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ML Jet-Tagging on Experiments

Model Performance
Accuracy

Calibration
Uncertainties

Interpretability
Model & Uncertainties
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Calibrating Jet Taggers: Scale Factor

§ Correct	the	MC	efficiency	of	a	cut	on	classifier	output
- Little	insight	into	“why”	a	scale	factor	deviates	from	unity

S = Classifier Prediction 

𝑠∗

𝑝"#$#(𝑠) = 𝜋%&'𝑝%&'(𝑠) + (1 − 𝜋%&')𝑝()'(𝑠)

𝑆𝐹 =
𝜖!"#"
𝜖$%

=
𝑝!"#"(𝑠 > 𝑠∗)
𝑝$%(𝑠 > 𝑠∗)

=

𝑁'"(( − 𝑁)*+
'"((

𝑁 − 𝑁)*+ !"#"
𝑁(,+-"((

𝑁(,+ $%



4

Computer Vision and Jets

§ Jet-image –2D representation of  jet as distribution of  energy over 𝜂 − 𝜙

§ Multi-channel “color” jet images – separate images for different detectors 
(calorimeter / track) or particles (charged / neutral hadrons, muon, etc.)

§ How to deal with track images?

- More pixels may improve performance
- Cost: larger models and more memory needed

Jet

Jet Image
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Convolutional Neural Network
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Fully 
Connected Signal / Background

arXiv:1407.5675
arXiv:1511.05190
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Learning about learning

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.
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Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.
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and n-subjettiness (bottom)
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Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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Advantage of CNN is that we can visualize the filters
Filters Filters convolved with images

https://arxiv.org/abs/1407.5675
https://arxiv.org/abs/1511.05190


6

Sequence Modeling

§ Jets are a grouping of  a variable number of  particles

§ With physically motivated ordering: jet as a sequence

{ p1 ,    p2 ,     p3 ,    p4 ,     p5 ,    p6 ,     p7 ,    p8 }     

Jet

Jet sequence

1D ConvolutionsRecurrent Neural Network

Image Credit: Fleuret, Deep Learning Course

https://fleuret.org/dlc/
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B-tagging
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Recurrent Neural Net b-tagging - RNNIP

b-jets

Light-flavor jets

ATL-PHYS-PUB-2017-003

https://cds.cern.ch/record/2255226
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Recurrent Neural Net b-tagging - RNNIP
ATL-PHYS-PUB-2017-003

https://cds.cern.ch/record/2255226
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DL1r

MLP

ATLAS-PHY-PLOTS-FTAG-2019-005

r

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-005/
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DL1r Calibration
ATLAS-PHY-PLOTS-FTAG-2021-001

c-jets light-jets

b-jets

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2021-001/
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DL1r Calibration Uncertainties

ATLAS-PHY-PLOTS-FTAG-2021-002

§ Theory modeling among largest uncertainties

§ Significant recent SF reduction, independent of  tagger, e.g. from 
- Improving charge deposition modeling in Silicon
- Better method to estimate sample flavour composition

§ Still difficult to separate “Model is learning bad correlations” from 
imperfect calibration methods

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2021-002/
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DeepJet
JINST 15 (2020) P12012
CMS-DP-2018-058
CMS-DP-2021-004
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Boosted Jet Tagging

Image Credit: arXiv:1909.12285

https://arxiv.org/pdf/1909.12285.pdf
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ML Boosted Jet Taggers on CMS
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§ 6 channels 

- All PF candidates
- Charged hadron
- Neutral hadron

- Photon
- Electron
- Muon

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
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Tagger Performance
JINST 15 (2020) P06005

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
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Top Tagging Scale Factors

JINST 15 (2020) P06005

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
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Top Misidentification Scale Factors

JINST 15 (2020) P06005

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
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Quark versus Gluon with Jet Images
ATL-PHYS-PUB-2017-017

Truth

Topo Clusters

Tracks

Towers

https://cds.cern.ch/record/2275641
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Quark versus Gluon with Jet Images
ATL-PHYS-PUB-2017-017

https://cds.cern.ch/record/2275641
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Sensitivity to Generators à Representation Learning

§ What you train on seems to have smaller 
impact than what you test on

§ Robustness of  the learned representations?

JHEP 01 (2017) 110

Phys. Rev. D 95, 014018 (2017

https://link.springer.com/article/10.1007%2FJHEP01%282017%29110
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.014018
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Mitigating Dependencies
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Mitigating Dependencies

§ With flexibility comes complexity: 
- Hard to control how models learn and utilize information
- Potentially unwanted sensitivity to poorly modeled aspects of  simulation
- Potentially unwanted sculpting of  key physics distributions like mass

§ Decorrelation methods 
- Reweighting training distributions
- DDT: Designing decorrelated taggers JHEP 05 (2016) 156

- DisCo: Distance Correlation regularization Phys. Rev. Lett. 125, 122001 (2020)

- Adversarial Learning NeurIPS 2017, 981-990, Phys. Rev. D 96, 074034 (2017)

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1007%2FJHEP05%25282016%2529156&v=c415f6c1
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.122001
https://papers.nips.cc/paper/2017/hash/48ab2f9b45957ab574cf005eb8a76760-Abstract.html
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.96.074034&v=3bea16b6
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Adversarial Learning

§ Build loss that encodes performance of  classifier and an adversary

§ Classifier penalized when adversary does well predicting Z  

§ Training is a min-max game targeting saddle point solution 
NeurIPS 2017, 981-990

https://papers.nips.cc/paper/2017/hash/48ab2f9b45957ab574cf005eb8a76760-Abstract.html
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Mass Decorrelation
ATL-PHYS-PUB-2018-014W-taggingTop-tagging

Better

JINST 15 (2020) P06005

https://cds.cern.ch/record/2630973
https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
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Mass Decorrelation
Top-tagging

JINST 15 (2020) P06005

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
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Mitigating Data / MC Differences in LLP Jet Tagging

§ Modified version of  DeepJet

§ Adversarial training to penalize differences 
in performance on MC vs Data
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Mitigating Data / MC Differences in LLP Jet Tagging CMS-PAS-EXO-19-011

https://cds.cern.ch/record/2698267
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Conclusion

§ Image and Sequence taggers deployed for Boosted jet tagging and b-
tagging à show many of  the expected performance gains

§ Scale factors are reasonable 
- Mismodeling is not out of  control
- Interesting potential for mitigating Data /MC differences 

§ SF uncertainties worse in samples with more background / flavour
fraction uncertainty 
- Must separate uncertainties from calibration method and from learning 

mismodeled features

§ Intriguing questions open about learned representations and how they 
are expressed



30

Backup
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Mitigating Sample Kinematic Bias in Training

§ Want tagger to understand how features change with kinematics

§ Don’t want to be sensitive to training distribution of  kinematics
- 𝑝! is a pretty good discriminant! But distribution changes in analysis!

§ Match key kinematic distributions between Signal / Background
- Reweighting
- Down sampling à ATLAS b-tag found this more stable for training
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Combining Substructure Variables

§ Wide array of  physics insight has gone into developing jet 
substructure observables

§ Direct application of  ML for combining power of  multiple partially 
correlated substructure features

§ First calibrations look quite reasonable! 
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Jet Image Pre-Processing
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Image Preprocessing 

13"

•  Use subjets of  large radius jet as focal points ! like eyes in an image 
•  Make use of  symmetries ! Center, Rotate, and Flip 
•  Introduces some smearing, but huge gain in discrimination! 

Average of  
unrotated W jet 
 
Not much info! 

Average of  
rotated W jet 
 
Much better! 
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RNNIP
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W Tagging

NOTE: different pT ranges

CMS-DP-2020-002 EPJC 79 (2019) 375

Better

Better

https://cds.cern.ch/record/2707946?ln=en
https://link.springer.com/article/10.1140/epjc/s10052-019-6847-8
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DeepAK8 variations
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DeepJet
JINST 15 (2020) P12012
CMS-DP-2018-058
CMS-DP-2021-004

https://iopscience.iop.org/article/10.1088/1748-0221/15/12/P12012
http://cds.cern.ch/record/2646773?ln=en
https://cds.cern.ch/record/2759970?ln=en
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DeepJet and Training Size

b jet efficiency
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Energy deposition in Si modeling

NIM A 899 (2018)

https://www.sciencedirect.com/science/article/abs/pii/S0168900218305783?via%3Dihub
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Top Misidentification Scale Factors
JINST 15 (2020) P06005

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
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W-tagging Scale Factors

JINST 15 (2020) P06005

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
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Top Misidentification Scale Factors
JINST 15 (2020) P06005

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
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Adversarial Networks

§ Loss encodes performance of  classifier and adversary
- Classifier penalized when adversary does well at predicting Z

§ Hyper-parameter l controls trade-off

- Large l enforces f(…) to be pivotal, e.g. robust to nuisance
- Small l allows f(…) to be more optimal

[arXiv:1611.01046]
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Learning to Pivot: Toy Example

§ Without adversary (top) 
large variations in network 
output with nuisance 
parameter

§ With adversary (bottom) 
performance is 
independent!

2D example
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Modeling Comparisons

𝐶! → 𝑞𝑞 vs 𝐻 → 𝑔𝑔 𝐶! → 𝑞𝑞 vs 𝐻 → 𝑞𝑞

arXiv:2105.04582

https://arxiv.org/abs/2105.04582
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Next Generation Taggers
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Next Generation: DIPS – Deep Impact Parameter Sets

§ Challenges of  RNN Tagging
- Must choose sequence ordering, not inherent, which is best?
- Requires iteration over tracks, can’t be parallelized

§ Deep Sets: permutation invariant and parallelizable model

100

101

102

103

104
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D,36
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0.6 0.7 0.8 0.9 1.0
b-jet eIILcLency
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D
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Basic DIPS performance 
Similar to RNNIP

Better

ATL-PHYS-PUB-2020-014 JHEP 01 (2019) 121

https://cds.cern.ch/record/2718948
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1007%2FJHEP01%25282019%2529121&v=50a4df0c
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Sanity Checks

𝑆*+ = 5
,-.

/!"#$
𝑑𝐷0(𝑥(,))

𝑑𝑥*+
(,)

x(i) = all tracks/features of ith jet 
i = jet
j    = feature
k   = track 

Salience Map
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Next Generation: ParticleNet with Graph Neural Networks 
Phys. Rev. D 101, 056019 (2020)
CMS-DP-2020-002

Better

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://cds.cern.ch/record/2707946?ln=en

