as a graph (e.g. a decay sequence)
 - Data embedded in some geometric space (point cloud)
- Active development of graphs on CS side, increasing number of physics applications: 1902.08570, 1902.07987, 1908.05318, 2008.03601, 2103.16701, 2101.08578,



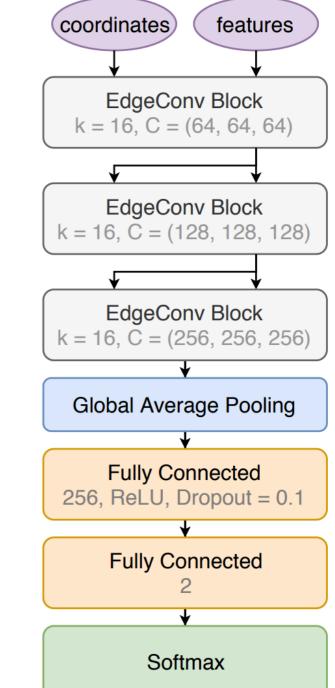
Closer look



Interactions of particles with its nearest neighbours lacksquare

Initially in physical space, later in learned space

$$m{x}_i' = igcap_{j=1}^k m{h}_{m{\Theta}}(m{x}_i, m{x}_{i_j})$$
 Neural network $igcap_{j=1}^{ ext{Softh}}$ Neural network $igcap_{j=1}^{ ext{Softh}}$ Neural network $igcap_{j=1}^{ ext{Softh}}$ $igcap_{j=1}^{ ext{Neural network}}$ $igcap_{j=1}^{ ext{Neura$



Results ParticleNet TreeNiN ResNeXt 104 PFN CNN NSub(8) LBN NSub(6) Background rejection $\frac{1}{\epsilon_{B}}$ P-CNN 10³ LoLa EFN nsub+m EFP – TopoDNN --- LDA 10² 10¹ 0.5 0.1 0.2 0.3 0.6 0.8 0.0 0.4 0.7 0.9 1.0

Signal efficiency ε_s

General gain of ~2x compared to baseline (mass+few n-subjettiness variables) 18

	AUC	Acc
CNN [16]	0.981	0.930
ResNeXt [31]	0.984	0.936
TopoDNN [18]	0.972	0.916
Multi-body N -subjettiness 6 [24]	0.979	0.922
Multi-body N -subjettiness 8 [24]	0.981	0.929
TreeNiN [43]	0.982	0.933
P-CNN	0.980	0.930
ParticleNet [47]	0.985	0.938
LBN [19]	0.981	0.931
LoLa [22]	0.980	0.929
LDA [54]	0.955	0.892
Energy Flow Polynomials [21]	0.980	0.932
Energy Flow Network [23]	0.979	0.927
Particle Flow Network [23]	0.982	0.932

- Strongest performance from ParticleNet (Graph based)
- Close field of well-performing approaches

	AUC	Acc	$1/\epsilon_B \ (\epsilon_S = 0.3)$		
			single	mean	median
CNN [16]	0.981	0.930	$914{\pm}14$	$995{\pm}15$	$975{\pm}18$
$\operatorname{ResNeXt}$ [31]	0.984	0.936	1122 ± 47	$1270{\pm}28$	$1286{\pm}31$
TopoDNN [18]	0.972	0.916	$295{\pm}5$	$382\pm$ 5	378 ± 8
Multi-body N -subjettiness 6 [24]	0.979	0.922	$792{\pm}18$	$798{\pm}12$	$808{\pm}13$
Multi-body N -subjettiness 8 [24]	0.981	0.929	$867{\pm}15$	$918{\pm}20$	$926{\pm}18$
TreeNiN [43]	0.982	0.933	$1025{\pm}11$	$1202{\pm}23$	$1188{\pm}24$
P-CNN	0.980	0.930	$732{\pm}24$	$845{\pm}13$	$834{\pm}14$
ParticleNet [47]	0.985	0.938	$1298{\pm}46$	$1412{\pm}45$	$1393{\pm}41$
LBN [19]	0.981	0.931	$836{\pm}17$	$859{\pm}67$	$966{\pm}20$
LoLa [22]	0.980	0.929	$722{\pm}17$	$768{\pm}11$	$765{\pm}11$
LDA [54]	0.955	0.892	$151{\pm}0.4$	$151.5{\pm}0.5$	$151.7{\pm}0.4$
Energy Flow Polynomials [21]	0.980	0.932	384		
Energy Flow Network [23]	0.979	0.927	$633{\pm}31$	$729{\pm}13$	$726{\pm}11$
Particle Flow Network [23]	0.982	0.932	$891{\pm}18$	1063 ± 21	$1052{\pm}29$

- Gains from ensembles (averaging network predictions)
- Not really news for fans of BDTs

	AUC	Acc	1,	$\epsilon_B (\epsilon_S = 0.5)$	3)
			single	mean	median
CNN [16]	0.981	0.930	914±14	$995{\pm}15$	$975{\pm}18$
ResNeXt [31]	0.984	0.936	1122 ± 47	$1270{\pm}28$	$1286{\pm}31$
TopoDNN [18]	0.972	0.916	295 ± 5	$382\pm$ 5	378 ± 8
Multi-body N -subjettiness 6 [24]	0.979	0.922	$792{\pm}18$	$798{\pm}12$	$808{\pm}13$
Multi-body N -subjettiness 8 [24]	0.981	0.929	867 ± 15	$918{\pm}20$	$926{\pm}18$
TreeNiN [43]	0.982	0.933	$1025{\pm}11$	$1202{\pm}23$	$1188{\pm}24$
P-CNN	0.980	0.930	732 ± 24	$845{\pm}13$	834 ± 14
ParticleNet [47]	0.985	0.938	$1298 {\pm} 46$	$1412{\pm}45$	$1393{\pm}41$
LBN [19]	0.981	0.931	836 ± 17	$859{\pm}67$	$966{\pm}20$
LoLa [22]	0.980	0.929	$722{\pm}17$	$768{\pm}11$	$765{\pm}11$
LDA [54]	0.955	0.892	$151{\pm}0.4$	$151.5{\pm}0.5$	$151.7{\pm}0.4$
Energy Flow Polynomials [21]	0.980	0.932	384		
Energy Flow Network [23]	0.979	0.927	633 ± 31	$729{\pm}13$	$726{\pm}11$
Particle Flow Network [23]	0.982	0.932	891 ± 18	$1063{\pm}21$	$1052{\pm}29$
GoaT	0.985	0.939	$ 1368 \pm 140$		$1549{\pm}208$

Slight gains from combining all taggers - limited orthogonally

	AUC	Acc	$1/\epsilon_B \ (\epsilon_S = 0.3)$			#Param
			single	mean	median	
CNN [16]	0.981	0.930	$914{\pm}14$	$995{\pm}15$	$975{\pm}18$	610k
ResNeXt [31]	0.984	0.936	1122 ± 47	1270 ± 28	$1286{\pm}31$	1.46M
TopoDNN [18]	0.972	0.916	$295{\pm}5$	$382\pm$ 5	378 ± 8	59k
Multi-body N -subjettiness 6 [24]	0.979	0.922	792 ± 18	$798{\pm}12$	$808{\pm}13$	57k
Multi-body N -subjettiness 8 [24]	0.981	0.929	867 ± 15	$918{\pm}20$	$926{\pm}18$	58k
TreeNiN [43]	0.982	0.933	$1025{\pm}11$	$1202{\pm}23$	$1188{\pm}24$	34k
P-CNN	0.980	0.930	732 ± 24	$845{\pm}13$	$834{\pm}14$	348k
ParticleNet [47]	0.985	0.938	$1298 {\pm} 46$	$1412{\pm}45$	$1393{\pm}41$	498k
LBN [19]	0.981	0.931	836 ± 17	$859{\pm}67$	$966{\pm}20$	705k
LoLa [22]	0.980	0.929	722 ± 17	$768{\pm}11$	$765{\pm}11$	127k
LDA [54]	0.955	0.892	$151{\pm}0.4$	$151.5{\pm}0.5$	$151.7{\pm}0.4$	184k
Energy Flow Polynomials [21]	0.980	0.932	384			1k
Energy Flow Network [23]	0.979	0.927	633 ± 31	$729{\pm}13$	$726{\pm}11$	82k
Particle Flow Network [23]	0.982	0.932	$891{\pm}18$	1063 ± 21	$1052{\pm}29$	82k
GoaT	0.985	0.939	$ 1368 \pm 140$		$1549{\pm}208$	35k

More parameters do not automatically give more performance

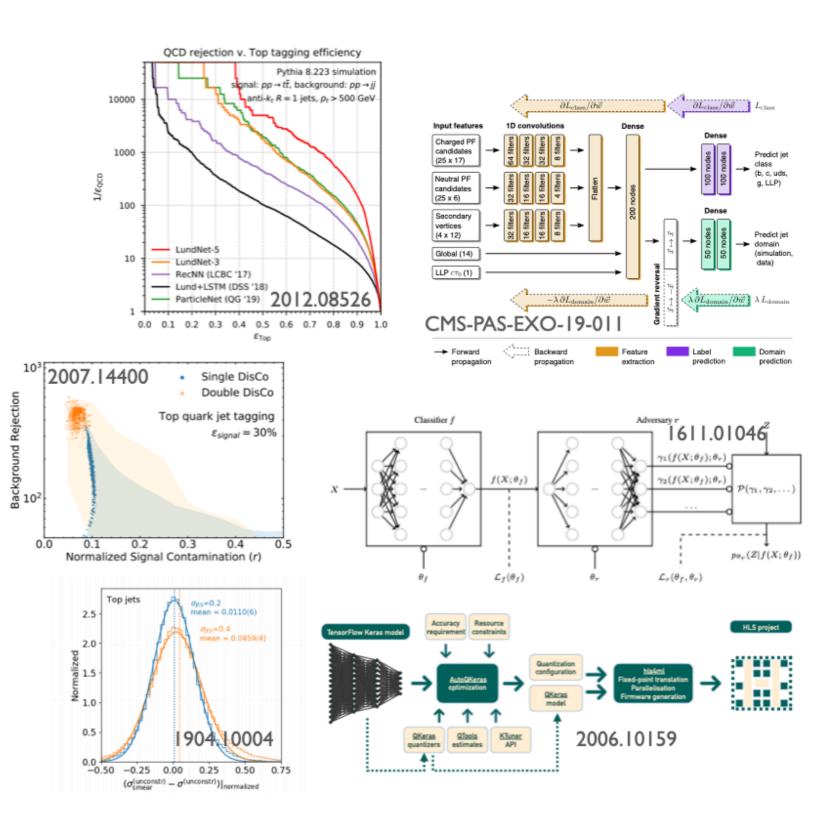
Summary so far

- Simple top-tagging problem as useful benchmark
- Comparison of different network architectures and data representations
- General large gain from more complex networks
 compared to traditional approaches
- Graph networks perform best, but dense field of good performances
- Other criteria will be more relevant for use:
 - Speed, stability, ease of training, ...

Beyond

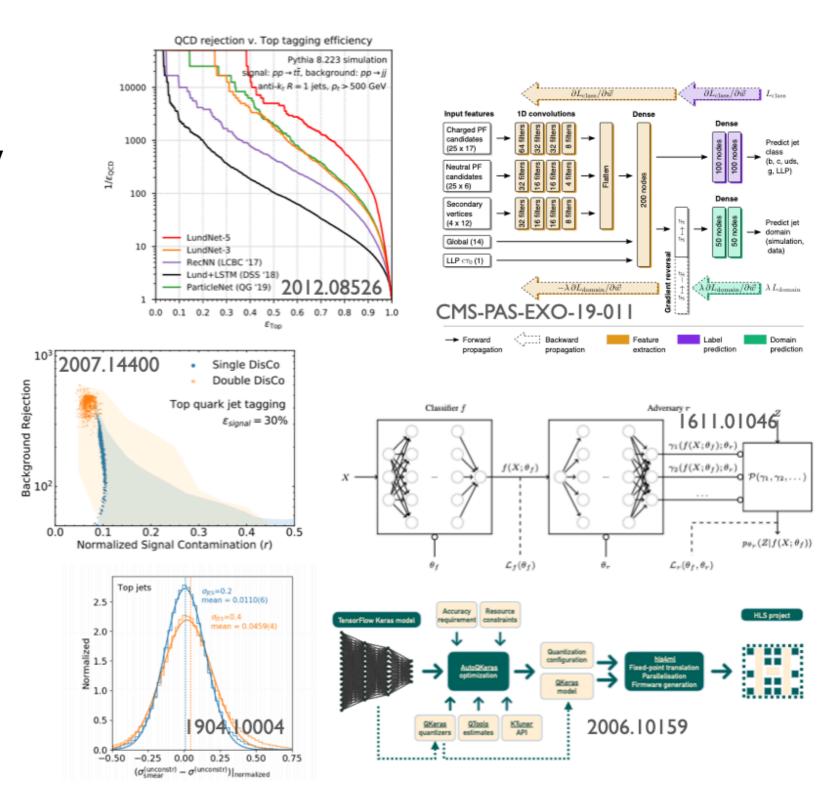
Are we done?

• No (!)



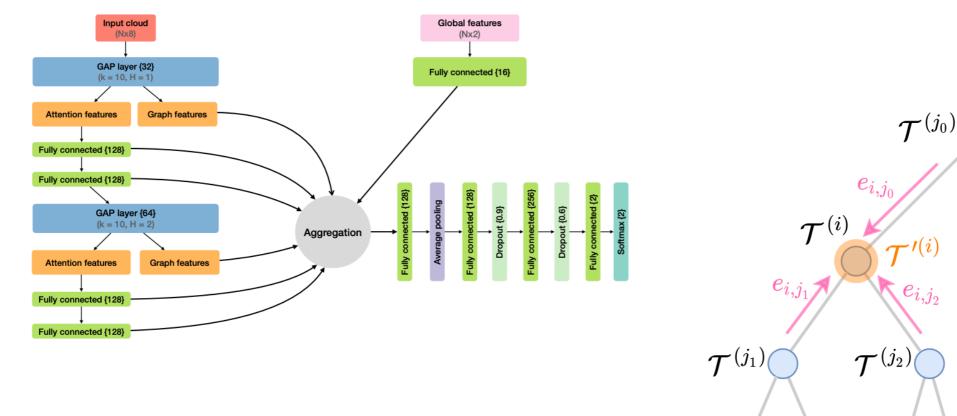
Are we done?

- No (!)
- Need:
 - Higger accuracy (easy to measure, many results)



New Ideas

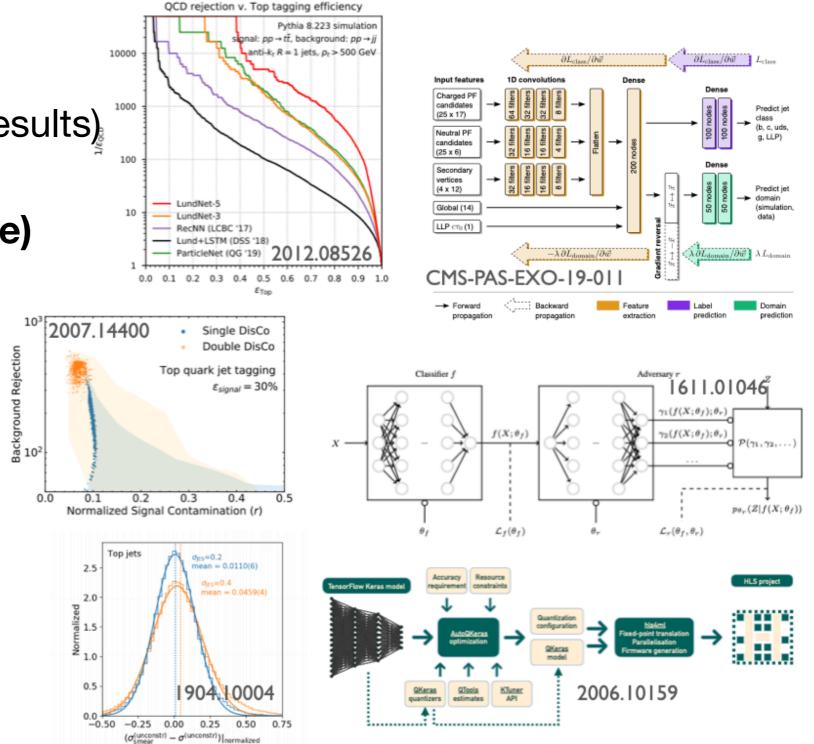
- Work on improving taggers continues
- Use attention mechanism in graphs to decide which particles are most relevant for given task (Mikuni, Canelli, 2001.05311)



Apply graph-architecture to jet clustering
 history in the Lund plane (Dreyer, Qu, 2012.08526)

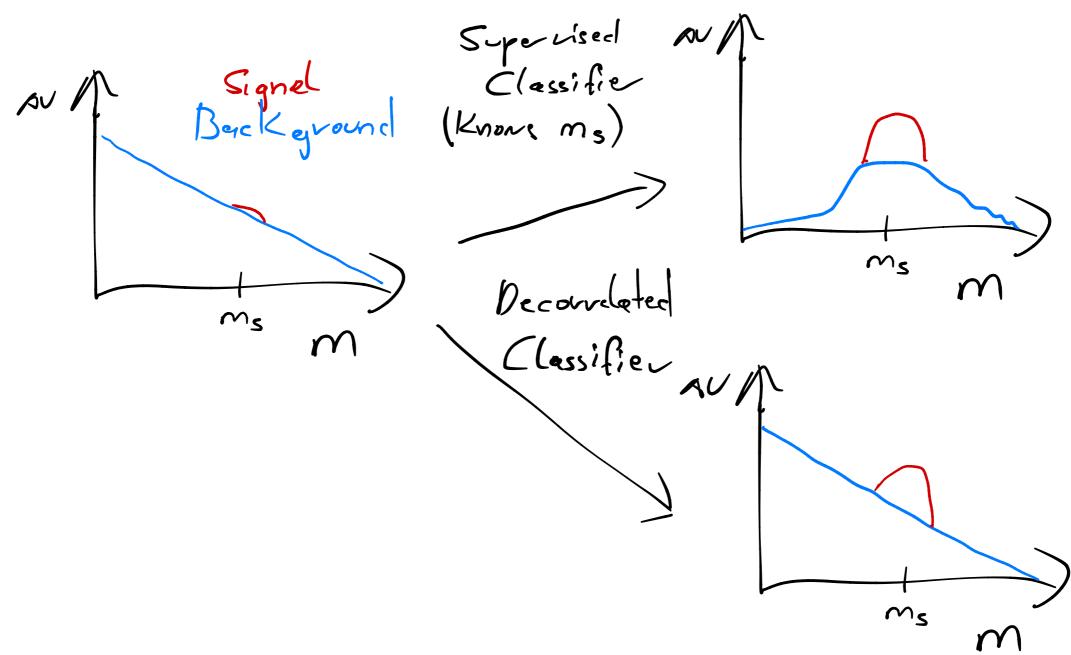
Are we done?

- No (!)
- Need:
 - Higger accuracy (easy to measure, many results)
 - Better stability (domain adaptation issue)



Decorrelation

- Reduce impact of other variables on analysis result
- Remove correlation of classifier output with another variable



How?

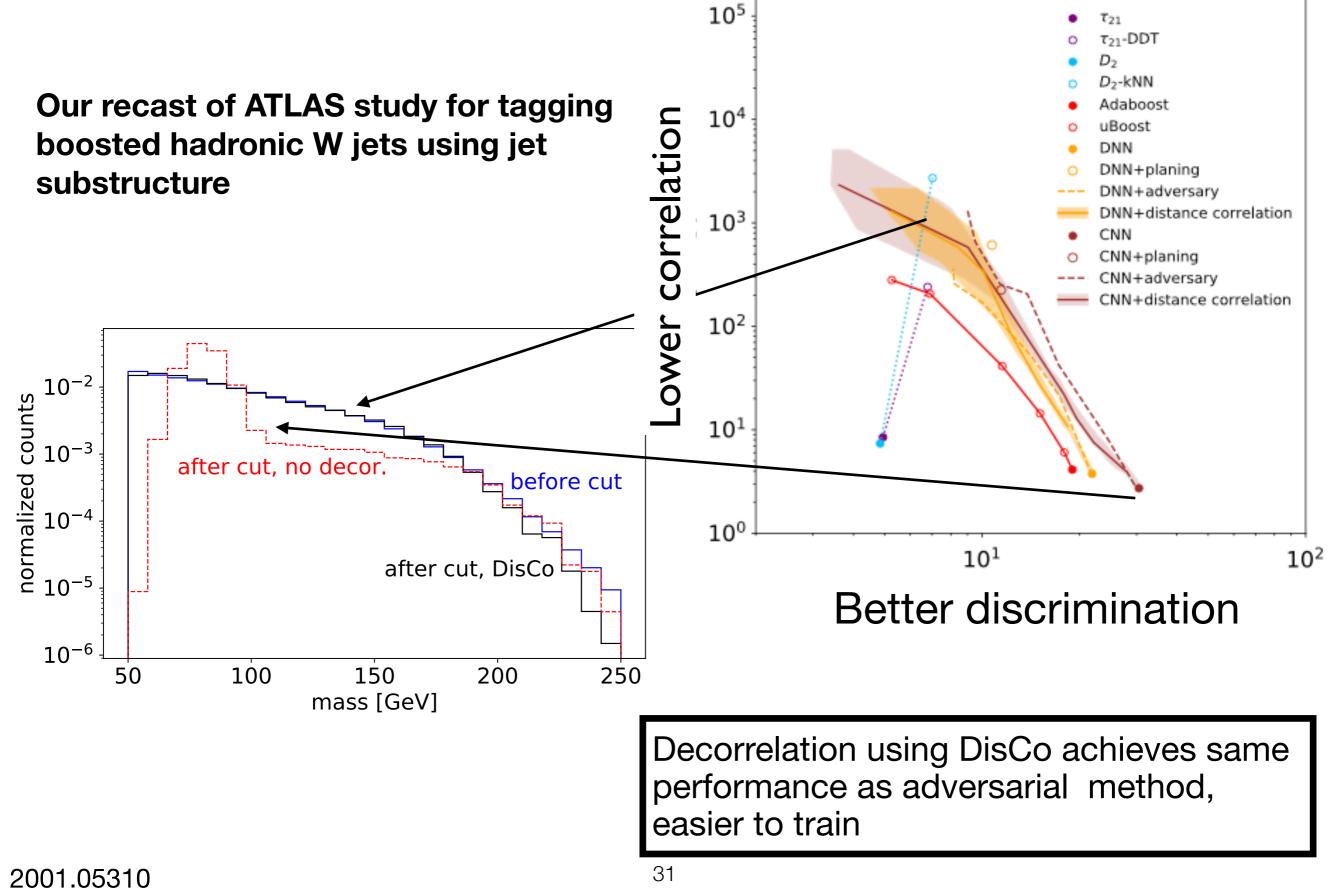
- Adversarial training (two competing classifiers) is default approach
 - Unstable / difficult to train
- Find a regulariser term that fulfils the same goal but allows simple training to convergence
 - Use distance correlation (DisCo)

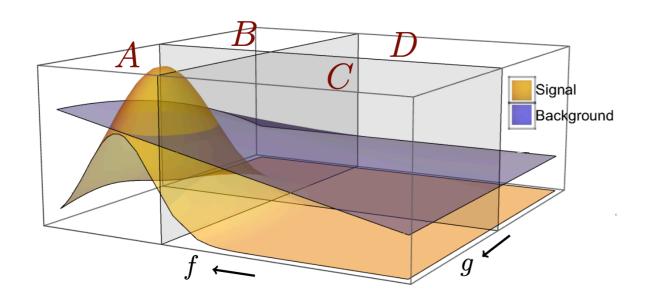
$$\min_{\theta_{\rm clf}} L_{\rm clf}(y(\theta_{\rm clf})) + \lambda C_{\rm reg}(y(\theta_{\rm clf}), m)$$

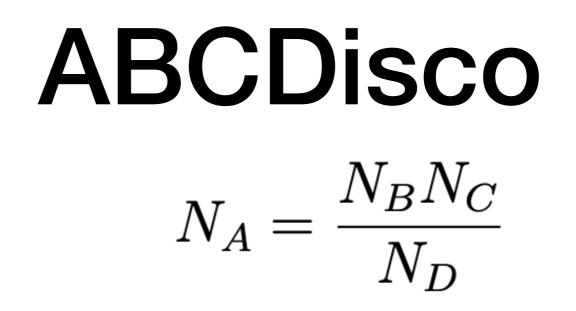
$$dCorr^{2}(X,Y) = \frac{dCov^{2}(X,Y)}{dCov(X,X)dCov(Y,Y)}$$

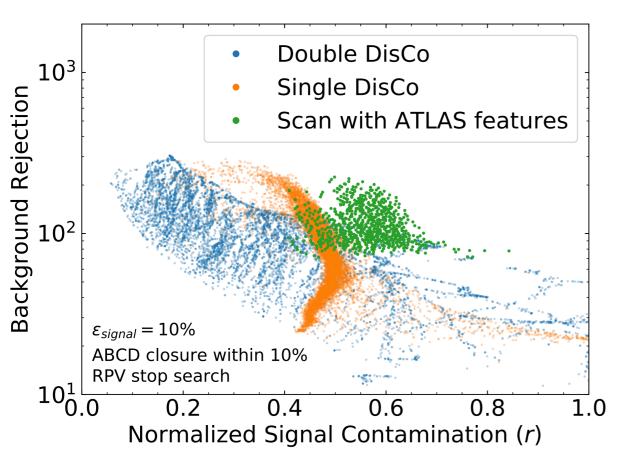
$$L = L_{classifier}(\vec{y}, \vec{y}_{true}) + \lambda \,\mathrm{dCorr}^2(\vec{m}, \vec{y})$$

$$\begin{split} x_{jk} &= |X_j - X_k| \begin{array}{l} \text{Distances of all examples in batch} \\ for classifier output \\ y_{jk} &= |Y_j - Y_k| \\ \dots \text{ for variable to decorrelate} \\ \hat{x}_{jk} &= x_{jk} - \overline{x}_{j.} - \overline{x}_{.k} + \overline{x}_{..} \\ \hat{y}_{jk} &= y_{jk} - \overline{y}_{j.} - \overline{y}_{.k} + \overline{y}_{..} \end{array}$$
 Center distributions
$$\begin{aligned} \mathrm{dCov}^2 &= \frac{1}{n} \sum_{j} \sum_{k} \hat{x}_{jk} \hat{y}_{jk} \\ \mathrm{dCov}^2 &= \frac{1}{n} \sum_{j} \sum_{k} \hat{x}_{jk} \hat{y}_{jk} \end{aligned}$$
 And calculate average product per batch









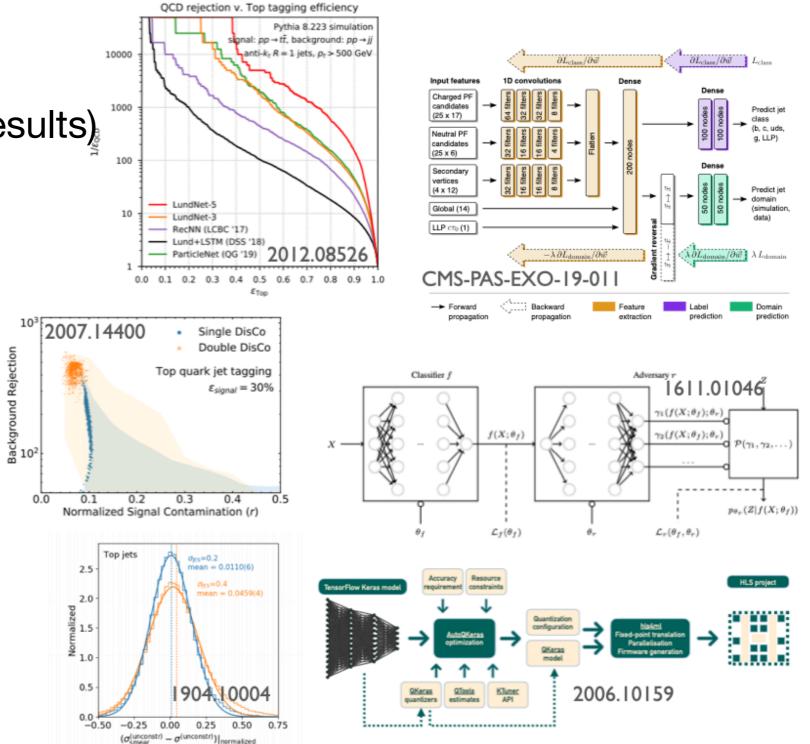
- ABCD method used for background estimation
 - Need two variables so that signal is localised but that are independent for background
- Can we use Disco to train NN for either one or both variables?
 - Recast ATLAS RPV SUSY search for paired dijet resonances (2 squarks to jets)
 - Analysis done using high level kinematic features and angles

 $\mathcal{L}[f,g] = \mathcal{L}_{\text{classifier}}[f(X),y] + \mathcal{L}_{\text{classifier}}[g(X),y] + \lambda \operatorname{dCorr}_{y=0}^{2}[f(X),g(X)]$

2007.14400

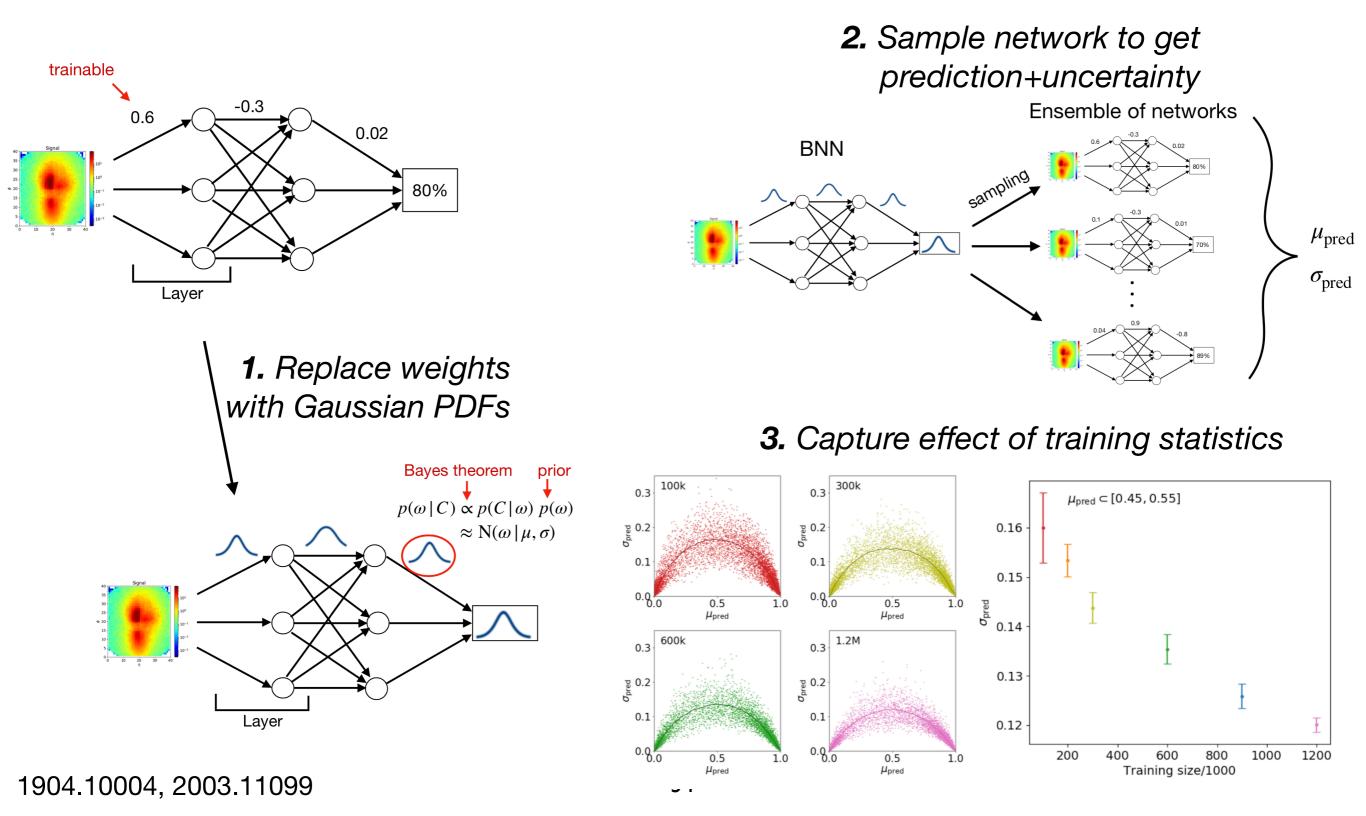
Are we done?

- No (!)
- Need:
 - Higger accuracy (easy to measure, many results)
 - Better stability (domain adaptation issue)
 - More control over uncertainties



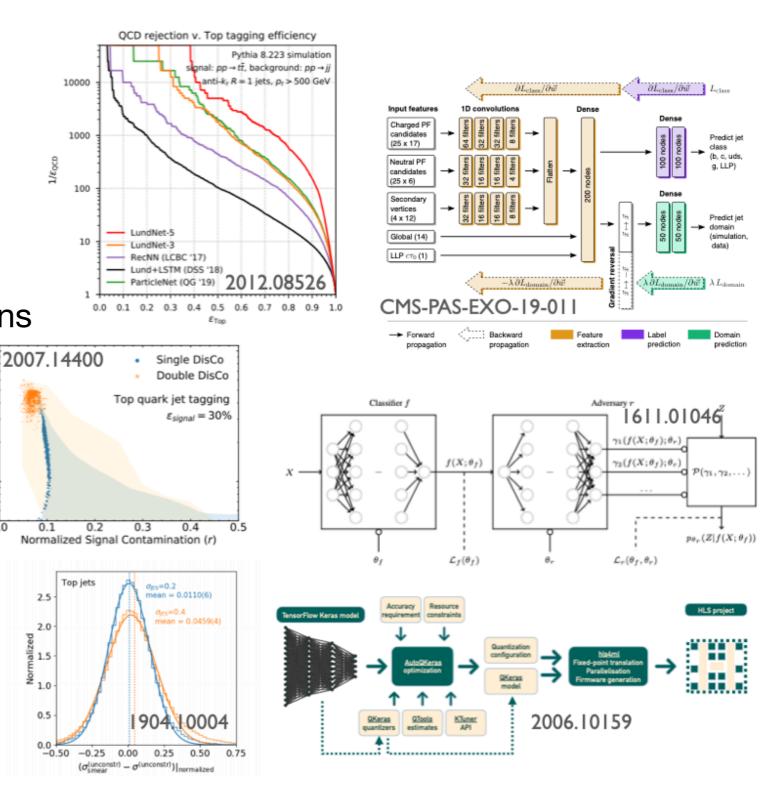
Bayesian Networks

Goal: Quantify uncertainty due to limited trainings statistics



Are we done?

- No (!)
- Need:
 - Higger accuracy (easy to measure, many results)
 - Better stability (domain adaptation issue)
 - More control over uncertainties
 - Resource efficient implementations
 - Experimental integration
 - Theoretical understanding / explainability
 - More holistic learning
 - Problems beyond supervised learning



0.0

Closing

- Deep Learning in fundamental physics rapidly developing solutions to a wide range of problems
 - Object and Event classification
 - Anomaly detection
 - Robustness and uncertainties
 - Fast reconstruction and simulation
- (Sub-)Jet Physics is leading the way in many regards
 - Exciting to see what else we can do!!

Thank you!

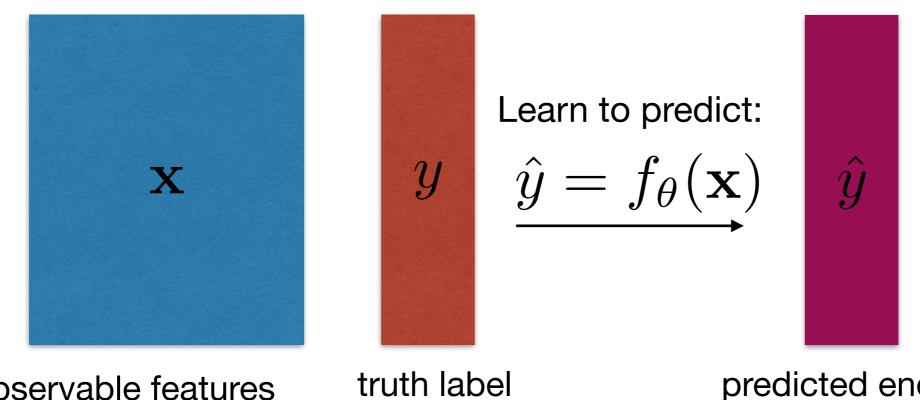
Backup

Loss function: Supervised

Supervised Learning:

Attempt to infer some target (truth label): classification, regression (often also clustering/inference)

Use training data with known labels (often from Monte Carlo simulation)



observable features such as kinematics, tracks,...

(e.g. true energy)

predicted energy

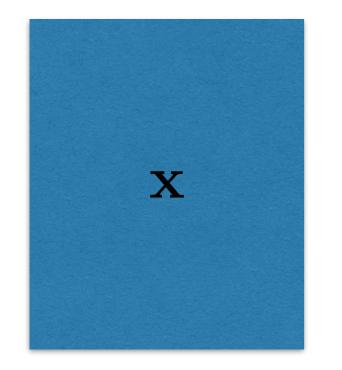
Classification: Minimize cross entropy $\mathcal{L} = -y \log(\hat{y}) - (1-y) \log(1-\hat{y})$

Loss function: Unsupervised

Unsupervised Learning:

No target, learn the probability distribution (directly from data)

Can use for sampling, anomaly detection, unfolding, ...



Learn to predict: $\hat{p}(\mathbf{x}) = f_{\theta}(\mathbf{x})$

True probablity density

 $p(\mathbf{x})$

Distribution learning: Maximise likelihood (minimize log-likelihood):

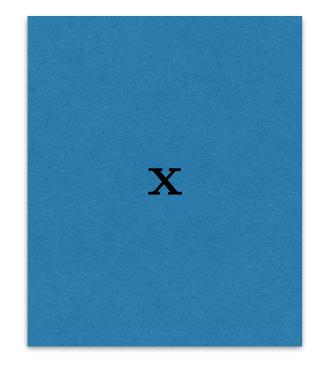
$$\mathcal{L} = -\log\left(\hat{p}(\mathbf{x})\right)$$

Loss function: Unsupervised

Unsupervised Learning:

No target, learn the probability distribution (directly from data)

Can use for sampling, anomaly detection, unfolding, ...



Learn to predict: $\hat{p}(\mathbf{x}) = f_{\theta}(\mathbf{x})$

*There also exists a number of other less-than-supervised approaches (weakly supervised learning, semisupervised learning, ...) Not so important for now.

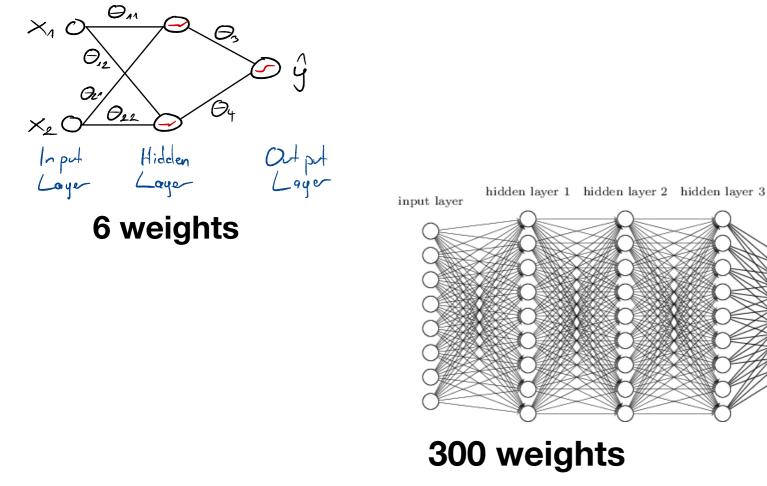
True probablity density

 $p(\mathbf{x})$

Distribution learning: Maximise likelihood (minimize log-likelihood):

(either directly or with approximations)

 $\mathcal{L} = -\log\left(\hat{p}(\mathbf{x})\right)$



Complexity

stage	output	ResNet-50		ResNeXt-50 (32×4d)			
conv1	112×112	7×7, 64, stride	e 2	7×7, 64, stride 2			
		3×3 max pool, st	ride 2	3×3 max pool, stride 2			
conv2	56×56	1×1,64		[1×1, 128			
conv2	30×30	3×3, 64	×3	3×3, 128, <i>C</i> =32	$\times 3$		
		1×1, 256		1×1,256			
		[1×1, 128]		[1×1, 256]			
conv3	28×28	3×3, 128	$\times 4$	3×3, 256, <i>C</i> =32	$\times 4$		
		1×1, 512		1×1,512			
		1×1,256]	[1×1,512]			
conv4	14×14	3×3, 256	×6	3×3, 512, <i>C</i> =32	×6		
		1×1, 1024		1×1, 1024			
		1×1,512]	1×1, 1024]		
conv5	7×7	3×3, 512	×3	3×3, 1024, <i>C</i> =32	×3		
		1×1,2048		1×1, 2048			
	1×1	global average p	pool	global average pool			
1×1 1000		1000-d fc, softn	nax	1000-d fc, softmax			
# pa	# params. 25.5×10^6			25.0 ×10 ⁶			
FI	FLOPs 4.1×10^9 4.2×10^9						

Deep Learning: Complex network + low level inputs

25 million weights:

output layer

2016 state of the art for image classification

175 billion weights: 2020 GPT-3 text model

Model Name	n_{params}	$n_{\rm layers}$	$d_{ m model}$	n_{heads}	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

How do networks learn?

- Backpropagation + Gradient descent
- Important: Loss function needs to be differentiable
 - (Or find a differentiable approximation)
- Pass input (x₁, x₂, ...) to networks
- From output calculate loss function
 Find gradient of loss function with respect to weights
- Use gradient to find new weights

$$\begin{split} \theta_{t+1} &= \theta_t - \eta \frac{\partial \mathcal{L}}{\partial \theta_t} = \theta_t - \eta \nabla \mathcal{L} \\ & \text{Learning rate} \end{split}$$

• Practically, this is taken care of by an optimiser algorithm (e.g. Adam as default)