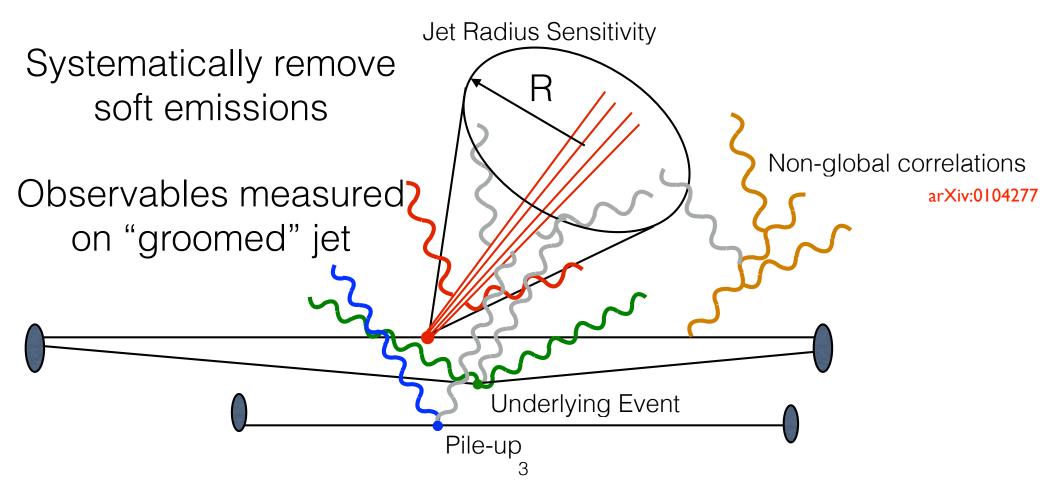
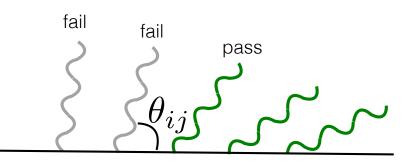

Theoretical Precision for Jet Substructure

Andrew Larkoski Reed College

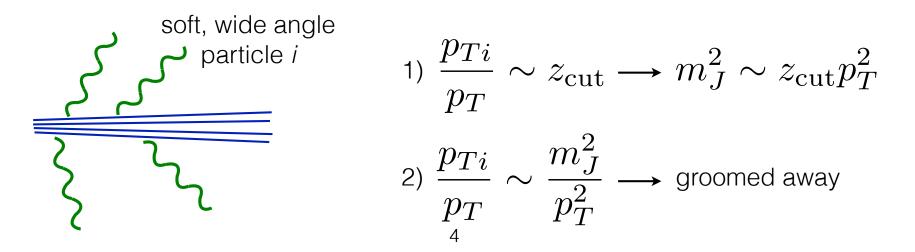

Jets and their substructure from LHC data, 2 June, 2021


Theoretical Motivation for Jet Grooming

Jets at the LHC are messy things!

Final-state radiation + Underlying Event + Pile-Up + Non-global effects + ...

mMDT/soft drop Grooming

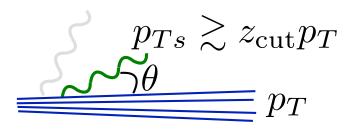

$$\frac{\min[p_{Ti}, p_{Tj}]}{p_{Ti} + p_{Tj}} > z_{\text{cut}} \left(\frac{\theta_{ij}}{R}\right)^{\beta}$$

arXiv:1307.0007, 1402.2657

Angular-ordered emissions

 $\beta = 0$: mMDT

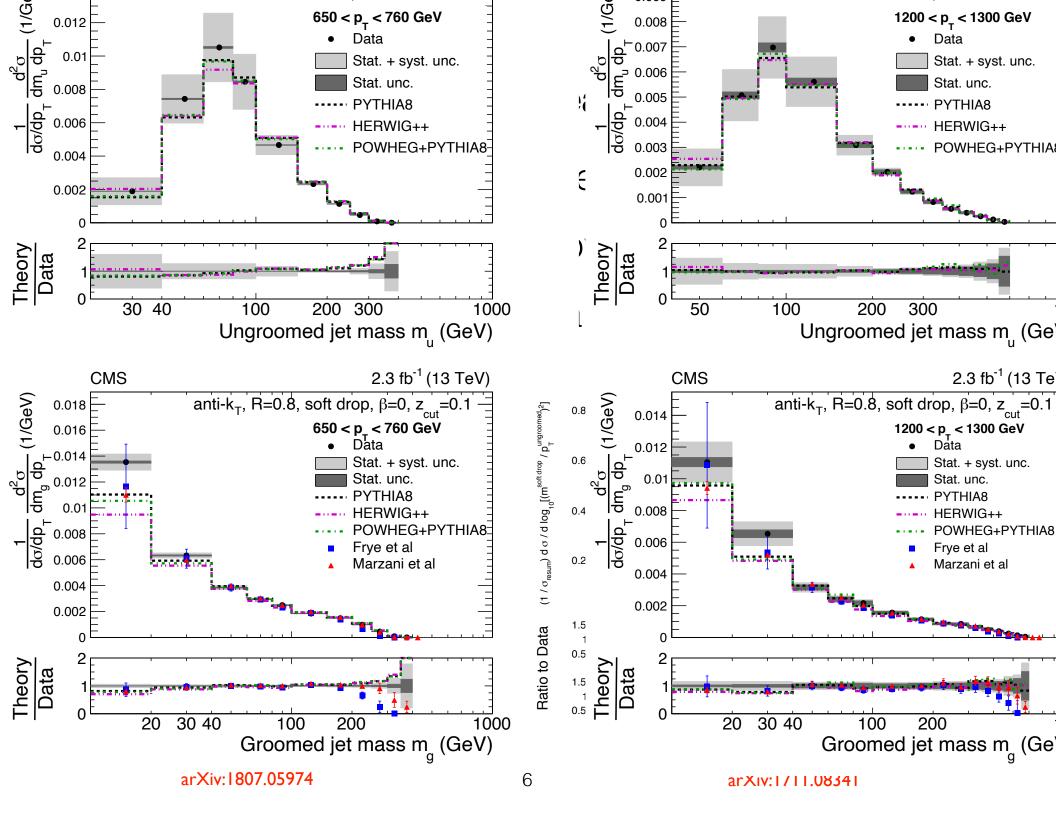
Only jet groomer that removes non-global emissions! Relevant regime: $m_J^2 \ll z_{\rm cut} p_T^2 \ll p_T^2$



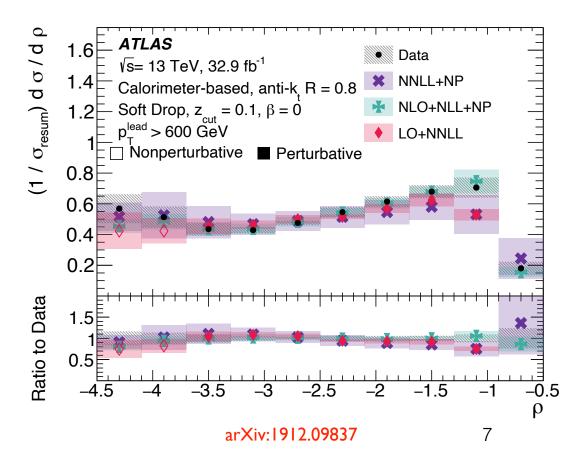
Perturbative Lever Arm with Grooming


Ungroomed Jet Mass

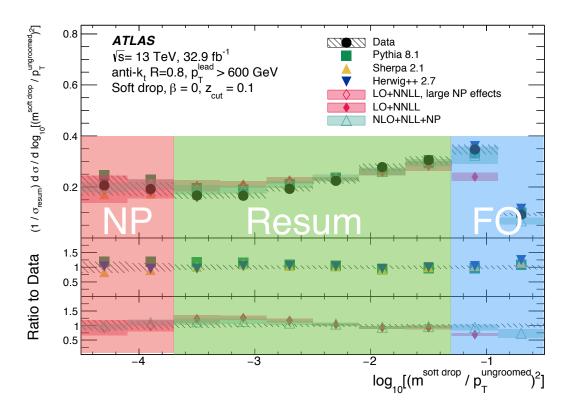
 $\int_{\theta}^{p_{Ts}} \theta \sim R$


mMDT Groomed Jet Mass

 $p_{Ts}R \simeq \Lambda_{\rm QCD} \qquad \qquad p_{Ts}\theta \simeq \Lambda_{\rm QCD}$



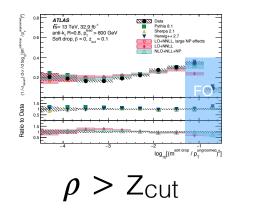
Parametrically larger perturbative regime with grooming! Increase of ~100x for TeV-scale jets

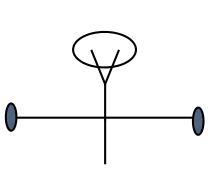

New Precision Measurements

Unprecedented probe of jets at LHC Sensitivity to masses over 2+ decades ≤10% experimental uncertainty

Experimental plot with only data and analytic predictions!

Perturbative Lever Arm with Grooming

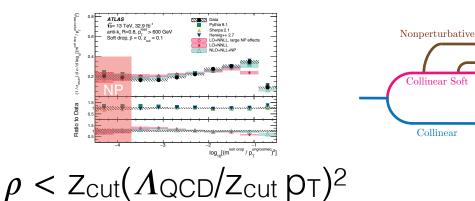



ATLAS jet mass data Regions: $\rho > z_{cut}$ (fixed-order) $\rho < z_{cut}$ (resummed) $\rho < Z_{cut}(\Lambda_{QCD}/Z_{cut} p_T)^2$ (non-pert) $\rho = (m_J/p_T)^2$

Potential α_s fits over dynamic range of ~100x!

Perturbative Lever Arm with Grooming

Fixed-Order Corrections

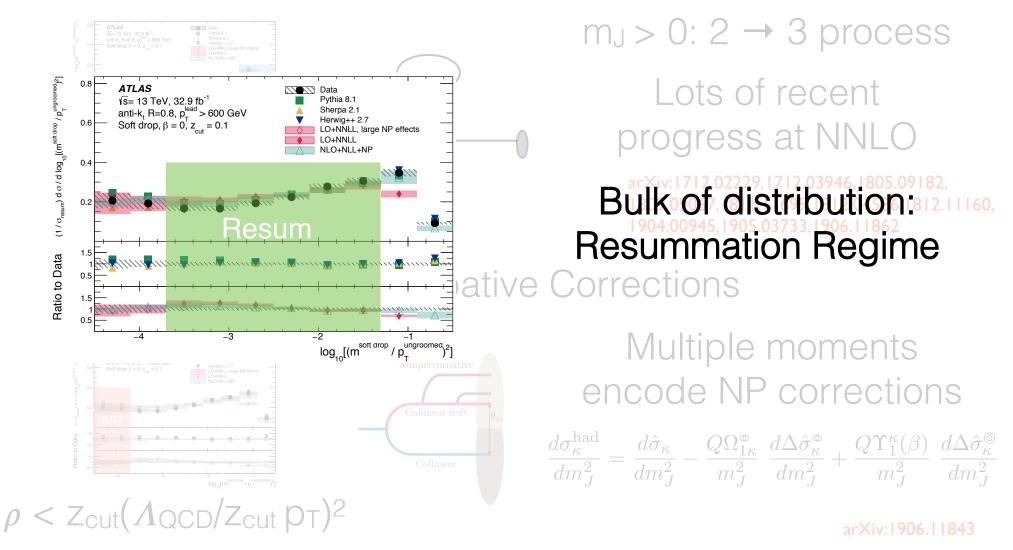


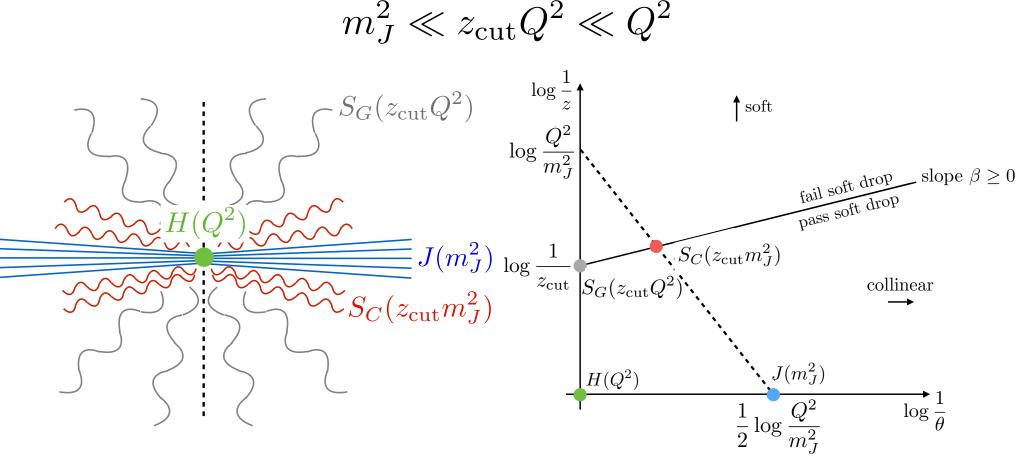
 $m_J > 0: 2 \rightarrow 3 \text{ process}$

Lots of recent progress at NNLO

arXiv:1712.02229,1712.03946,1805.09182, 1809.09067,1811.11699,1812.04586,1812.11160, 1904.00945,1905.03733,1906.11862,...

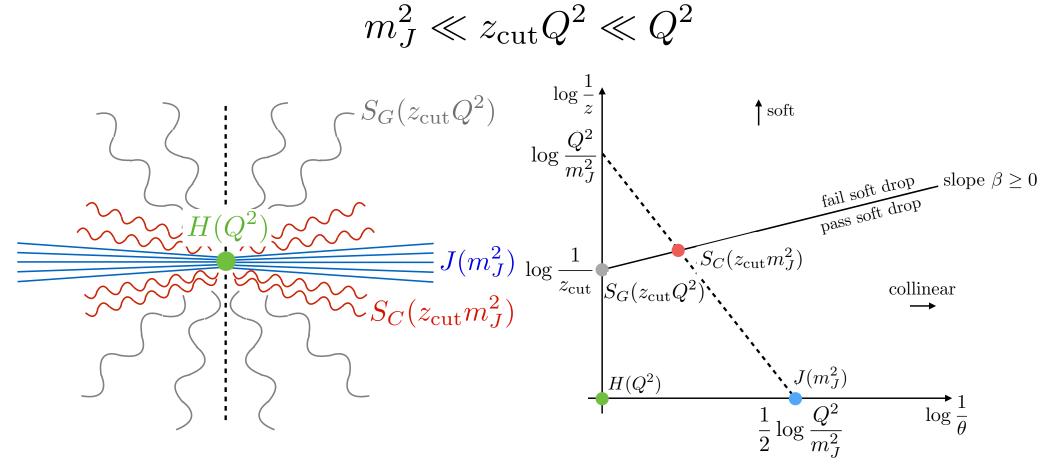
Non-perturbative Corrections

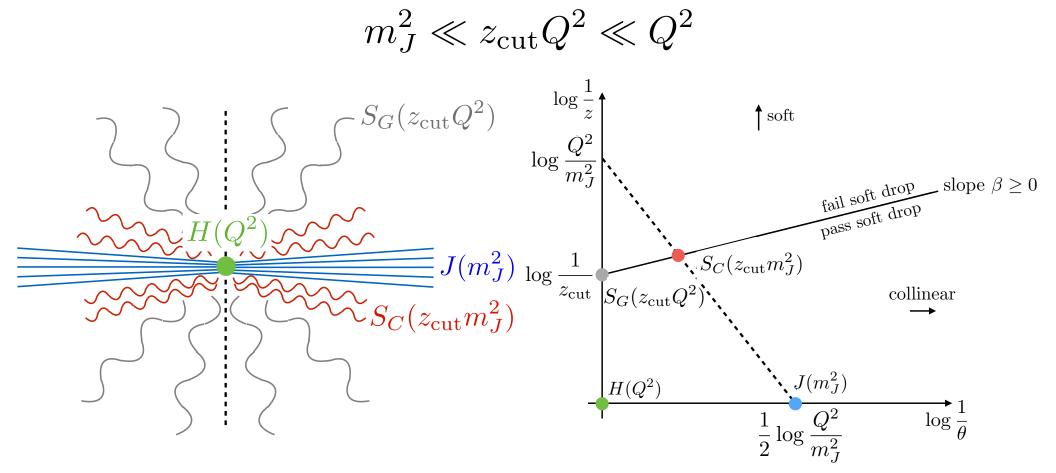

Multiple moments encode NP corrections


$d\sigma_{\kappa}^{ m had}$	$d\hat{\sigma}_{\kappa}$	$Q\Omega^{\rm O}_{1\kappa}$	$d\Delta\hat{\sigma}^{\rm G}_{\kappa}$	I	$Q\Upsilon_1^\kappa(\beta)$	$d\Delta \hat{\sigma}_{\kappa}^{\circledcirc}$
dm_J^2	$-\frac{1}{dm_J^2}$	m_J^2	dm_J^2	Ŧ	$\overline{m_J^2}$	dm_J^2

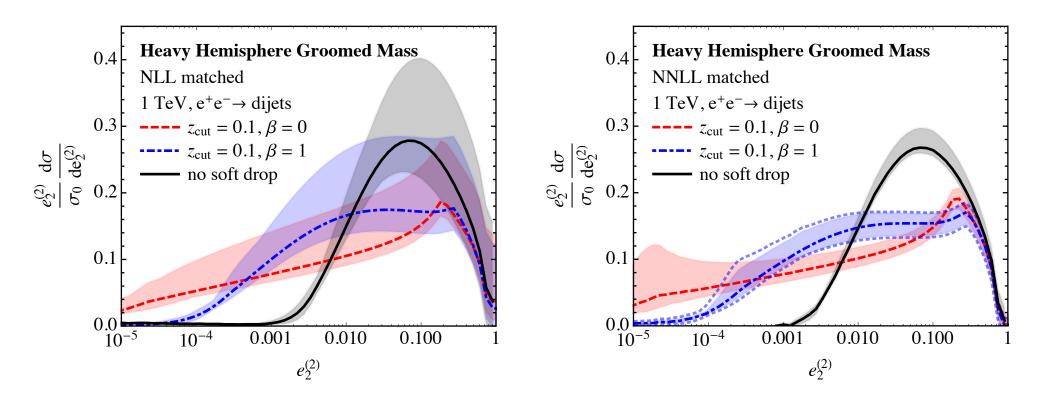
arXiv:1906.11843 also arXiv:1307.0007, 1712.05105

This Talk


Fixed-Order Corrections


 $H(Q^2)$ e⁺e⁻ \rightarrow qq virtuals $J(m_J^2)$ ungroomed collinears

groomed away softs $S_C(z_{\rm cut}m_J^2)$ groomed collinear-softs $S_G(z_{\rm cut}Q^2)$


Leading-Power Factorization Theorem:

 $\frac{d^2\sigma}{dm_{J,L}^2 dm_{J,R}^2} = H(Q^2) S_G(z_{\text{cut}}Q^2) \left[S_C(z_{\text{cut}}m_{J,L}^2) J(m_{J,L}^2) \right] \left[S_C(z_{\text{cut}}m_{J,R}^2) J(m_{J,R}^2) \right]$

Resummation by Renormalization Group Running

$$\mu \frac{\partial F}{\partial \mu} = \left(\Gamma_{\text{cusp}} \log \frac{\mu}{\mu_F} + \gamma_F \right) F$$

NLL+LO and NNLL+NLO with different levels of grooming

Significant reduction of scale uncertainties

Dramatically increased dynamic range

		$\Gamma_{\rm cusp}$	γ_F	eta	c_F	Matching
Ingredients necessary for resummation:	LL	$lpha_{\mathbf{s}}$	-	$lpha_{ m s}$	-	-
	NLL	$lpha_{ m s}^2$	$lpha_{ m s}$	$lpha_{ m s}^2$	-	$lpha_{ m s}$
	NNLL	$lpha_{ m s}^3$	$lpha_{ m s}^2$	$lpha_{ m s}^3$	$lpha_{\mathbf{s}}$	$lpha_{ m s}^2$
	NNNLL	$lpha_{ m s}^4$	$lpha_{ m s}^3$	$lpha_{ m s}^4$	$lpha_{ m s}^2$	$lpha_{ m s}^3$

		$\Gamma_{\rm cusp}$	γ_F	eta	c_F	Matching
Ingredients necessary for resummation:	LL	$lpha_{\mathbf{s}}$	-	$lpha_{\mathbf{s}}$	-	-
	NLL	$lpha_{ m s}^2$	$lpha_{ m s}$	$lpha_{ m s}^2$	-	$lpha_{ m s}$
	NNLL	$lpha_{ m s}^3$	$lpha_{ m s}^2$	$lpha_{ m s}^3$	$lpha_{ m s}$	$lpha_{ m s}^2$
	NNNLL	$lpha_{ m s}^4$	$lpha_{ m s}^3$	$lpha_{ m s}^4$	$lpha_{ m s}^2$	$lpha_{ m s}^3$
	ľ					Ť

Can match to NNLO

Т

Ingredients necessary for resummation:

_	Γ_{cusp}	γ_F	eta	c_F	Matching			
LL	$lpha_{ m s}$	-	$lpha_{ m s}$	-	-			
NLL	$lpha_{ m s}^2$	$lpha_{ m s}$	$lpha_{ m s}^2$	-	$lpha_{f s}$			
NNLL	$lpha_{ m s}^3$	$lpha_{ m s}^2$	$lpha_{ m s}^3$	$lpha_{ m s}$	$lpha_{ m s}^2$			
NNNLL	$lpha_{ m s}^4$	$lpha_{ m s}^3$	$lpha_{ m s}^4$	$lpha_{ m s}^2$	$lpha_{ m s}^3$			
	Î							
Now analytically								
known at four-loops								

arXiv:9401214,1610.07477,1612.04389,1604.03126, 1707.08315,1805.09638,1901.03693,1901.02898, 1902.08208,1902.05076,1911.10174,2002.04617

		$\Gamma_{ m cusp}$	γ_F	eta	c_F	Matching	
	LL	$lpha_{\mathbf{s}}$	-	$lpha_{\mathbf{s}}$	-	-	
Ingredients necessary for resummation:	NLL	$lpha_{ m s}^2$	$lpha_{ m s}$	$lpha_{ m s}^2$	-	$lpha_{ m s}$	
	NNLL	$lpha_{ m s}^3$	$lpha_{ m s}^2$	$lpha_{ m s}^3$	$lpha_{\mathbf{s}}$	$lpha_{ m s}^2$	
	NNNLL	$lpha_{ m s}^4$	$lpha_{ m s}^3$	$lpha_{ m s}^4$	$\alpha_{ m s}^2$	$lpha_{ m s}^3$	
	ľ			Î			
		Known for a long time					

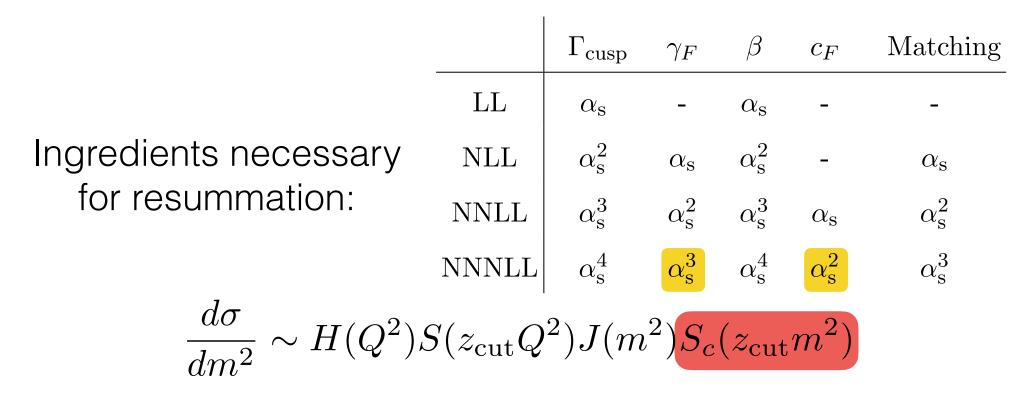
arXiv:9701390

		$\Gamma_{\rm cusp}$	γ_F	eta	c_F	Matching	
Ingredients necessary for resummation:	LL	$lpha_{ m s}$	-	$lpha_{ m s}$	_	-	
	NLL	$lpha_{ m s}^2$	$lpha_{\mathbf{s}}$	$lpha_{ m s}^2$	-	$lpha_{f s}$	
	NNLL	$lpha_{ m s}^3$	$lpha_{ m s}^2$	$lpha_{ m s}^3$	$lpha_{\mathbf{s}}$	$lpha_{ m s}^2$	
	NNNLL	$lpha_{ m s}^4$			$lpha_{ m s}^2$	$lpha_{ m s}^3$	
$\frac{d\sigma}{dm^2} \sim H(Q^2) S(z_{\rm cut}Q^2) J(m^2) S_c(z_{\rm cut}m^2)$							
Two-loop constants and three-loop anomalous dimensions known							
$\frac{d\sigma}{dm^2} \sim H(Q^2) S(z_{\rm cut}Q^2) J(m^2) S_c(z_{\rm cut}m^2)$ Two-loop constants and three-loop							

		$\Gamma_{\rm cusp}$	γ_F	eta	c_F	Matching	
Ingredients necessary for resummation:	LL	$lpha_{\mathbf{s}}$	-	$lpha_{\mathbf{s}}$	-	-	
	NLL	$lpha_{ m s}^2$	$lpha_{ m s}$	$lpha_{ m s}^2$	-	$lpha_{f s}$	
	NNLL	$lpha_{ m s}^3$	$lpha_{ m s}^2$	$lpha_{ m s}^3$	$lpha_{ m s}$	$lpha_{ m s}^2$	
	NNNLL	$lpha_{ m s}^4$	$lpha_{ m s}^3$	$lpha_{ m s}^4$	$lpha_{ m s}^2$	$lpha_{ m s}^3$	
$\frac{d\sigma}{dm^2} \sim H(Q^2)S(z_{\rm cut}Q^2)J(m^2)S_c(z_{\rm cut}m^2)$							

Same jet function as for thrust, C-parameter

Two-loop constants and three-loop anomalous dimensions known


arXiv:0803.0342, 0607228

		$\Gamma_{\rm cusp}$	γ_F	eta	c_F	Matching		
Ingredients necessary for resummation:	LL	$lpha_{ m s}$	-	$lpha_{ m s}$	-	-		
	NLL	$lpha_{ m s}^2$	$lpha_{\mathbf{s}}$	$lpha_{ m s}^2$	-	$lpha_{\mathbf{s}}$		
	LL NLL NNLL NNNLL	$lpha_{ m s}^3$	$lpha_{ m s}^2$	$lpha_{ m s}^3$	$lpha_{ m s}$	$lpha_{ m s}^2$		
	NNNLL	$lpha_{ m s}^4$	$lpha_{ m s}^3$	$lpha_{ m s}^4$	$lpha_{ m s}^2$	$lpha_{ m s}^3$		
$\frac{d\sigma}{dm^2} \sim H(Q^2) S(z_{\rm cut}Q^2) J(m^2) S_c(z_{\rm cut}m^2)$								

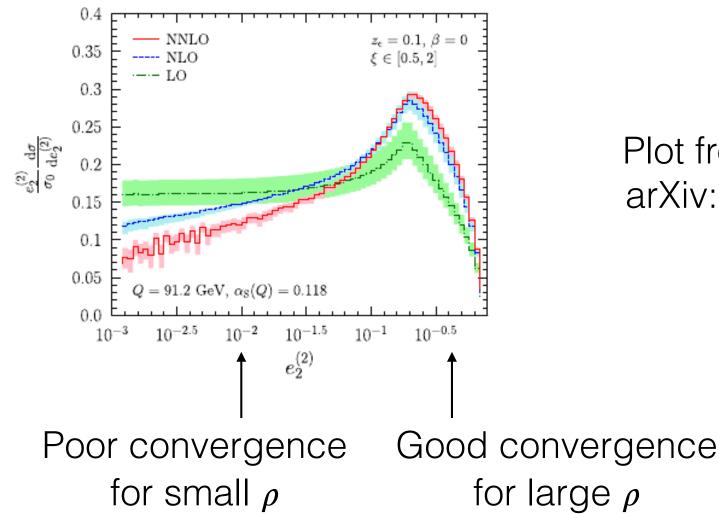
Two-loop constants recently calculated arXiv:1805.12414, 1812.08690, 2004.08396

Three-loop anomalous dimension recently extracted with MCCSM at NNLO

arXiv:1603.08927, 1606.03453, 1708.04093, 1807.11472, 2002.05730

Two-loop constants recently extracted from EVENT2 arXiv:9605323, 2002.05730

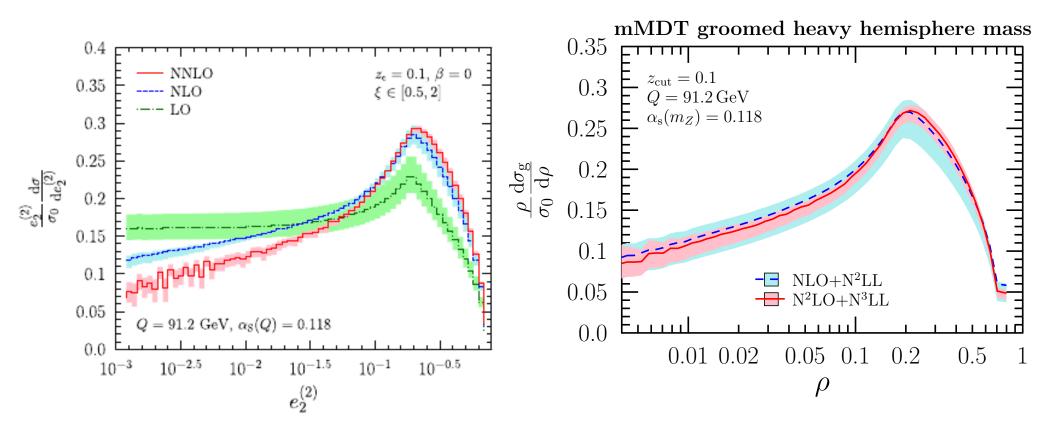
Three-loop anomalous dimension constrained by


$$0 = \gamma_H + \gamma_S + 2\gamma_J + 2\gamma_{S_c}$$

		$\Gamma_{\rm cusp}$	γ_F	eta	c_F	Matching		
Ingredients necessary for resummation:	LL	$lpha_{ m s}$	-	$lpha_{\mathbf{s}}$	-	_		
	LL NLL NNLL NNNLL	$lpha_{ m s}^2$	$lpha_{\mathbf{s}}$	$lpha_{ m s}^2$	-	$lpha_{ m s}$		
	NNLL	$lpha_{ m s}^3$	$lpha_{ m s}^2$	$lpha_{ m s}^3$	$lpha_{ m s}$	$lpha_{ m s}^2$		
	NNNLL	$lpha_{ m s}^4$	$lpha_{ m s}^3$	$lpha_{ m s}^4$	$lpha_{ m s}^2$	$lpha_{ m s}^3$		
$\frac{d\sigma}{dm^2} \sim H(Q^2)S(z_{\rm cut}Q^2)J(m^2)S_c(z_{\rm cut}m^2)$								

All ingredients for NNNLL resummation known!

High-Precision Predictions


NNLO Prediction at the Z-pole

Plot from MCCSM arXiv:1807.11472

High-Precision Predictions

NNNLL+NNLO Prediction at the Z-pole

Good convergence observed for **all** ρ !

Going to pp Collisions

Conclusions

Grooming solves experimental contamination issues in jets

Grooming solves theoretical non-global issues in jets

Factorization theorem enables arbitrary logarithmic accuracy

NNNLL resummation for mMDT grooming possible with (N)NLO codes

Future Directions

Can Legacy LEP data be used for α_s fit?

Can LHC Jet data be used for α_s fit?

Progress toward analytic calculation of anomalous dimensions/constants?

Resummation in $\rho \sim z_{cut}$ regime and non-global effects?

NNNLL resummation for general soft drop grooming?