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Jets at the LHC are messy things!
Final-state radiation + Underlying Event 

+ Pile-Up + Non-global effects + …

Theoretical Motivation for Jet Grooming

Poor theoretical control 
of soft radiation
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Jets at the LHC are messy things!
Final-state radiation + Underlying Event 

+ Pile-Up + Non-global effects + …

Theoretical Motivation for Jet Grooming

Systematically remove 
soft emissions

Observables measured 
on “groomed” jet
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Perturbative Lever Arm with Grooming

Ungroomed Jet Mass mMDT Groomed Jet Mass
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Parametrically larger perturbative regime with grooming!

Increase of ~100x for TeV-scale jets
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New Precision Measurements
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≤10% experimental uncertainty
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Sensitivity to masses over 2+ decades

Unprecedented probe of jets at LHC
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Figure 7: Normalized cross section for the ungroomed (top) and groomed (bottom) jets for
two pT bins. The predictions from PYTHIA8, HERWIG++, and POWHEG + PYTHIA are shown
with dashed black, dash-dot-dotted magenta, and dash-dotted green histograms, respectively,
with no uncertainties shown. The predictions from Ref. [17] (Frye et al.) are shown with blue
squares. The uncertainties include scale variations and an estimate of nonperturbative effects.
The predictions from Ref. [18] (Marzani et al.) are shown with red triangles. The uncertainties
include only effects from scale variations, since nonperturbative corrections have been consid-
ered directly in the calculation. Both predictions diverge from the data at high mass due to
fixed-order matching.



4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−
ρ

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8ρ

 / 
d 

σ
) d

 
re

su
m

σ
(1

 / 

ATLAS
-1= 13 TeV, 32.9 fbs

 R = 0.8tCalorimeter-based, anti-k
 = 0β = 0.1, 

cut
Soft Drop, z

 > 300 GeVlead
T

p
Nonperturbative Perturbative

Data
NNLL
NNLL+NP

4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−
ρ

0.5
1

1.5

R
at

io
 to

 D
at

a

(a) � = 0, low pT

4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−
ρ

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ρ
 / 

d 
σ

) d
 

re
su

m
σ

(1
 / 

ATLAS
-1= 13 TeV, 32.9 fbs

 R = 0.8tCalorimeter-based, anti-k
 = 0β = 0.1, 

cut
Soft Drop, z

 > 600 GeVlead
T

p
Nonperturbative Perturbative

Data
NNLL+NP
NLO+NLL+NP

LO+NNLL

4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−
ρ

0.5
1

1.5

Ra
tio

 to
 D

at
a

(b) � = 0, high pT

4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−
ρ

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6ρ

 / 
d 

σ
) d

 
re

su
m

σ
(1

 / 

ATLAS
-1= 13 TeV, 32.9 fbs

 R = 0.8tCalorimeter-based, anti-k
 = 1β = 0.1, 

cut
Soft Drop, z

 > 300 GeVlead
T

p
Nonperturbative Perturbative

Data
NLL
NLL+NP

4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−
ρ

0.5
1

1.5

R
at

io
 to

 D
at

a

(c) � = 1, low pT

4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−
ρ

0.2

0.4

0.6

0.8

1

1.2

1.4ρ
 / 

d 
σ

) d
 

re
su

m
σ

(1
 / 

ATLAS
-1= 13 TeV, 32.9 fbs

 R = 0.8tCalorimeter-based, anti-k
 = 1β = 0.1, 

cut
Soft Drop, z

 > 600 GeVlead
T

p
Nonperturbative Perturbative

Data
NLL+NP
NLO+NLL+NP

LO+NNLL

4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−
ρ

0.5
1

1.5

Ra
tio

 to
 D

at
a

(d) � = 1, high pT

4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−
ρ

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2ρ
 / 

d 
σ

) d
 

re
su

m
σ

(1
 / 

ATLAS
-1= 13 TeV, 32.9 fbs

 R = 0.8tCalorimeter-based, anti-k
 = 2β = 0.1, 

cut
Soft Drop, z

 > 300 GeVlead
T

p
Nonperturbative Perturbative

Data
NLL
NLL+NP

4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−
ρ

0.5
1

1.5

R
at

io
 to

 D
at

a

(e) � = 2, low pT

4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−
ρ

0.2
0.4
0.6
0.8

1
1.2
1.4

ρ
 / 

d 
σ

) d
 

re
su

m
σ

(1
 / 

ATLAS
-1= 13 TeV, 32.9 fbs

 R = 0.8tCalorimeter-based, anti-k
 = 2β = 0.1, 

cut
Soft Drop, z

 > 600 GeVlead
T

p
Nonperturbative Perturbative

Data
NLL+NP
NLO+NLL+NP

LO+NNLL

4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−
ρ

0.5
1

1.5

Ra
tio

 to
 D

at
a

(f) � = 2, high pT

Figure 9: Comparison of the unfolded ⇢ distribution with the theory predictions. For the (N)NLL, (N)NLL+NP, and
LO+NNLL predictions, the open marker style indicates that nonperturbative e�ects on the calculation are expected to
be large. ‘NP’ indicates that nonperturbative corrections have been applied. The experimental uncertainty bands
include all sources: data and MC statistical uncertainties, nonclosure, modeling, and cluster or tracking uncertainties
where relevant. The theory error bands include perturbative scale variations as well as nonperturbative model
variations (NLO+NLL only).
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≤10% experimental uncertainty
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Sensitivity to masses over 2+ decades

Unprecedented probe of jets at LHC

arXiv:1912.09837

Experimental plot 
with only data and 

analytic predictions!
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Regions: 
𝜌 > zcut (fixed-order)  
𝜌 < zcut (resummed) 
𝜌 < zcut(𝛬QCD/zcut pT)2  

(non-pert)

ATLAS jet mass data
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Potential 𝛼s fits over dynamic range of ~100x!

Resum FONP

Perturbative Lever Arm with Grooming
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Perturbative Lever Arm with Grooming
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𝜌 > zcut

Fixed-Order Corrections

mJ > 0: 2 → 3 process
Lots of recent 

progress at NNLO
arXiv:1712.02229,1712.03946,1805.09182,
1809.09067,1811.11699,1812.04586,1812.11160,
1904.00945,1905.03733,1906.11862,…

Non-perturbative Corrections
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Collinear Soft

Collinear

Nonperturbative

✓cs

a) b)

Figure 9. Two example scenarios where (a) the NP subjets get clustered at different stages and (b) where
the NP subjets are clustered together first before they get paired with another perturbative branch. In (b)
although one the NP particles lies outside the cone of radius ✓cs centered at the CS subjet, the combined
NP branch gets eventually clustered. This requires ⇥

��
NP to act on NP subjets rather than individual

particles.

the CA clustering is still important within the nonperturbative sector: the angular locations of
the NP branches can change significantly if other NP branches with similar momentum scaling
get paired with it. In this section we address this issue by clarifying what we mean precisely by
“NP subjets” for the purpose of defining our NP source function.

As an example we consider two scenarios with two NP particles and two perturbative branches
as shown in Fig. 9: in scenario (a) both of the NP particles get clustered with the perturbative
tree at different stages, and in scenario (b) they get clustered together first and the combined
branch is then paired with a perturbative branch (here the CS branch). In the scenario a) both
the nonperturbative particles can be combined with the CS subjet only if each of them falls in
the catchment area shown in Fig. 7, and hence individually satisfy ⇥

��

NP = 1. After the first NP
particle closer to the CS subjet is clustered, the angular location of the resulting subjet direction
is roughly the same, and hence the same geometrical constraint applies for the second NP particle
clustered later. In scenario (b), however, one of the NP particles may not lie in the region of
overlapping cones, because only the combination of them needs to. Hence, in order to make our
operators in Eqs. (4.12) and (4.21) account for such cases it is mandatory to make the meaning
of the state |X⇤i more precise.

Given a set of particles to be reclustered for grooming, the EFT provides a natural Lorentz
invariant distinction between perturbative and NP particles without introducing a hard momen-
tum cutoff. Physically, the momentum distribution of non-perturbative particles peaks at smaller
momenta in the SDOE region. We demand that the operators p̂µ��(✓cs,�cs) and p̂µ�(✓cs,�cs,�)

should be applied to “NP subjets” instead of being tested on individual NP particles, where these
NP subjets are obtained by CA clustering of all the NP particles treating perturbative particles
as “beam” directions. These NP subjets are defined in the following manner:

1. All NP particles are called NP subjets.

2. The pair of NP subjets with smallest relative angular distance �✓ is grouped into a new NP

– 23 –

Multiple moments 
encode NP corrections
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The form of both results in Eq. (4.51) makes explicit that they are the same order in the power
counting, as argued above. We also note that for the pp case the combinations in Eq. (4.51) are
independent of cosh ⌘J since

Q
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Note that the presence of an explicit ↵s factor in the first order SDOE power corrections is
explained by the need for a perturbative emission which stops soft drop. Furthermore we empha-
size that the coefficients for the shift and boundary power corrections contain large logarithms
from higher orders so one should not conclude that the O(↵s) terms shown in Eq. (4.51) suffice
to determine these coefficients at the leading log level. Due to the inherent separation of scales
that is present with the collinear-soft, jet, and global soft scales, these results will be dressed by
further perturbative emissions which produce a tower of leading logarithms.

4.5 Results for Power Corrections from the Operator Expansion

Based on the factorization for the power corrections derived in Secs. 3–4.4 it is natural to write
the hadronic cross section as
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where the leading power corrections are projections on a non-perturbative source distribution
F̃(kµ) given by
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Here we have used the fact that ⌥1(�) is linear in �. Thus the leading non-perturbative power
corrections in the SDOE region are expressed in terms of three hadronic parameters, ⌦��

1, ⌥
1,0,

and ⌥

1,1. These parameters are each O(⇤QCD), depend on whether the jet is initiated by a quark

or gluon via  = q, g, and are independent of all other variables.2 Since the momentum variables
2We ignore possible dependence on the renormalization scale µ because we do not attempt to sum large loga-

rithms occurring between the µcs and ⇤QCD scales. Single logarithms of this type are known to appear for e+e�

event shapes [25].

– 30 –

also arXiv:1307.0007, 1712.05105
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Figure 1: Schematic of the modes in the factorization theorem for soft-drop groomed hemi-

spheres in e+e� ! dijets events. SG(zcut) denotes the soft wide-angle modes, SC(zcute
(↵)
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denotes the collinear-soft modes, and J(e(↵)
2

) denotes the jet modes.

As we will explain in detail, there are several important consequences of this factorization

formula. Because the formula depends on the observables e(↵)
2,L

, e(↵)
2,R

only through collinear ob-

jects each of which has a single scale, there are no non-global logarithms. The elimination

of the purely soft contribution also makes the shape of soft-drop groomed jet shapes largely

independent of what else is going on in the event. For example, the shape of the left hemi-

sphere jet mass is independent of what is present in the right hemisphere. Additionally, the

scale associated with the collinear-soft mode is parametrically larger than the soft scale as-

sociated with ungroomed masses, so non-perturbative corrections such as hadronization are

correspondingly smaller.

This factorization theorem allows us to go beyond NLL accuracy to arbitrary accuracy.

In this paper, we show that next-to-next-to-leading logarithmic (NNLL) accuracy is readily

achievable. We focus on ↵ = 2 where the two-point energy correlation function is equal to the

squared jet mass (up to a trivial normalization). This lets us extract most of the necessary

two-loop anomalous dimensions from the existing literature. For � = 0, the global soft

function SG(zcut) is closely related to the soft function with an energy veto [28, 29] which is

known to two-loop order. There are additional clustering e↵ects from the soft drop algorithm,

but these are straightforward to calculate. Interestingly, we find that the clustering e↵ects in

the soft drop groomer are intimately related to similar e↵ects observed in jet veto calculations

[30–34]. For � = 1, we compute the two-loop anomalous dimension of SG(zcut) numerically

– 3 –

11

log
1

✓

log
1

z

log
1

e(�)
2

1

↵
log

1

e(�)
2

log
1

zcut

soft

collinear

H(Q2) J(e(�)
2 )

slope � � 0
fail soft drop

pass soft drop

SC(zcute
(�)
2 )

SG(zcut)

Figure 2: Location of modes appearing in the soft drop factorization theorem in the plane

defined by energy fraction z and splitting angle ✓ of emissions in the jet. The solid diagonal

line separates the regions of phase space where emissions pass and fail soft drop. All emissions

along the dashed line that pass soft drop contribute at leading power to the measured value

of e(↵)
2

.

For a jet to have e(↵)
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⌧ 1, all particles must be either soft or collinear to the jet axis. In

particular, a particle with energy E = zEJ at an angle ✓ from the jet axis must satisfy

z✓↵ . e(↵)
2

. (3.1)

This is a line in the log(1/z)-log(1/✓) plane, as shown in Fig. 2. Anything below the dashed

line in this figure is too hard to be consistent with a given value of e(↵)
2

. The soft drop criterion

is that

zcut . z✓�� , (3.2)

This is the region below the solid line in Fig. 2.

To find the relevant modes for the factorized expression, we need to identify the distinct

characteristic momentum scalings that approach the singular regions of phase space in the

limit e(↵)
2

⌧ zcut ⌧ 1. For a particular scaling, the constraints in Eqs. (3.1) and (3.2) will

either remain relevant or decouple. We can characterize the relevant regions by their scalings

in light-cone coordinates. Defining nµ as the jet direction and n̄µ as the direction backwards

to the jet, then light-cone coordinates are triplets p = (p�, p+, p?) where p� = n̄ ·p, p+ = n ·p

and p? are the components transverse to n. On-shell massless particles have p+p� = p2?.

The energy fraction is z = p0/Q = 1

2
(p+ +p�)/Q and the angle to the jet axis in the collinear

limit is ✓ = p?/p0.
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characteristic momentum scalings that approach the singular regions of phase space in the

limit e(↵)
2

⌧ zcut ⌧ 1. For a particular scaling, the constraints in Eqs. (3.1) and (3.2) will
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to the jet, then light-cone coordinates are triplets p = (p�, p+, p?) where p� = n̄ ·p, p+ = n ·p
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sphere jet mass is independent of what is present in the right hemisphere. Additionally, the

scale associated with the collinear-soft mode is parametrically larger than the soft scale as-

sociated with ungroomed masses, so non-perturbative corrections such as hadronization are

correspondingly smaller.

This factorization theorem allows us to go beyond NLL accuracy to arbitrary accuracy.

In this paper, we show that next-to-next-to-leading logarithmic (NNLL) accuracy is readily

achievable. We focus on ↵ = 2 where the two-point energy correlation function is equal to the

squared jet mass (up to a trivial normalization). This lets us extract most of the necessary

two-loop anomalous dimensions from the existing literature. For � = 0, the global soft

function SG(zcut) is closely related to the soft function with an energy veto [28, 29] which is

known to two-loop order. There are additional clustering e↵ects from the soft drop algorithm,

but these are straightforward to calculate. Interestingly, we find that the clustering e↵ects in

the soft drop groomer are intimately related to similar e↵ects observed in jet veto calculations

[30–34]. For � = 1, we compute the two-loop anomalous dimension of SG(zcut) numerically
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Significant reduction of scale uncertainties

Dramatically increased dynamic range

NLL+LO and NNLL+NLO with different levels of grooming
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Going Beyond NNLL

�cusp �F � cF Matching

LL ↵s - ↵s - -

NLL ↵2
s ↵s ↵2

s - ↵s

NNLL ↵3
s ↵2

s ↵3
s ↵s ↵2

s

NNNLL ↵4
s ↵3

s ↵4
s ↵2

s ↵3
s

TABLE I. ↵s-order of ingredients needed for resummation to the logarithmic accuracy given. �cusp

is the cusp anomalous dimension, �F is the non-cusp anomalous dimension for function F̃ , � is the

QCD �-function, and cF are the low-scale constants for function F̃ . The final column shows the

relative order to which the resummed cross section can be additively matched to fixed-order.

where ⌫L (⌫R) is the Laplace conjugate of ⌧L (⌧R). In this product form, each function in

the factorization theorem satisfies a simple renormalization group equation (RGE),

µ
@F̃

@µ
=

✓
dF�cusp log

µ
2

µ
2

F

+ �F

◆
F̃ , (F̃ = H , S , J̃ , S̃c) (11)

where dF is a constant, µF is the canonical scale, and �F is the non-cusp anomalous dimension

particular to F̃ . �cusp is the cusp anomalous dimension for back-to-back light-like Wilson

lines in the fundamental representation of color SU(3). Large logarithms of hemisphere

masses can be resummed to all orders in ↵s through this renormalization group equation. It

can be solved exactly, and we present its explicit solution through ↵
3

s
in App. B.

The order to which logarithms can be resummed through this renormalization group

equation depends on the accuracy to which its components are calculated. For the canonical

definition of logarithmic accuracy [58], Table I shows the order in ↵s to which the compo-

nents of the renomalization group equation are needed. In this table, “LL” denotes leading

logarithmic accuracy, “NLL” is next-to-leading logarithmic accuracy, etc. Ref. [8] resummed

the mMDT groomed mass distribution to NNLL accuracy,1 requiring the new calculation of

one-loop constants and two-loop non-cusp anomalous dimensions. The goal of this paper is

to extend the order of the known components to accomplish NNNLL resummation.

1 The logarithmic counting of mMDT groomed mass is actually modified from the traditional counting.

mMDT grooming completely eliminates double logarithms of the mass in the cross section, so what is

labeled NLL in Table I is actually LL for mMDT groomed mass, and similar for higher accuracy. However,

we keep with the counting as in Table I because it corresponds to the logarithms that are resummed in any

individual function in the factorized cross section. Only when all functions are multiplied, as in Eq. (10),

do double logarithms vanish. 8

Ingredients necessary 
for resummation:
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�cusp �F � cF Matching

LL ↵s - ↵s - -

NLL ↵2
s ↵s ↵2

s - ↵s

NNLL ↵3
s ↵2

s ↵3
s ↵s ↵2

s

NNNLL ↵4
s ↵3

s ↵4
s ↵2

s ↵3
s

TABLE I. ↵s-order of ingredients needed for resummation to the logarithmic accuracy given. �cusp

is the cusp anomalous dimension, �F is the non-cusp anomalous dimension for function F̃ , � is the

QCD �-function, and cF are the low-scale constants for function F̃ . The final column shows the

relative order to which the resummed cross section can be additively matched to fixed-order.

where ⌫L (⌫R) is the Laplace conjugate of ⌧L (⌧R). In this product form, each function in

the factorization theorem satisfies a simple renormalization group equation (RGE),

µ
@F̃

@µ
=

✓
dF�cusp log

µ
2

µ
2

F

+ �F

◆
F̃ , (F̃ = H , S , J̃ , S̃c) (11)

where dF is a constant, µF is the canonical scale, and �F is the non-cusp anomalous dimension

particular to F̃ . �cusp is the cusp anomalous dimension for back-to-back light-like Wilson

lines in the fundamental representation of color SU(3). Large logarithms of hemisphere

masses can be resummed to all orders in ↵s through this renormalization group equation. It

can be solved exactly, and we present its explicit solution through ↵
3

s
in App. B.

The order to which logarithms can be resummed through this renormalization group

equation depends on the accuracy to which its components are calculated. For the canonical

definition of logarithmic accuracy [58], Table I shows the order in ↵s to which the compo-

nents of the renomalization group equation are needed. In this table, “LL” denotes leading

logarithmic accuracy, “NLL” is next-to-leading logarithmic accuracy, etc. Ref. [8] resummed

the mMDT groomed mass distribution to NNLL accuracy,1 requiring the new calculation of

one-loop constants and two-loop non-cusp anomalous dimensions. The goal of this paper is

to extend the order of the known components to accomplish NNNLL resummation.

1 The logarithmic counting of mMDT groomed mass is actually modified from the traditional counting.

mMDT grooming completely eliminates double logarithms of the mass in the cross section, so what is

labeled NLL in Table I is actually LL for mMDT groomed mass, and similar for higher accuracy. However,

we keep with the counting as in Table I because it corresponds to the logarithms that are resummed in any

individual function in the factorized cross section. Only when all functions are multiplied, as in Eq. (10),

do double logarithms vanish. 8

Ingredients necessary 
for resummation:

Can match to NNLO
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LL ↵s - ↵s - -

NLL ↵2
s ↵s ↵2

s - ↵s

NNLL ↵3
s ↵2

s ↵3
s ↵s ↵2

s

NNNLL ↵4
s ↵3

s ↵4
s ↵2

s ↵3
s

TABLE I. ↵s-order of ingredients needed for resummation to the logarithmic accuracy given. �cusp

is the cusp anomalous dimension, �F is the non-cusp anomalous dimension for function F̃ , � is the

QCD �-function, and cF are the low-scale constants for function F̃ . The final column shows the

relative order to which the resummed cross section can be additively matched to fixed-order.

where ⌫L (⌫R) is the Laplace conjugate of ⌧L (⌧R). In this product form, each function in

the factorization theorem satisfies a simple renormalization group equation (RGE),

µ
@F̃

@µ
=

✓
dF�cusp log

µ
2

µ
2

F

+ �F

◆
F̃ , (F̃ = H , S , J̃ , S̃c) (11)

where dF is a constant, µF is the canonical scale, and �F is the non-cusp anomalous dimension

particular to F̃ . �cusp is the cusp anomalous dimension for back-to-back light-like Wilson

lines in the fundamental representation of color SU(3). Large logarithms of hemisphere

masses can be resummed to all orders in ↵s through this renormalization group equation. It

can be solved exactly, and we present its explicit solution through ↵
3

s
in App. B.

The order to which logarithms can be resummed through this renormalization group

equation depends on the accuracy to which its components are calculated. For the canonical

definition of logarithmic accuracy [58], Table I shows the order in ↵s to which the compo-

nents of the renomalization group equation are needed. In this table, “LL” denotes leading

logarithmic accuracy, “NLL” is next-to-leading logarithmic accuracy, etc. Ref. [8] resummed

the mMDT groomed mass distribution to NNLL accuracy,1 requiring the new calculation of

one-loop constants and two-loop non-cusp anomalous dimensions. The goal of this paper is

to extend the order of the known components to accomplish NNNLL resummation.

1 The logarithmic counting of mMDT groomed mass is actually modified from the traditional counting.

mMDT grooming completely eliminates double logarithms of the mass in the cross section, so what is

labeled NLL in Table I is actually LL for mMDT groomed mass, and similar for higher accuracy. However,

we keep with the counting as in Table I because it corresponds to the logarithms that are resummed in any

individual function in the factorized cross section. Only when all functions are multiplied, as in Eq. (10),

do double logarithms vanish. 8

Ingredients necessary 
for resummation:

Now analytically 
known at four-loops

arXiv:9401214,1610.07477,1612.04389,1604.03126,
1707.08315,1805.09638,1901.03693,1901.02898,
1902.08208,1902.05076,1911.10174, 2002.04617
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LL ↵s - ↵s - -

NLL ↵2
s ↵s ↵2

s - ↵s

NNLL ↵3
s ↵2

s ↵3
s ↵s ↵2

s

NNNLL ↵4
s ↵3

s ↵4
s ↵2

s ↵3
s

TABLE I. ↵s-order of ingredients needed for resummation to the logarithmic accuracy given. �cusp

is the cusp anomalous dimension, �F is the non-cusp anomalous dimension for function F̃ , � is the

QCD �-function, and cF are the low-scale constants for function F̃ . The final column shows the

relative order to which the resummed cross section can be additively matched to fixed-order.

where ⌫L (⌫R) is the Laplace conjugate of ⌧L (⌧R). In this product form, each function in

the factorization theorem satisfies a simple renormalization group equation (RGE),

µ
@F̃

@µ
=

✓
dF�cusp log

µ
2

µ
2

F

+ �F

◆
F̃ , (F̃ = H , S , J̃ , S̃c) (11)

where dF is a constant, µF is the canonical scale, and �F is the non-cusp anomalous dimension

particular to F̃ . �cusp is the cusp anomalous dimension for back-to-back light-like Wilson

lines in the fundamental representation of color SU(3). Large logarithms of hemisphere

masses can be resummed to all orders in ↵s through this renormalization group equation. It

can be solved exactly, and we present its explicit solution through ↵
3

s
in App. B.

The order to which logarithms can be resummed through this renormalization group

equation depends on the accuracy to which its components are calculated. For the canonical

definition of logarithmic accuracy [58], Table I shows the order in ↵s to which the compo-

nents of the renomalization group equation are needed. In this table, “LL” denotes leading

logarithmic accuracy, “NLL” is next-to-leading logarithmic accuracy, etc. Ref. [8] resummed

the mMDT groomed mass distribution to NNLL accuracy,1 requiring the new calculation of

one-loop constants and two-loop non-cusp anomalous dimensions. The goal of this paper is

to extend the order of the known components to accomplish NNNLL resummation.

1 The logarithmic counting of mMDT groomed mass is actually modified from the traditional counting.

mMDT grooming completely eliminates double logarithms of the mass in the cross section, so what is

labeled NLL in Table I is actually LL for mMDT groomed mass, and similar for higher accuracy. However,

we keep with the counting as in Table I because it corresponds to the logarithms that are resummed in any

individual function in the factorized cross section. Only when all functions are multiplied, as in Eq. (10),

do double logarithms vanish. 8

Ingredients necessary 
for resummation:

Known for a long time
arXiv:9701390
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LL ↵s - ↵s - -

NLL ↵2
s ↵s ↵2

s - ↵s

NNLL ↵3
s ↵2

s ↵3
s ↵s ↵2

s

NNNLL ↵4
s ↵3

s ↵4
s ↵2

s ↵3
s

TABLE I. ↵s-order of ingredients needed for resummation to the logarithmic accuracy given. �cusp

is the cusp anomalous dimension, �F is the non-cusp anomalous dimension for function F̃ , � is the

QCD �-function, and cF are the low-scale constants for function F̃ . The final column shows the

relative order to which the resummed cross section can be additively matched to fixed-order.

where ⌫L (⌫R) is the Laplace conjugate of ⌧L (⌧R). In this product form, each function in

the factorization theorem satisfies a simple renormalization group equation (RGE),

µ
@F̃

@µ
=

✓
dF�cusp log

µ
2

µ
2

F

+ �F

◆
F̃ , (F̃ = H , S , J̃ , S̃c) (11)

where dF is a constant, µF is the canonical scale, and �F is the non-cusp anomalous dimension

particular to F̃ . �cusp is the cusp anomalous dimension for back-to-back light-like Wilson

lines in the fundamental representation of color SU(3). Large logarithms of hemisphere

masses can be resummed to all orders in ↵s through this renormalization group equation. It

can be solved exactly, and we present its explicit solution through ↵
3

s
in App. B.

The order to which logarithms can be resummed through this renormalization group

equation depends on the accuracy to which its components are calculated. For the canonical

definition of logarithmic accuracy [58], Table I shows the order in ↵s to which the compo-

nents of the renomalization group equation are needed. In this table, “LL” denotes leading

logarithmic accuracy, “NLL” is next-to-leading logarithmic accuracy, etc. Ref. [8] resummed

the mMDT groomed mass distribution to NNLL accuracy,1 requiring the new calculation of

one-loop constants and two-loop non-cusp anomalous dimensions. The goal of this paper is

to extend the order of the known components to accomplish NNNLL resummation.

1 The logarithmic counting of mMDT groomed mass is actually modified from the traditional counting.

mMDT grooming completely eliminates double logarithms of the mass in the cross section, so what is

labeled NLL in Table I is actually LL for mMDT groomed mass, and similar for higher accuracy. However,

we keep with the counting as in Table I because it corresponds to the logarithms that are resummed in any

individual function in the factorized cross section. Only when all functions are multiplied, as in Eq. (10),

do double logarithms vanish. 8

d�

dm2
⇠ H(Q2)S(zcutQ

2)J(m2)Sc(zcutm
2)

Ingredients necessary 
for resummation:

Two-loop constants and three-loop 
anomalous dimensions known

arXiv:0507039, 0507061, 0902.3519, 1001.2887, 1004.3653
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LL ↵s - ↵s - -

NLL ↵2
s ↵s ↵2

s - ↵s

NNLL ↵3
s ↵2

s ↵3
s ↵s ↵2

s

NNNLL ↵4
s ↵3

s ↵4
s ↵2

s ↵3
s

TABLE I. ↵s-order of ingredients needed for resummation to the logarithmic accuracy given. �cusp

is the cusp anomalous dimension, �F is the non-cusp anomalous dimension for function F̃ , � is the

QCD �-function, and cF are the low-scale constants for function F̃ . The final column shows the

relative order to which the resummed cross section can be additively matched to fixed-order.

where ⌫L (⌫R) is the Laplace conjugate of ⌧L (⌧R). In this product form, each function in

the factorization theorem satisfies a simple renormalization group equation (RGE),

µ
@F̃

@µ
=

✓
dF�cusp log

µ
2

µ
2

F

+ �F

◆
F̃ , (F̃ = H , S , J̃ , S̃c) (11)

where dF is a constant, µF is the canonical scale, and �F is the non-cusp anomalous dimension

particular to F̃ . �cusp is the cusp anomalous dimension for back-to-back light-like Wilson

lines in the fundamental representation of color SU(3). Large logarithms of hemisphere

masses can be resummed to all orders in ↵s through this renormalization group equation. It

can be solved exactly, and we present its explicit solution through ↵
3

s
in App. B.

The order to which logarithms can be resummed through this renormalization group

equation depends on the accuracy to which its components are calculated. For the canonical

definition of logarithmic accuracy [58], Table I shows the order in ↵s to which the compo-

nents of the renomalization group equation are needed. In this table, “LL” denotes leading

logarithmic accuracy, “NLL” is next-to-leading logarithmic accuracy, etc. Ref. [8] resummed

the mMDT groomed mass distribution to NNLL accuracy,1 requiring the new calculation of

one-loop constants and two-loop non-cusp anomalous dimensions. The goal of this paper is

to extend the order of the known components to accomplish NNNLL resummation.

1 The logarithmic counting of mMDT groomed mass is actually modified from the traditional counting.

mMDT grooming completely eliminates double logarithms of the mass in the cross section, so what is

labeled NLL in Table I is actually LL for mMDT groomed mass, and similar for higher accuracy. However,

we keep with the counting as in Table I because it corresponds to the logarithms that are resummed in any

individual function in the factorized cross section. Only when all functions are multiplied, as in Eq. (10),

do double logarithms vanish. 8

d�

dm2
⇠ H(Q2)S(zcutQ

2)J(m2)Sc(zcutm
2)

Ingredients necessary 
for resummation:

Same jet function as for thrust, C-parameter

Two-loop constants and three-loop 
anomalous dimensions known

arXiv:0803.0342, 0607228
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LL ↵s - ↵s - -

NLL ↵2
s ↵s ↵2

s - ↵s

NNLL ↵3
s ↵2

s ↵3
s ↵s ↵2

s

NNNLL ↵4
s ↵3

s ↵4
s ↵2

s ↵3
s

TABLE I. ↵s-order of ingredients needed for resummation to the logarithmic accuracy given. �cusp

is the cusp anomalous dimension, �F is the non-cusp anomalous dimension for function F̃ , � is the

QCD �-function, and cF are the low-scale constants for function F̃ . The final column shows the

relative order to which the resummed cross section can be additively matched to fixed-order.

where ⌫L (⌫R) is the Laplace conjugate of ⌧L (⌧R). In this product form, each function in

the factorization theorem satisfies a simple renormalization group equation (RGE),

µ
@F̃

@µ
=

✓
dF�cusp log

µ
2

µ
2

F

+ �F

◆
F̃ , (F̃ = H , S , J̃ , S̃c) (11)

where dF is a constant, µF is the canonical scale, and �F is the non-cusp anomalous dimension

particular to F̃ . �cusp is the cusp anomalous dimension for back-to-back light-like Wilson

lines in the fundamental representation of color SU(3). Large logarithms of hemisphere

masses can be resummed to all orders in ↵s through this renormalization group equation. It

can be solved exactly, and we present its explicit solution through ↵
3

s
in App. B.

The order to which logarithms can be resummed through this renormalization group

equation depends on the accuracy to which its components are calculated. For the canonical

definition of logarithmic accuracy [58], Table I shows the order in ↵s to which the compo-

nents of the renomalization group equation are needed. In this table, “LL” denotes leading

logarithmic accuracy, “NLL” is next-to-leading logarithmic accuracy, etc. Ref. [8] resummed

the mMDT groomed mass distribution to NNLL accuracy,1 requiring the new calculation of

one-loop constants and two-loop non-cusp anomalous dimensions. The goal of this paper is

to extend the order of the known components to accomplish NNNLL resummation.

1 The logarithmic counting of mMDT groomed mass is actually modified from the traditional counting.

mMDT grooming completely eliminates double logarithms of the mass in the cross section, so what is

labeled NLL in Table I is actually LL for mMDT groomed mass, and similar for higher accuracy. However,

we keep with the counting as in Table I because it corresponds to the logarithms that are resummed in any

individual function in the factorized cross section. Only when all functions are multiplied, as in Eq. (10),

do double logarithms vanish. 8

d�

dm2
⇠ H(Q2)S(zcutQ

2)J(m2)Sc(zcutm
2)

Ingredients necessary 
for resummation:

Three-loop anomalous dimension recently 
extracted with MCCSM at NNLO

Two-loop constants recently calculated
arXiv:1805.12414, 1812.08690, 2004.08396

arXiv:1603.08927, 1606.03453, 1708.04093, 1807.11472, 2002.05730
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LL ↵s - ↵s - -

NLL ↵2
s ↵s ↵2

s - ↵s

NNLL ↵3
s ↵2

s ↵3
s ↵s ↵2

s

NNNLL ↵4
s ↵3

s ↵4
s ↵2

s ↵3
s

TABLE I. ↵s-order of ingredients needed for resummation to the logarithmic accuracy given. �cusp

is the cusp anomalous dimension, �F is the non-cusp anomalous dimension for function F̃ , � is the

QCD �-function, and cF are the low-scale constants for function F̃ . The final column shows the

relative order to which the resummed cross section can be additively matched to fixed-order.

where ⌫L (⌫R) is the Laplace conjugate of ⌧L (⌧R). In this product form, each function in

the factorization theorem satisfies a simple renormalization group equation (RGE),

µ
@F̃

@µ
=

✓
dF�cusp log

µ
2

µ
2

F

+ �F

◆
F̃ , (F̃ = H , S , J̃ , S̃c) (11)

where dF is a constant, µF is the canonical scale, and �F is the non-cusp anomalous dimension

particular to F̃ . �cusp is the cusp anomalous dimension for back-to-back light-like Wilson

lines in the fundamental representation of color SU(3). Large logarithms of hemisphere

masses can be resummed to all orders in ↵s through this renormalization group equation. It

can be solved exactly, and we present its explicit solution through ↵
3

s
in App. B.

The order to which logarithms can be resummed through this renormalization group

equation depends on the accuracy to which its components are calculated. For the canonical

definition of logarithmic accuracy [58], Table I shows the order in ↵s to which the compo-

nents of the renomalization group equation are needed. In this table, “LL” denotes leading

logarithmic accuracy, “NLL” is next-to-leading logarithmic accuracy, etc. Ref. [8] resummed

the mMDT groomed mass distribution to NNLL accuracy,1 requiring the new calculation of

one-loop constants and two-loop non-cusp anomalous dimensions. The goal of this paper is

to extend the order of the known components to accomplish NNNLL resummation.

1 The logarithmic counting of mMDT groomed mass is actually modified from the traditional counting.

mMDT grooming completely eliminates double logarithms of the mass in the cross section, so what is

labeled NLL in Table I is actually LL for mMDT groomed mass, and similar for higher accuracy. However,

we keep with the counting as in Table I because it corresponds to the logarithms that are resummed in any

individual function in the factorized cross section. Only when all functions are multiplied, as in Eq. (10),

do double logarithms vanish. 8

d�

dm2
⇠ H(Q2)S(zcutQ

2)J(m2)Sc(zcutm
2)

Ingredients necessary 
for resummation:

Three-loop anomalous dimension constrained by

Two-loop constants recently extracted from EVENT2

0 = �H + �S + 2�J + 2�Sc

arXiv:9605323, 2002.05730
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LL ↵s - ↵s - -

NLL ↵2
s ↵s ↵2

s - ↵s

NNLL ↵3
s ↵2

s ↵3
s ↵s ↵2

s

NNNLL ↵4
s ↵3

s ↵4
s ↵2

s ↵3
s

TABLE I. ↵s-order of ingredients needed for resummation to the logarithmic accuracy given. �cusp

is the cusp anomalous dimension, �F is the non-cusp anomalous dimension for function F̃ , � is the

QCD �-function, and cF are the low-scale constants for function F̃ . The final column shows the

relative order to which the resummed cross section can be additively matched to fixed-order.

where ⌫L (⌫R) is the Laplace conjugate of ⌧L (⌧R). In this product form, each function in

the factorization theorem satisfies a simple renormalization group equation (RGE),

µ
@F̃

@µ
=

✓
dF�cusp log

µ
2

µ
2

F

+ �F

◆
F̃ , (F̃ = H , S , J̃ , S̃c) (11)

where dF is a constant, µF is the canonical scale, and �F is the non-cusp anomalous dimension

particular to F̃ . �cusp is the cusp anomalous dimension for back-to-back light-like Wilson

lines in the fundamental representation of color SU(3). Large logarithms of hemisphere

masses can be resummed to all orders in ↵s through this renormalization group equation. It

can be solved exactly, and we present its explicit solution through ↵
3

s
in App. B.

The order to which logarithms can be resummed through this renormalization group

equation depends on the accuracy to which its components are calculated. For the canonical

definition of logarithmic accuracy [58], Table I shows the order in ↵s to which the compo-

nents of the renomalization group equation are needed. In this table, “LL” denotes leading

logarithmic accuracy, “NLL” is next-to-leading logarithmic accuracy, etc. Ref. [8] resummed

the mMDT groomed mass distribution to NNLL accuracy,1 requiring the new calculation of

one-loop constants and two-loop non-cusp anomalous dimensions. The goal of this paper is

to extend the order of the known components to accomplish NNNLL resummation.

1 The logarithmic counting of mMDT groomed mass is actually modified from the traditional counting.

mMDT grooming completely eliminates double logarithms of the mass in the cross section, so what is

labeled NLL in Table I is actually LL for mMDT groomed mass, and similar for higher accuracy. However,

we keep with the counting as in Table I because it corresponds to the logarithms that are resummed in any

individual function in the factorized cross section. Only when all functions are multiplied, as in Eq. (10),

do double logarithms vanish. 8

d�

dm2
⇠ H(Q2)S(zcutQ

2)J(m2)Sc(zcutm
2)

Ingredients necessary 
for resummation:

All ingredients for NNNLL resummation known!
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NNNLL+NNLO Prediction at the Z-pole

Good convergence 
observed for all 𝜌!
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Going to pp Collisions

Not quite a factorization theorem
d�

d⇢
=

X

i2q,g

Ni(pT , y, zcut, R) Ji(⇢)⌦ Sc,i(⇢, zcut)

R ~mJ/pT

~pT

Universal
Depends on all scales 
except groomed mass

Need to sum over quark/gluon 
jet fractions
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Conclusions

Grooming solves experimental contamination issues in jets

Factorization theorem enables arbitrary logarithmic accuracy 

Grooming solves theoretical non-global issues in jets

NNNLL resummation for mMDT grooming possible 
with (N)NLO codes
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Future Directions

Can Legacy LEP data be used for 𝛼s fit?

Can LHC Jet data be used for 𝛼s fit?

Progress toward analytic calculation of anomalous 
dimensions/constants?

Resummation in 𝜌 ~ zcut regime and non-global effects?

NNNLL resummation for general soft drop grooming?


