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Overview
• Tagging hadronically decaying 

tops is a well established 
benchmark for ML at LHC


• Broad comparison of methods in 
1902.09914


• Outline


• Introduction of task / dataset


• Landscape of taggers


• Going beyond

https://arxiv.org/abs/1902.09914
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Introduction



Heavy Resonance Tagging

• Hadronically decaying top/Higgs/W/Z


• Contained in one (large-R) jet


• m/pT >= ~1


• How to distinguish from light quark/gluon jets 
(and from each other)


• Used for new physics searches (and SM studies)

Classical handles: 

• Mass 
e.g., using a grooming algorithm  

• Centers of hard radiation 
e.g., n-subjettiness or energy 
correlation functions 

• Flavour 
b tagging of large-R jets or subjets 

• Combinations 
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➡ Well-defined problem with simple 
performance metric:  
Great environment to test 
algorithms 



Dataset
For consistent tests, need a common dataset:


• Based on 1701.08784


• Pythia simulated light quark+ gluon 
(background) vs hadronically decaying top 
quarks (signal) with pT = 550..650 GeV


• Delphes simulation, simple particle flow (PF)


• FastJet, AntiKt R=0.8, truth-matched


• 1.2M training examples, 400k each for 
testing and validation


• Store up too 200 constituent  
four-vectors of leading pT jet

5

Starting from four-vectors allows a large 
number of approaches to be compared 
(more on that soon) 

Limitations / possible improvements 

• Inclusion of pile-up


• Track/vertex information


• Statistics


• Realistic detector model


• Systematic uncertainties
Data available at: 
https://desycloud.desy.de/index.php/s/llbX3zpLhazgPJ6

https://arxiv.org/abs/1701.08784
https://desycloud.desy.de/index.php/s/llbX3zpLhazgPJ6
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Machine Learning Mini-Intro
• Formulate task as a minimisation problem and solve

✓⇤ = argmin✓ Ex⇠p(x) [L(f✓(x),x)]

<latexit sha1_base64="RO46pFIGOAol09qGQPC65vT/S8c="></latexit>

• Neural networks are a convenient way of 
building expressive functions with many 
tuneable parameters (10s to millions) that can 
efficiently be optimised via gradient descent


• Loss function to distinguish two classes: 
cross-entropy 

• (We’ll come back to that) 

• If networks have many parameters:

• Interesting choices how to structure them 

(architecture) 
• Which ways of connecting the nodes in a 

neural network work well for physics data?

Loss function L
Neural network f✓

Parameters ✓

Opt. Parameters ✓⇤

Data x

Data distribution p(x)

<latexit sha1_base64="Wk6s6mJIi1cX8+DZYa/KmknvLA0=">AAAC23icbZFPb9MwGMad8G+UfwWOXCwq0OBQJahoTLlMwIHDBEWiW6U6VI7rrFYdO7JfA1VULhxAiCtfjBtfg0+Ak2asG3ulSI/f52fn9eOslMJCFP0OwgsXL12+snW1c+36jZu3urfvHFjtDOMjpqU244xaLoXiIxAg+bg0nBaZ5IfZ4kXtH37gxgqt3sGy5GlBj5TIBaPgW9PuH1JQmJui2tfWkiR3itXGCpPkIW48RmW179 ekc4y+5s5QSRLF4aM2izWbTysCcw70FDqkhhYc/ADtiQ2ySbwpoU+S87n3jzfJl7Q5/HiuLK8+rc76JJn5zIzI3Mktyu0T/pHfMO32on7UFP5fxK3oobaG0+4vMtPMFVwBk9TaSRyVkFbUgGCSrzrEWV5StqBHfOKl8jexadW8zQo/8J0ZzrXxnwLcdDd3VLSwdllknqyntGe9unmeN3GQP0sroUoHXLH1j3InMWhcPzSeCcMZyKUXlBnhZ8Vs7mNmdcqdJoTdpvBa7AxasRv/C+HgST8e9J++HfT2nrdxbKF76D7aRjHaQXvoFRqiEWLBOPgcfA2+hWn4Jfwe/lijYdDuuYtOVfjzL+uk5eE=</latexit>



the impact of the size of the test set on the quoted results, the performance metrics of the

best performing network were evaluated on 15, 4-batch subsamples of the test set. This

evaluation was performed only for the best performing network in the LHC 2016 pileup

scenario due to computational constraints.

3 Network Architecture

The networks studied here were implemented using the Keras suite [46] with the Theano

[47] backend. The input layer of the network consists of a vector of jet constituent pT, ⌘

and � coordinates. The network depth and number of nodes per layer were tuned manually,

exploring a space between 4-6 layers and 40-1000 nodes per layer. ReLu activation [48]

was used for the hidden layers while a sigmoid is used for the output node. The network

was trained with the Adam optimiser [49] for a maximum of 40 epochs. Early stopping

with a patience parameter of 5 epochs on the loss in the validation set was used. The model

used for evaluating the performance on the test set is the model with the best performance

(lowest binary cross-entropy loss) on the validation set. This method prevents overtraining

by freezing the model once performance on the validation set begins to decrease. The final

chosen network architecture consists of 4 hidden layers, with 300, 102, 12 and 6 nodes per

layer. Figure 2 shows a schematic of the overall network architecture used in this study.

... ... ...
φ1

η1
p1T

Input Layer�
Individual  $POTUJUVFOUT

Hidden Layers�
� layers, 300-� nodes per layer

Output Layer
Binary Prediction

Figure 2. Schematic of overall network architecture used.

3.1 Preprocessing

The key idea behind preprocessing the jets is that, by incorporating domain specific knowl-

edge about the jet physics, the dimensionality of the problem can be reduced. The prepro-

cessing steps were inspired by previous papers [22, 23, 25, 28] and determined through a

series of studies. Jets are scaled, translated, rotated and flipped.

First, the pT of all jet constituents is scaled by 1/1700 to ensure that the majority of jet

constituents have a pT approximately between zero and one. This ensures that the value of

the input nodes corresponding to the pT of the jet constituents are roughly within the same

order of magnitude as the input nodes corresponding to the ⌘ and � of the constituents.

– 6 –
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FIG. 1. QCD-motivated recursive jet embedding for classifi-
cation. For each individual jet, the embedding hjet

1 (tj) is com-
puted recursively from the root node down to the outer nodes
of the binary tree tj . The resulting embedding is chained to
a subsequent classifier, as illustrated in the top part of the
figure. The topology of the network in the bottom part is
distinct for each jet and is determined by a sequential recom-
bination jet algorithm (e.g., kt clustering).

B. Full events

We now embed entire events e of variable size by feed-
ing the embeddings of their individual jets to an event-
level sequence-based recurrent neural network.

As an illustrative example, we consider here a gated re-
current unit [21] (GRU) operating on the pT ordered se-
quence of pairs (v(tj),h

jet
1 (tj)), for j = 1, . . . ,M , where

v(tj) is the unprocessed 4-momentum of the jet tj and

hjet
1 (tj) is its embedding. The final output hevent

M
(e) (see

Appendix B for details) of the GRU is chained to a subse-
quent classifier to solve an event-level classification task.
Again, all parameters (i.e., of the inner jet embedding
function, of the GRU, and of the classifier) are learned
jointly using backpropagation through structure [9] to
minimize the loss Levent. Figure 2 provides a schematic
of the full classification model. In summary, combining
two levels of recurrence provides a QCD-motivated event-
level embedding that e↵ectively operates at the hadron-
level for all the particles in the event.

In addition and for the purpose of comparison, we
also consider the simpler baselines where i) only the 4-
momenta v(tj) of the jets are given as input to the GRU,
without augmentation with their embeddings, and ii) the
4-momenta vi of the constituents of the event are all di-
rectly given as input to the GRU, without grouping them
into jets or providing the jet embeddings.

IV. DATA, PREPROCESSING AND
EXPERIMENTAL SETUP

In order to focus attention on the impact of the
network architectures and the projection of input 4-
momenta into images, we consider the same boosted W
tagging example as used in Refs. [1, 2, 4, 6]. The signal
(y = 1) corresponds to a hadronically decaying W boson
with 200 < pT < 500 GeV, while the background (y = 0)
corresponds to a QCD jet with the same range of pT .
We are grateful to the authors of Ref. [6] for shar-

ing the data used in their studies. We obtained both
the full-event records from their PYTHIA benchmark sam-
ples, including both the particle-level data and the tow-
ers from the DELPHES detector simulation. In addition,
we obtained the fully processed jet images of 25⇥25 pix-
els, which include the initial R = 1 anti-kt jet clustering
and subsequent trimming, translation, pixelisation, rota-
tion, reflection, cropping, and normalization preprocess-
ing stages detailed in Ref. [2, 6].

Our training data was collected by sampling from the
original data a total of 100,000 signal and background jets
with equal prior. The testing data was assembled sim-
ilarly by sampling 100,000 signal and background jets,
without overlap with the training data. For direct com-
parison with Ref. [6], performance is evaluated at test
time within the restricted window of 250 < pT < 300
and 50  m  110, where the signal and background jets
are re-weighted to produce flat pT distributions. Results
are reported in terms of the area under the ROC curve
(ROC AUC) and of background rejection (i.e., 1/FPR) at
50% signal e�ciency (R✏=50%). Average scores reported
include uncertainty estimates that come from training 30
models with distinct initial random seeds. About 2% of
the models had technical problems during training (e.g.,
due to numerical errors), so we applied a simple algo-
rithm to ensure robustness: we discarded models whose
R✏=50% was outside of 3 standard deviations of the mean,
where the mean and standard deviation were estimated
excluding the five best and worst performing models.

For our jet-level experiments we consider as input to
the classifiers the 4-momenta vi from both the particle-
level data and the DELPHES towers. We also compare the
performance with and without the projection of those
4-momenta into images. While the image data already
included the full pre-processing steps, when considering
particle-level and tower inputs we performed the initial
R = 1 anti-kt jet clustering to identify the constituents of
the highest pT jet t1 of each event, and then performed
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Methods included
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Images / Convolutional networks

Fully connected network on 4-vectors

New set of substructure observables

Fully connected network on n-subjettiness

Recurrent analysis of clustering tree

1D Convolution on 4 vectors

Graphs

Set based

Explicit use of Lorentz Boost

Dirichlet analysis

• Highlighting some select architectures

• See 1902.09914 and refs therein for full picture
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Top Quark

+

• Treat jets as images: 1407.5675, 1501.05968, 
1511.05190, 1612.01551, 1701.08784, 
1803.00107,….

• Popular and done before deep learning 

• Measure particle energies in calorimeter

• Image preprocessing


• center, rotate, mirror, pixelate, trim, normalise

(jet images by C Daza)

10

Jet Images



=
Top Quark 
 Jet

QCD Jet

=
11

Single top jet 10k top jets

Single QCD jet 10k QCD jets
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Convolutional network
• Analyse grid-like data with convolutional 

networks


• Same architectures as for computer vision


• Accounts for locality (correlation of nearby 
pixels) and translation invariance 

• Potential limitation due to sparsity/pixelisation 
for high resolution data


• No strong effect observed in this study


• Careful how to pre-process (1803.00107) 9

Figure 4. Architecture [29] of our default networks for fully pre-processed images, defined in Tab. I.

classification is a parameter that allows to link the signal e�ciency ✏S with the mis-tagging rate of
background events ✏B.

In Sec. III we will use this trained network to test the performance in terms of ROC curves,
correlating the signal e�ciency and the mis-tagging rate.

Before we move to the performance study, we can get a feeling for what is happening inside
the trained ConvNet by looking at the output of the di↵erent layers in the case of fully pre-
processed images. In Fig. 5 we show the di↵erence of the averaged output for 100 signal and 100
background images. For each of those two categories, we require a classifier output of at least 0.8.
Each row illustrates the output of a convolutional layer. Signal-like red areas are typical for jet
images originating from top decays; blue areas are typical for backgrounds. The first layer seems
to consistently capture a well-separated second subjet, and some kernels of the later layers seem
to capture the third signal subjet in the right half-plane. However, one should keep in mind that
there is no one-to-one correspondence between the location in feature maps of later layers and the
pixels in the input image.

Figure 5. Averaged signal minus background for our default network and full pre-processing. The rows
correspond to ConvNet layers one to four. After two rows MaxPooling reduces the number of pixels by
roughly a factor of four. The columns indicate the feature maps one to eight. Red areas indicate signal-like
regions, blue areas indicate background-like regions.

Architecture from 1701.08784
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Deep Sets

141810.05165 

General : IRC safe:

• To reduce pre-processing, might want to 
work with four-vector inputs of particles


• How to make independent 
from ordering of four vectors?


• Use permutation invariance of sum


• →Deep set architecture (1703.06114)


• Apply to jets: energy flow network 
(EFN) / particle flow network (PFN) 
(1810.05165)


• Simple and straightforward to implement 
but limited use of neighbourhood  
information



Methods included
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Graphs
• Combine locality of images with permutation-invariant 

handling of four-vectors 
→Graphs


• How to build a graph


• Vertex: particle (e.g., four-vector)


• Edge: distance (for example geometric)


• Works with:


• Data that naturally comes as a graph (e.g. a decay 
sequence)


• Data embedded in some geometric space (point cloud)


• Active development of graphs on CS side, increasing 
number of physics applications: 1902.08570, 1902.07987, 
1908.05318, 2008.03601, 2103.16701, 2101.08578, ….
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Closer look

17

1902.08570

Neural network

Aggregation function 
(sum or max)

• Interactions of particles with its nearest neighbours


• Initially in physical space, later in learned space



Results
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General gain of ~2x compared to baseline 
(mass+few n-subjettiness variables)



Results
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• Strongest performance from ParticleNet (Graph based)

• Close field of well-performing approaches



Results
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• Gains from ensembles 
(averaging network predictions)


• Not really news for fans of BDTs



Results
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Slight gains from combining all 
taggers - limited orthogonally



Results
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More parameters do not automatically give more performance
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Summary so far

• Simple top-tagging problem as useful benchmark


• Comparison of different network architectures and 
data representations


• General large gain from more complex networks 
compared to traditional approaches


• Graph networks perform best, but dense field of 
good performances


• Other criteria will be more relevant for use:


• Speed, stability, ease of training, …
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Beyond
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Are we done?
• No (!)
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Are we done?
• No (!)

• Need: 

• Higger accuracy  

(easy to measure, many 
results)
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New Ideas
• Work on improving taggers continues

• Apply graph-architecture to jet clustering 
history in the Lund plane (Dreyer, Qu, 2012.08526) 

• Use attention mechanism in graphs to decide which 
particles are most relevant for given task (Mikuni, Canelli, 
2001.05311) 
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Are we done?
• No (!)

• Need: 

• Higger accuracy  

(easy to measure, many results)

• Better stability  

(domain adaptation issue)
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• Reduce impact of other variables on analysis result


• Remove correlation of classifier output with another variable

Decorrelation

" DEE ; ! " ,
SEE: an

"



How?
• Adversarial training (two competing classifiers) is default approach


• Unstable / difficult to train


• Find a regulariser term that fulfils the same 
goal but allows simple training to convergence


• Use distance correlation (DisCo)

30
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Our recast of ATLAS study for tagging 
boosted hadronic W jets using jet 
substructure

Result

2001.05310

Better discrimination
Lo

w
er

 c
or

re
la

tio
n

Decorrelation using DisCo achieves same 
performance as adversarial  method, 
easier to train



ABCDisco

• ABCD method used for background estimation


• Need two variables so that signal is 
localised but that are independent for 
background


•  Can we use Disco to train NN for either one or 
both variables?


• Recast ATLAS RPV SUSY search for paired 
dijet resonances (2 squarks to jets)


• Analysis done using high level kinematic 
features and angles

2007.14400
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Are we done?
• No (!)

• Need: 

• Higger accuracy  

(easy to measure, many results)

• Better stability  

(domain adaptation issue)

• More control over 

uncertainties
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Goal: Quantify uncertainty due to limited trainings statistics

Bayesian Networks

1. Replace weights 
with Gaussian PDFs

2. Sample network to get 
prediction+uncertainty

3. Capture effect of training statistics

1904.10004, 2003.11099
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Are we done?
• No (!)

• Need: 

• Higger accuracy  

(easy to measure, many results)

• Better stability  

(domain adaptation issue)

• More control over uncertainties

• Resource efficient implementations

• Experimental integration

• Theoretical understanding / 

explainability 
• More holistic learning 
• Problems beyond 

supervised learning 
• ….



• Deep Learning in fundamental physics rapidly developing solutions to a 
wide range of problems


• Object and Event classification


• Anomaly detection


• Robustness and uncertainties


• Fast reconstruction and simulation


• (Sub-)Jet Physics is leading the way in many regards


• Exciting to see what else we can do!!

Closing

36

Thank you!
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Backup



Loss function: Supervised
Supervised Learning: 
Attempt to infer some target (truth label):  
classification, regression (often also clustering/inference)


Use training data with known labels 
(often from Monte Carlo simulation)

observable features 
such as kinematics, 
tracks,…

truth label  
(e.g. true energy)

Learn to predict:


predicted energy

x
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Loss function: Unsupervised
Unsupervised Learning: 
No target, learn the probability 
distribution (directly from data)


Can use for sampling, anomaly 
detection, unfolding, …


Learn to  
predict:

True probablity  
density

x
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Distribution learning: Maximise likelihood 
(minimize log-likelihood):
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No target, learn the probability 
distribution (directly from data)


Can use for sampling, anomaly 
detection, unfolding, …


Learn to  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Distribution learning: Maximise likelihood 
(minimize log-likelihood): 
(either directly or with approximations)

*There also exists a number of 
other less-than-supervised 
approaches (weakly  
supervised learning, semi-
supervised learning, …) Not so 
important for now.



Complexity

300 weights

25 million weights:  
2016 state of the art for 

image classification

Deep Learning:  
Complex network + low level inputs

6 weights
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Layer Lager Lager

175  billion weights: 2020 
GPT-3 text  model



How do networks learn?
• Backpropagation + Gradient descent 

• Important: Loss function needs to be differentiable


• (Or find a differentiable approximation)


• Pass input (x1, x2, …) to networks


• From output calculate loss function 
Find gradient of loss function with respect to weights 


• Use gradient to find new weights

42

Learning rate

• Practically, this is taken care of by an optimiser algorithm 
(e.g. Adam as default) 

•
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