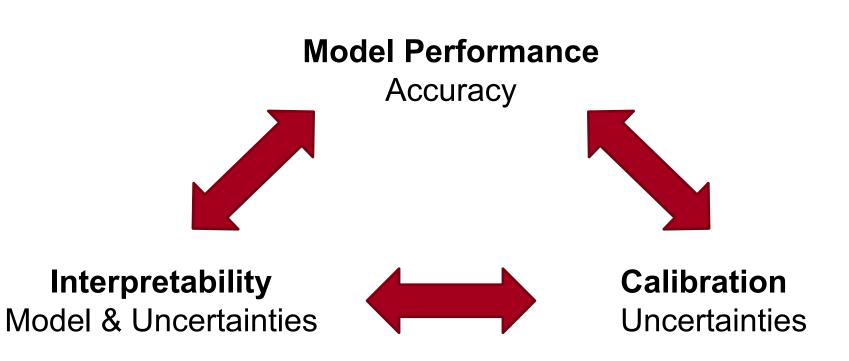
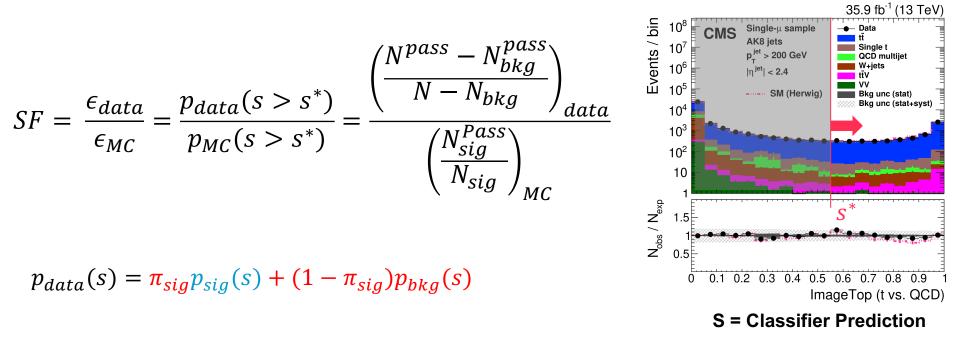
Image and Sequence Based Jet Tagging Applications on Experiments

Michael Kagan SLAC

Jets and Jet Substructure at the LHC Workshop June 3, 2021

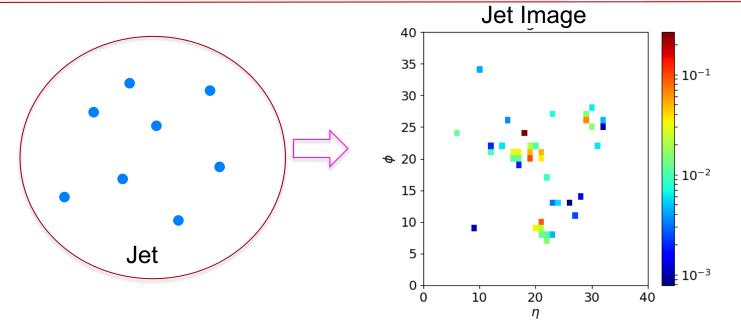


Calibrating Jet Taggers: Scale Factor



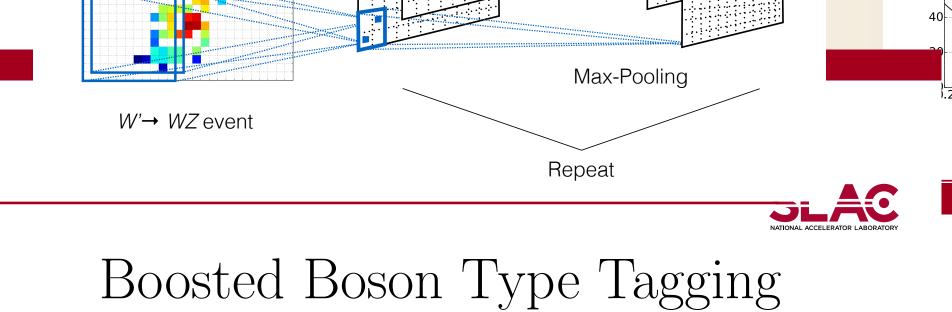
- Correct the MC efficiency of a cut on classifier output
 - Little insight into "why" a scale factor deviates from unity

Computer Vision and Jets

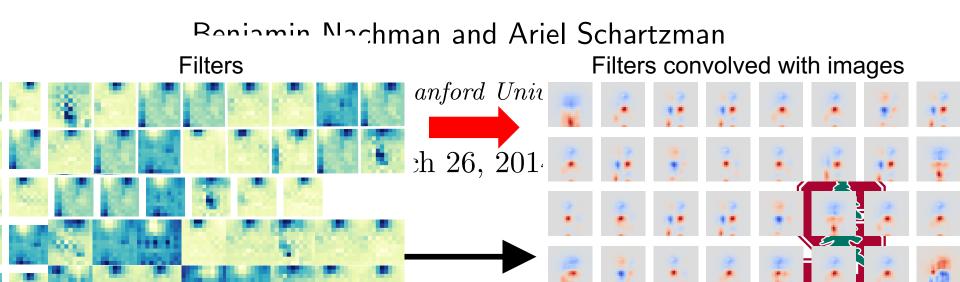


• Jet-image –2D representation of jet as distribution of energy over $\eta - \phi$

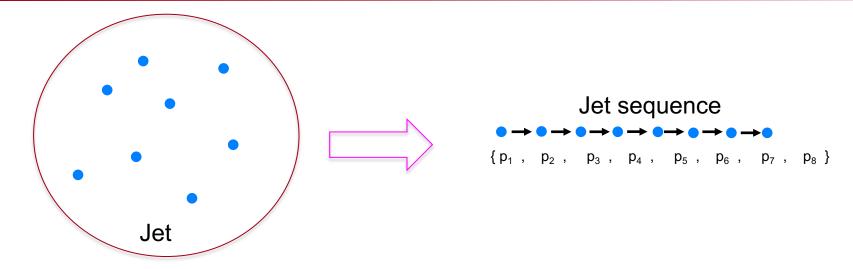
- Multi-channel "color" jet images separate images for different detectors (calorimeter / track) or particles (charged / neutral hadrons, muon, etc.)
- How to deal with track images?
 - More pixels may improve performance
 - Cost: larger models and more memory needed



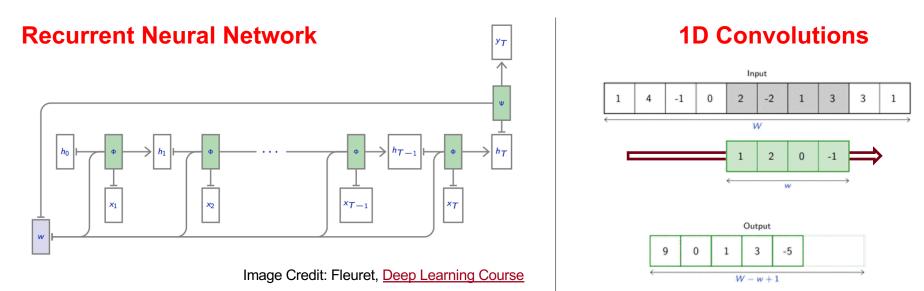
Jet ETmiss

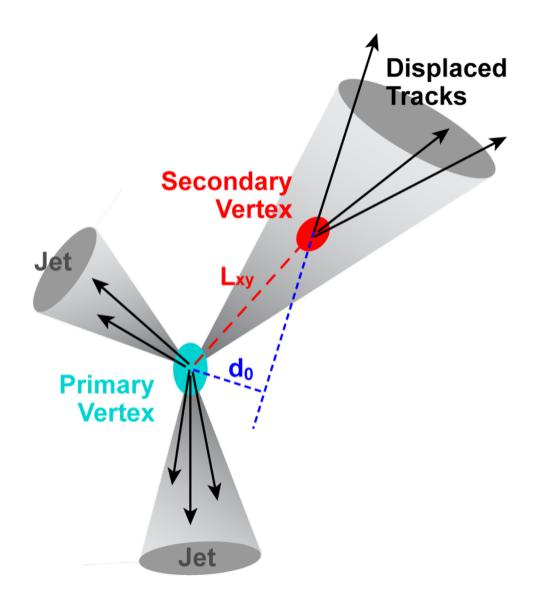


Sequence Modeling



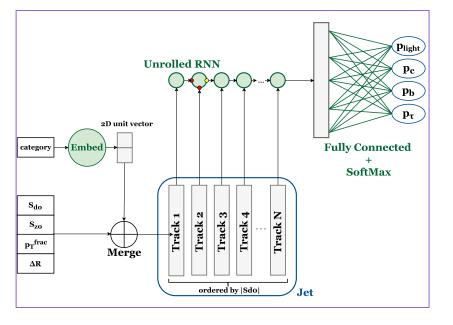
- Jets are a grouping of a variable number of particles
- With physically motivated ordering: jet as a sequence

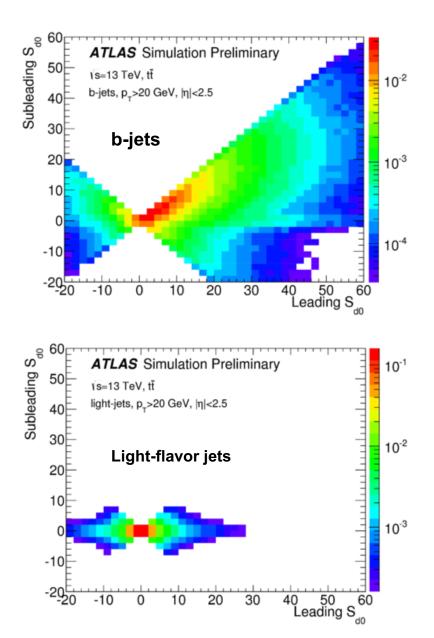




Recurrent Neural Net b-tagging - RNNIP

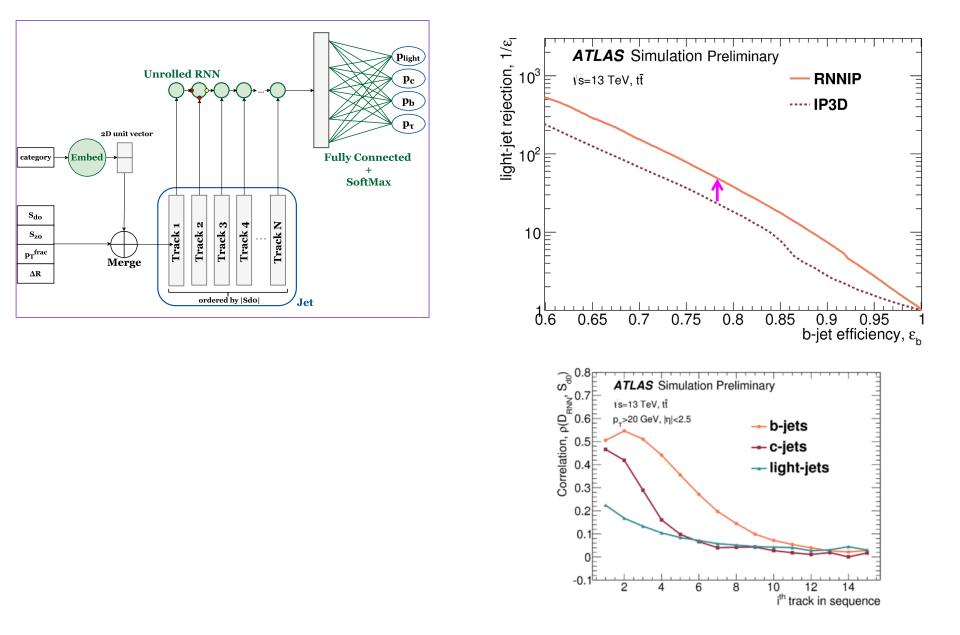
ATL-PHYS-PUB-2017-003

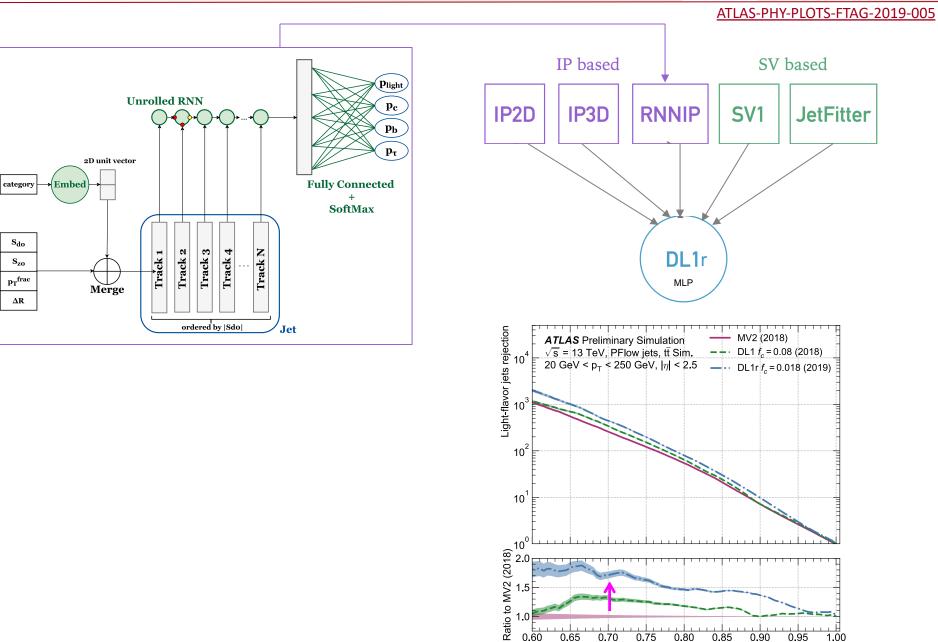




Recurrent Neural Net b-tagging - RNNIP

ATL-PHYS-PUB-2017-003





0.60

0.65

0.70

0.75

0.80

0.85

0.90

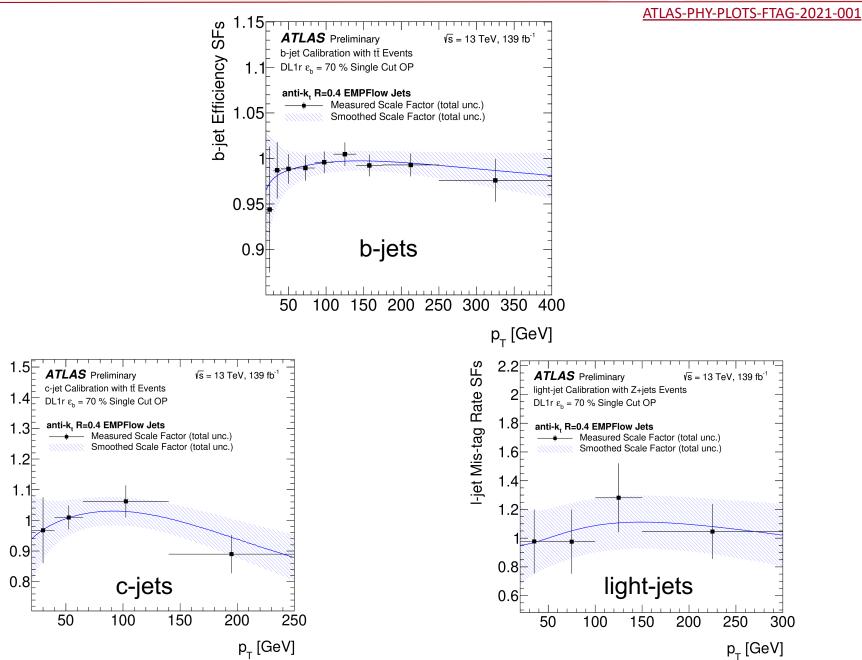
0.95

b-jets efficiency

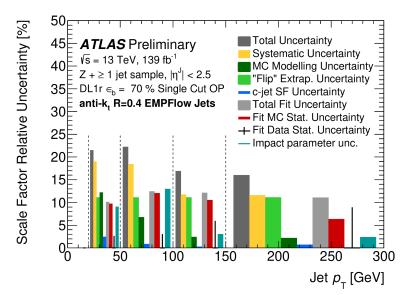
1.00

DL1r Calibration

c-jet Mis-tag Rate SFs

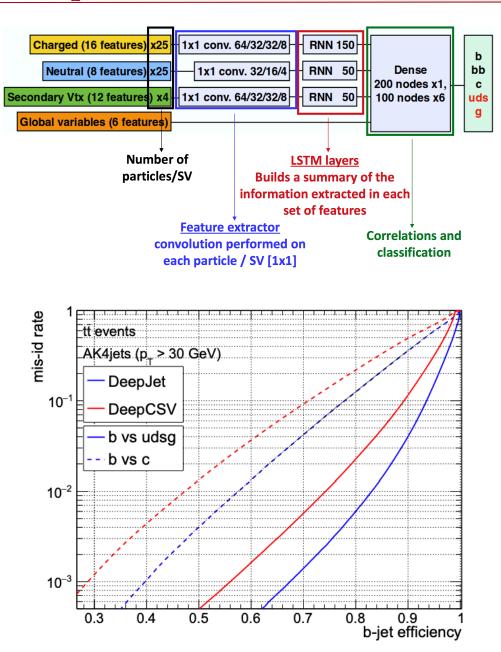


- Theory modeling among largest uncertainties
- Significant recent SF reduction, independent of tagger, e.g. from
 - Improving charge deposition modeling in Silicon
 - Better method to estimate sample flavour composition
- Still difficult to separate "Model is learning bad correlations" from imperfect calibration methods

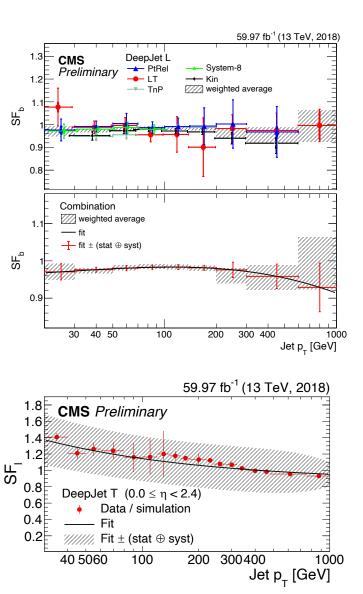


ATLAS-PHY-PLOTS-FTAG-2021-002

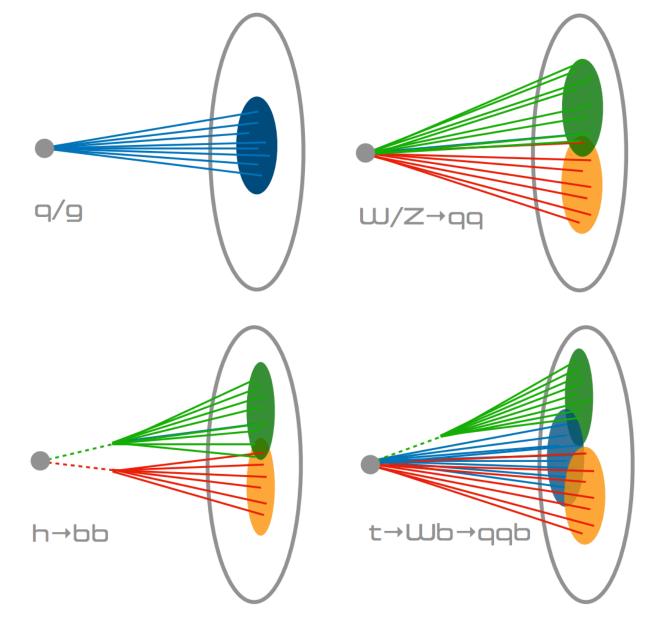
DeepJet



JINST 15 (2020) P12012 CMS-DP-2018-058 CMS-DP-2021-004



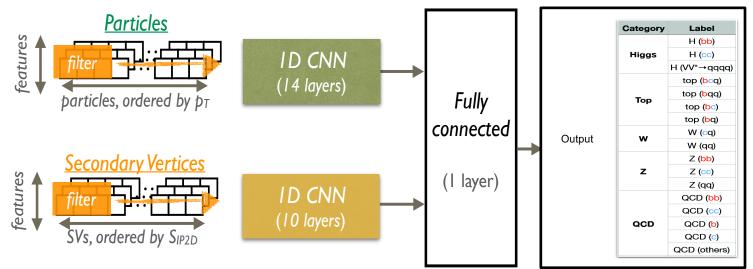
Boosted Jet Tagging



ML Boosted Jet Taggers on CMS

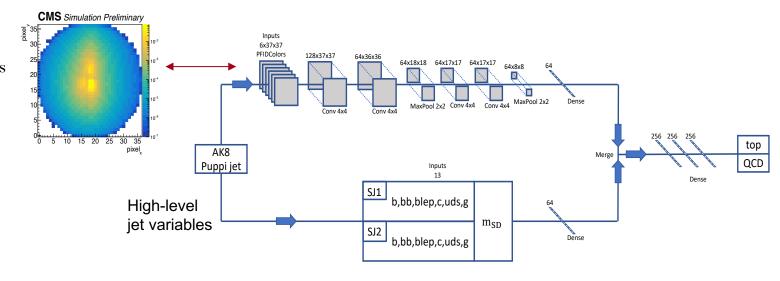
15

Deep AK8



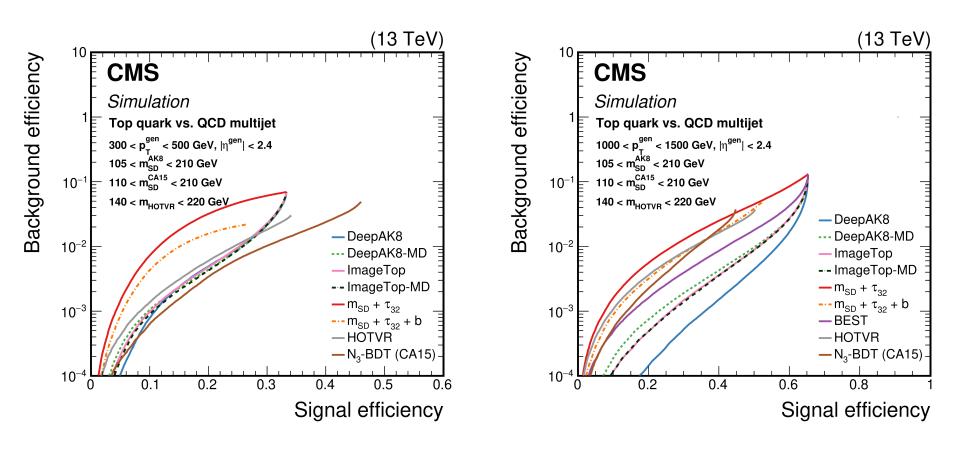
ImageTop

- 6 channels
 - All PF candidates
 - Charged hadron
 - Neutral hadron
 - Photon
 - Electron
 - Muon

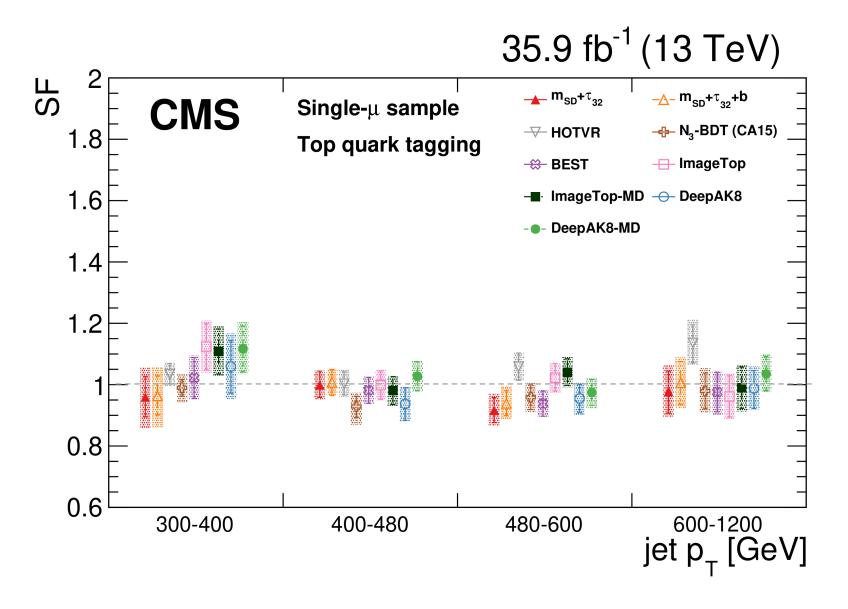


Tagger Performance

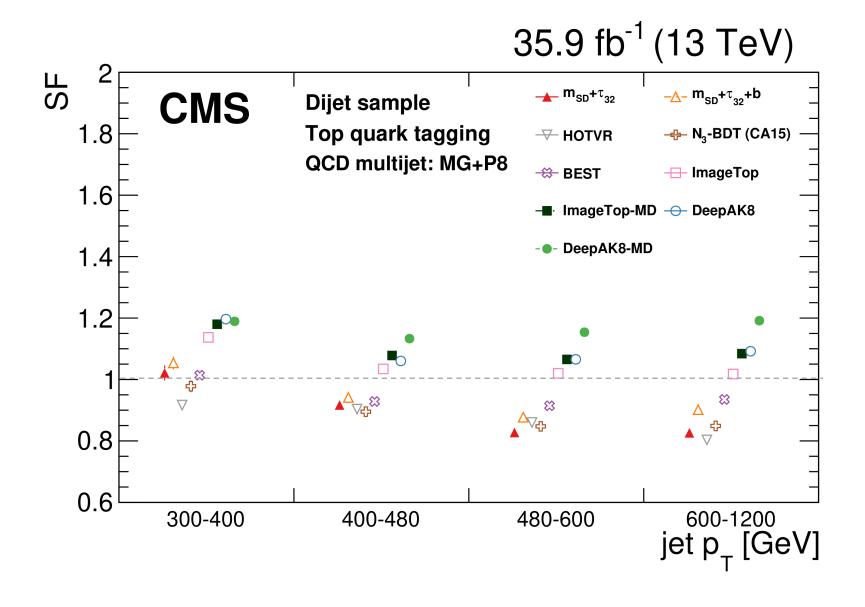
JINST 15 (2020) P06005



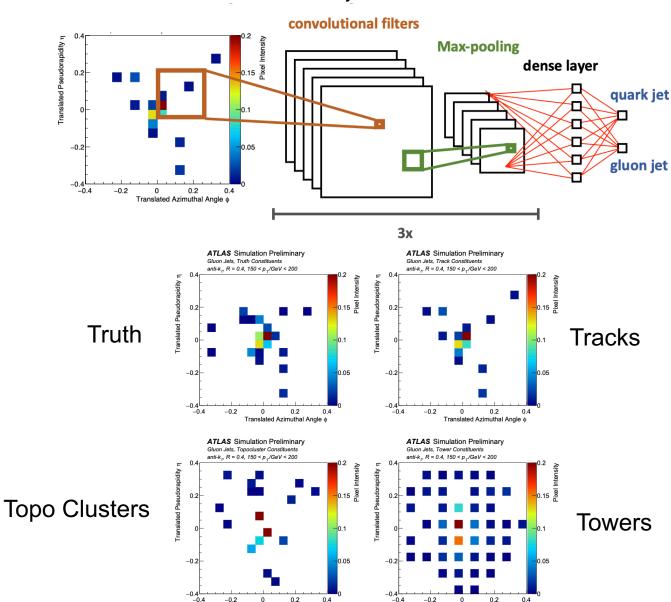
Top Tagging Scale Factors



Top Misidentification Scale Factors



JINST 15 (2020) P06005



0

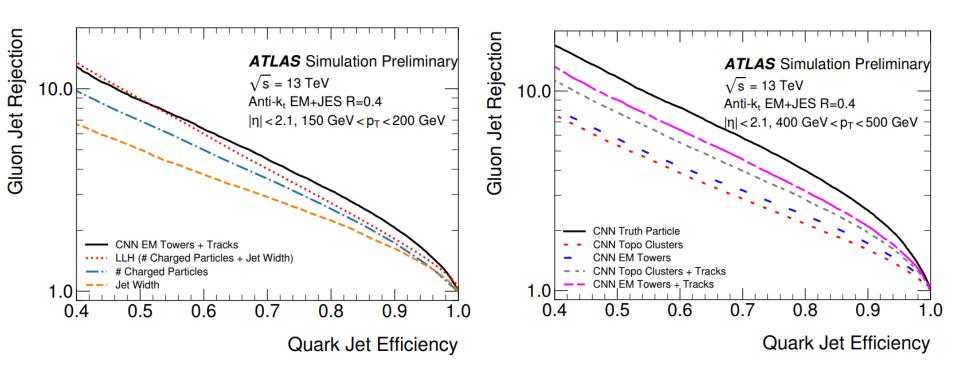
Translated Azimuthal Angle ϕ

0

Translated Azimuthal Angle ϕ

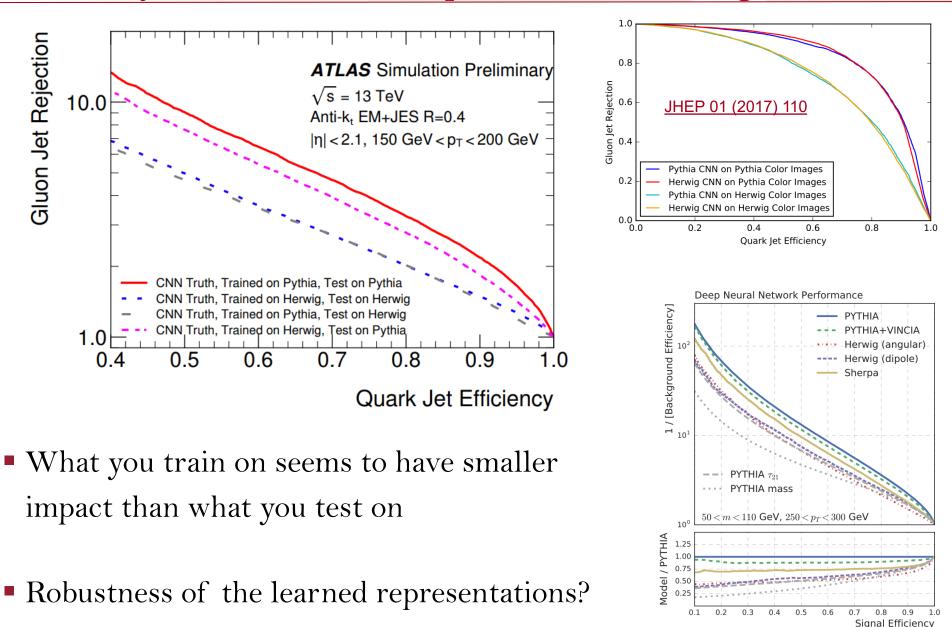
ATLAS Simulation Preliminary

ATL-PHYS-PUB-2017-017



ATL-PHYS-PUB-2017-017

Sensitivity to Generators → Representation Learning



Phys. Rev. D 95, 014018 (2017

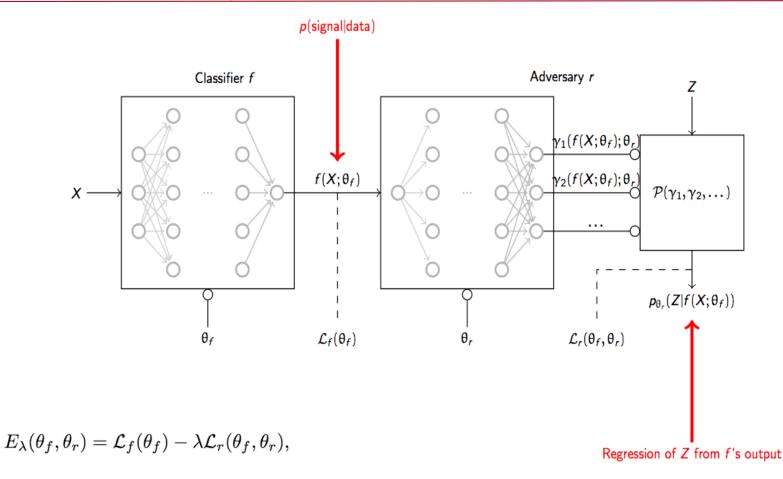
Mitigating Dependencies

Mitigating Dependencies

- With flexibility comes complexity:
 - Hard to control how models learn and utilize information
 - Potentially unwanted sensitivity to poorly modeled aspects of simulation
 - Potentially unwanted sculpting of key physics distributions like mass

- Decorrelation methods
 - Reweighting training distributions
 - DDT: Designing decorrelated taggers <u>JHEP 05 (2016) 156</u>
 - DisCo: Distance Correlation regularization **Phys. Rev. Lett.** 125, 122001 (2020)
 - Adversarial Learning <u>NeurIPS 2017, 981-990</u>, <u>Phys. Rev. D 96, 074034 (2017)</u>

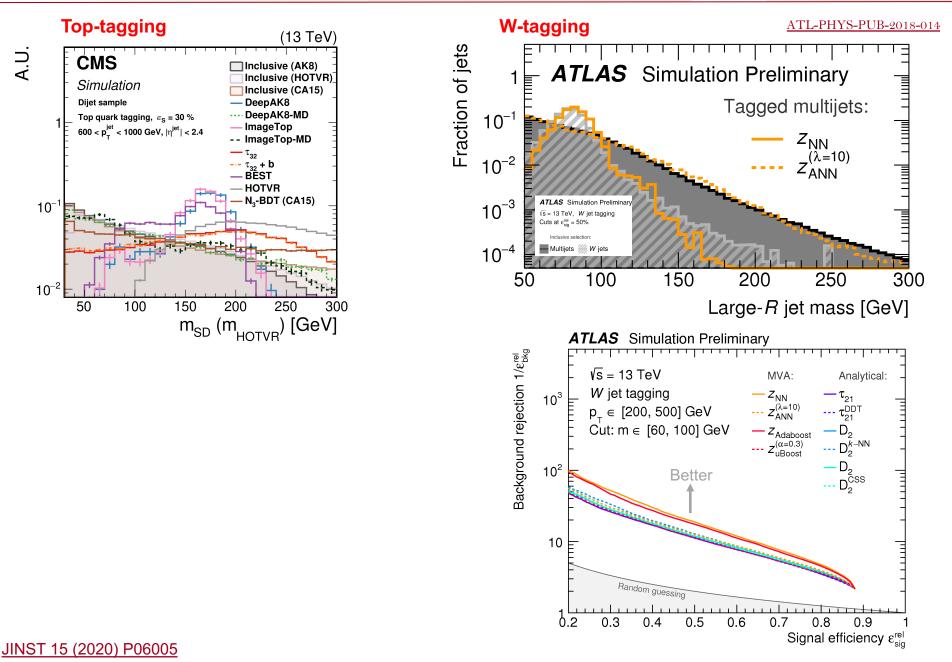
Adversarial Learning



- Build loss that encodes performance of classifier and an adversary
- Classifier penalized when adversary does well predicting Z
- Training is a min-max game targeting saddle point solution

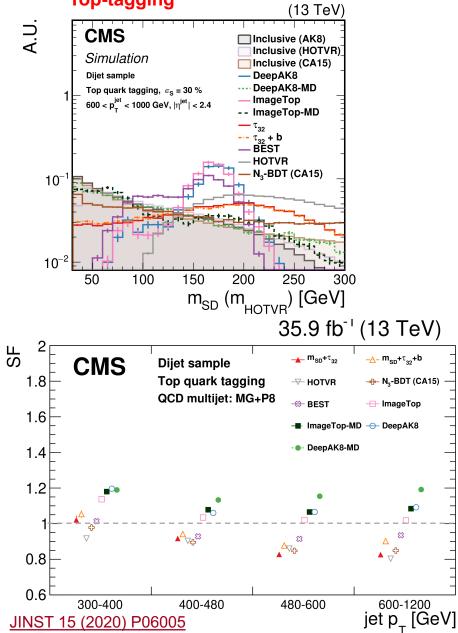
NeurIPS 2017, 981-990

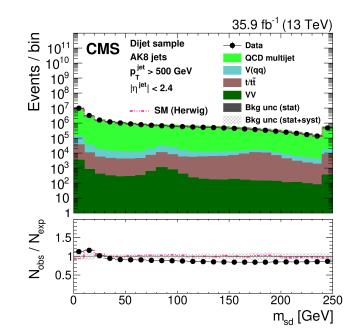
Mass Decorrelation



Mass Decorrelation

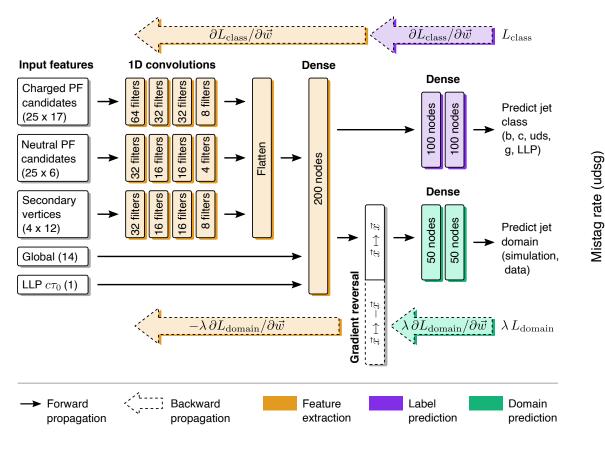
Top-tagging

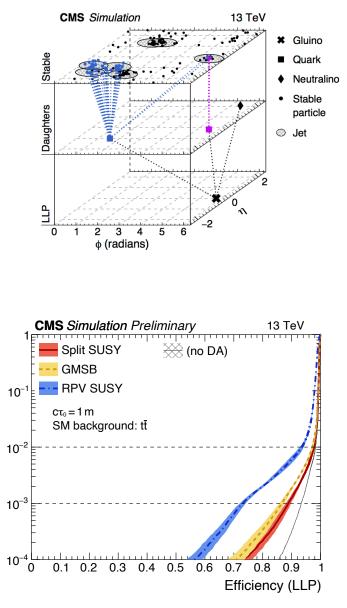




Mitigating Data / MC Differences in LLP Jet Tagging

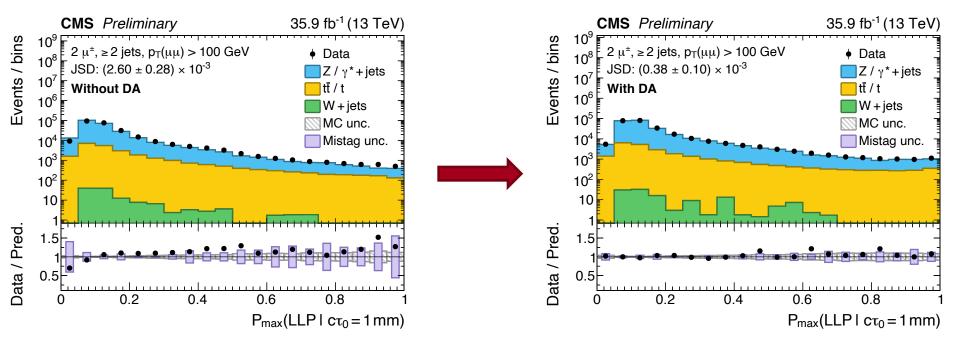
- Modified version of DeepJet
- Adversarial training to penalize differences in performance on MC vs Data





CMS-PAS-EXO-19-011

Mitigating Data / MC Differences in LLP Jet Tagging

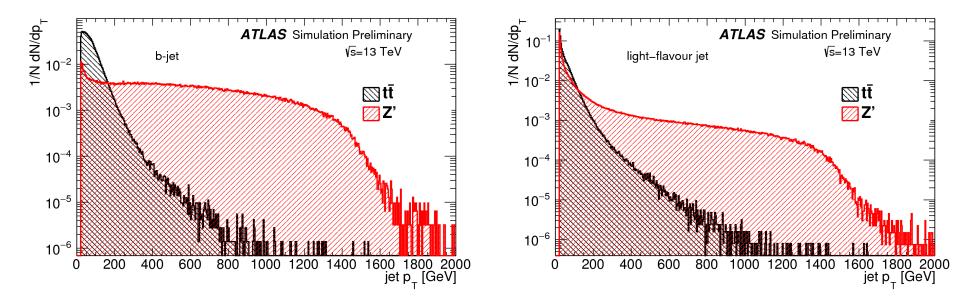


CMS-PAS-EXO-19-011

Conclusion

- Image and Sequence taggers deployed for Boosted jet tagging and btagging → show many of the expected performance gains
- Scale factors are reasonable
 - Mismodeling is not out of control
 - Interesting potential for mitigating Data /MC differences
- SF uncertainties worse in samples with more background / flavour fraction uncertainty
 - Must separate uncertainties from calibration method and from learning mismodeled features
- Intriguing questions open about learned representations and how they are expressed

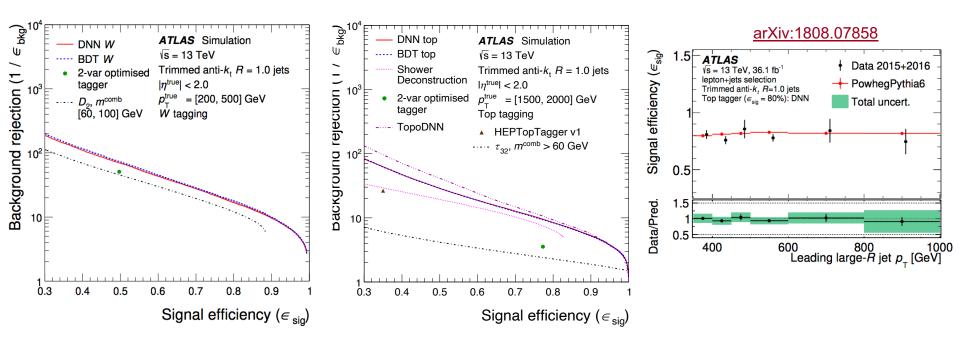
Mitigating Sample Kinematic Bias in Training



• Want tagger to understand how features change with kinematics

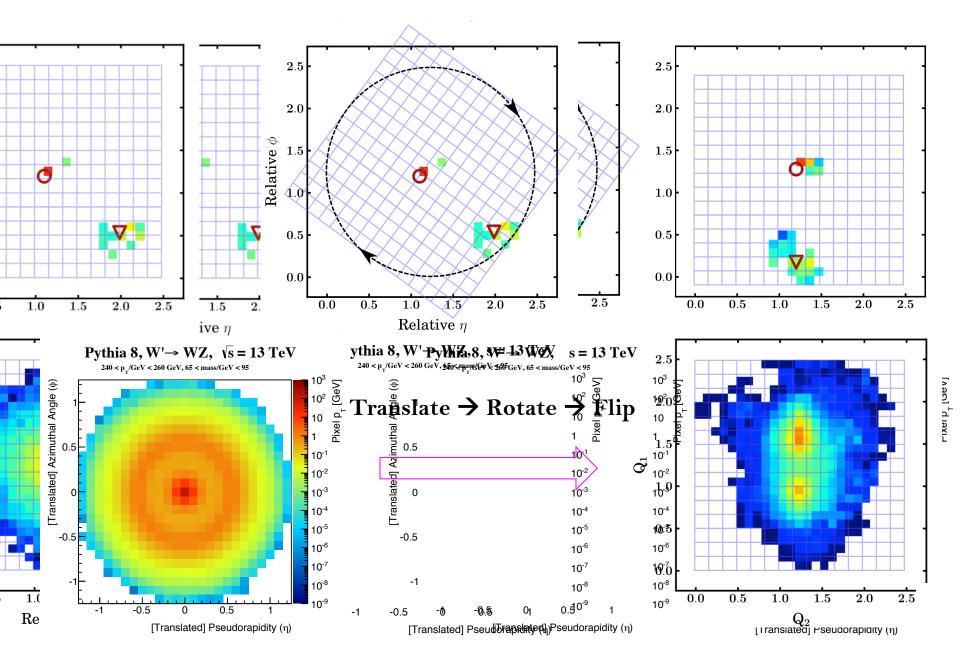
- Don't want to be sensitive to training distribution of kinematics
 - p_T is a pretty good discriminant! But distribution changes in analysis!
- Match key kinematic distributions between Signal / Background
 - Reweighting
 - Down sampling \rightarrow ATLAS b-tag found this more stable for training

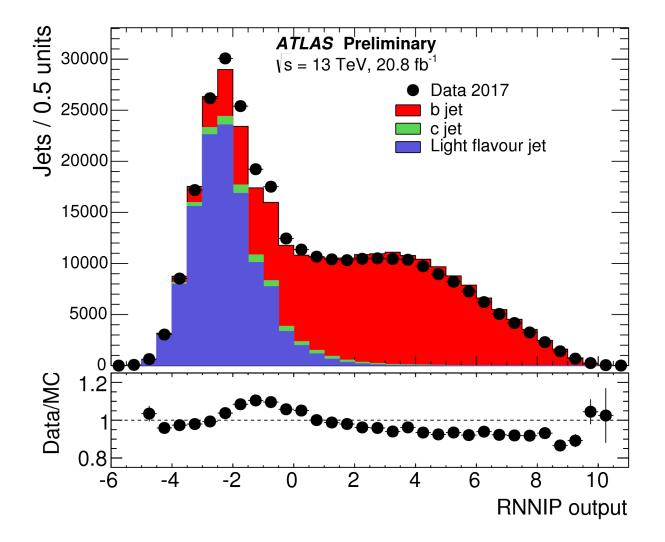
Combining Substructure Variables



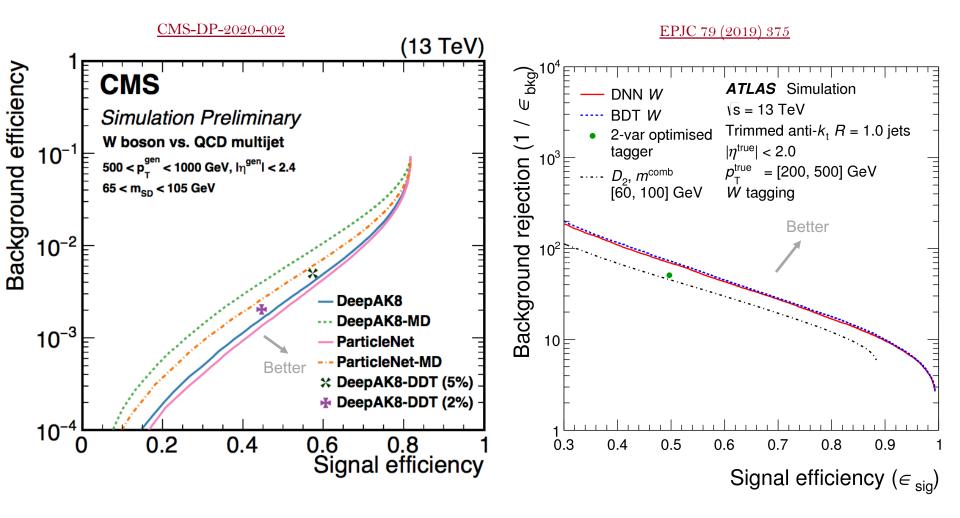
- Wide array of physics insight has gone into developing jet substructure observables
- Direct application of ML for combining power of multiple partially correlated substructure features
- First calibrations look quite reasonable!

Jet Image Pre-Processing



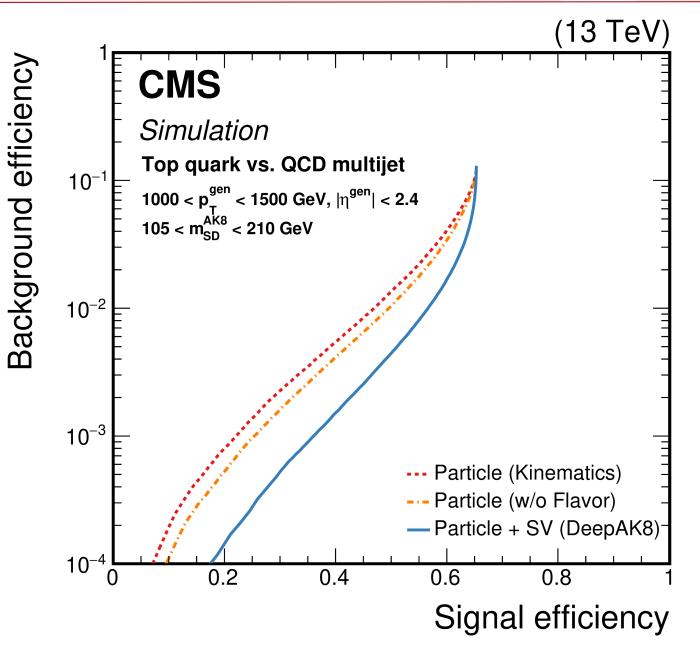


W Tagging

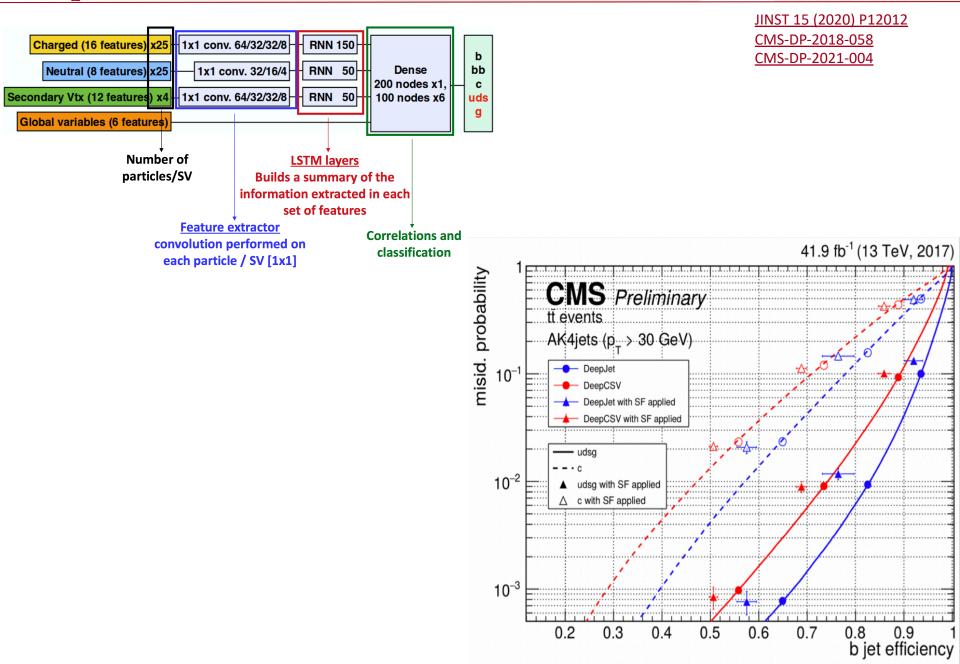


NOTE: different p_T ranges

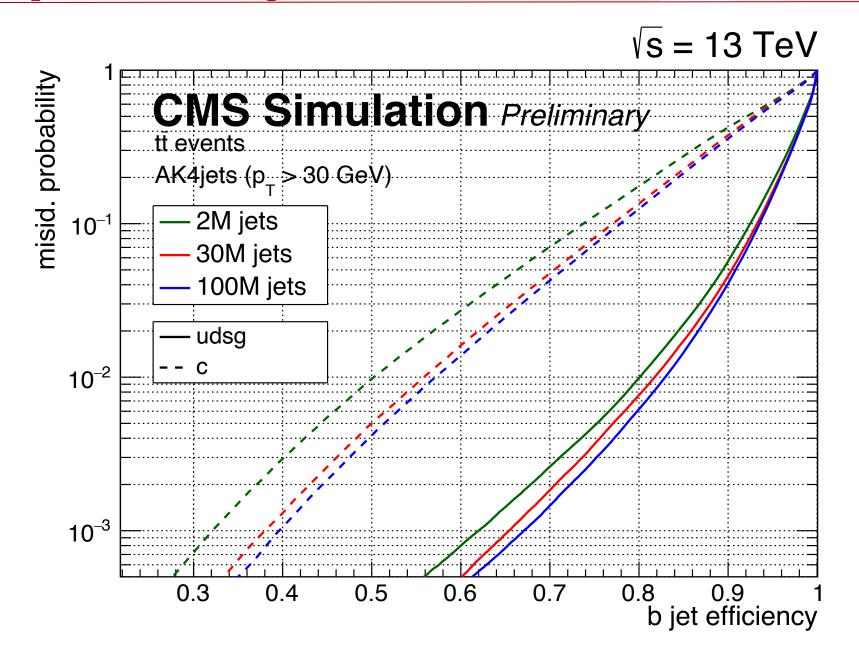
DeepAK8 variations

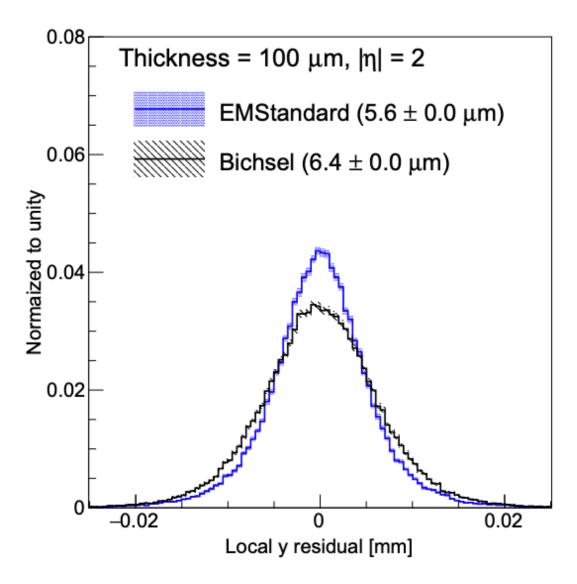


DeepJet



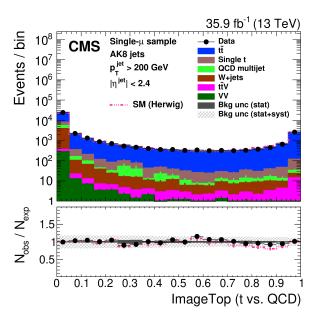
DeepJet and Training Size

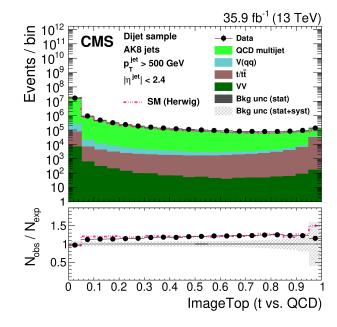




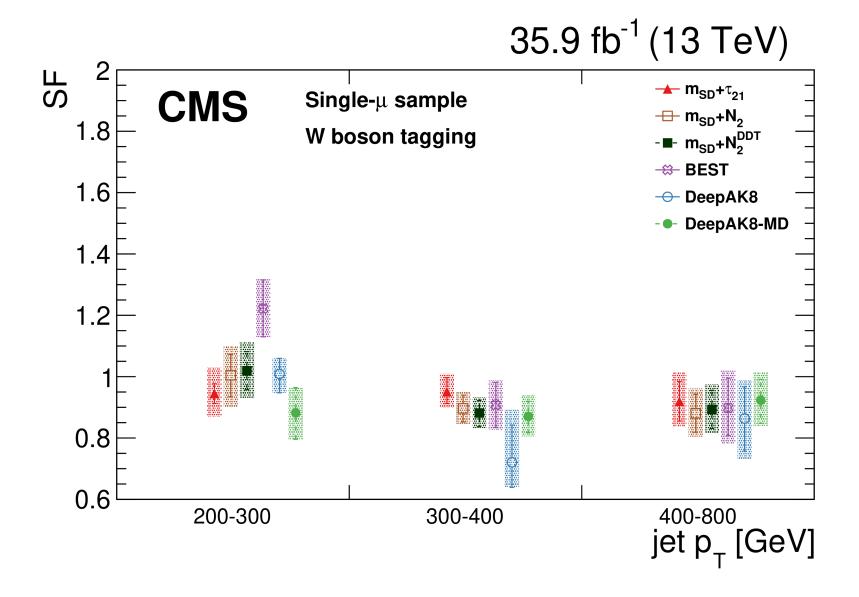
NIM A 899 (2018)

JINST 15 (2020) P06005



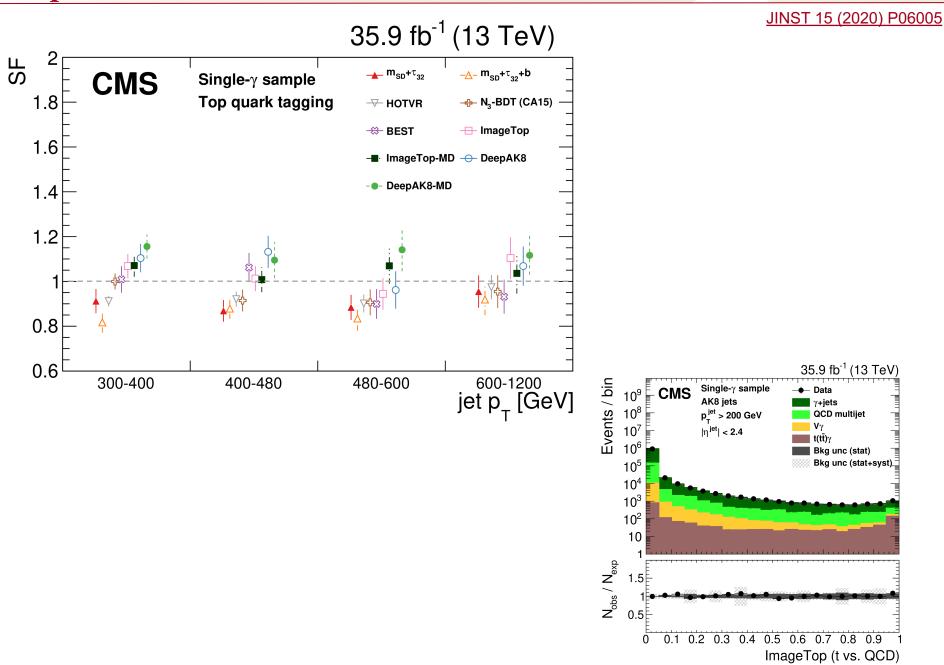


W-tagging Scale Factors



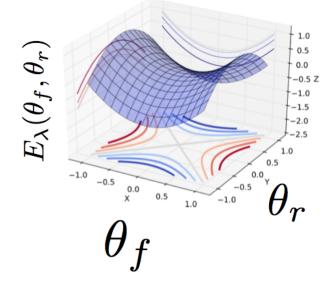
JINST 15 (2020) P06005

Top Misidentification Scale Factors



$$\hat{\theta}_f, \hat{\theta}_r = \arg\min_{\theta_f} \max_{\theta_r} E(\theta_f, \theta_r).$$

$$E_{\lambda}(\theta_f, \theta_r) = \mathcal{L}_f(\theta_f) - \lambda \mathcal{L}_r(\theta_f, \theta_r),$$



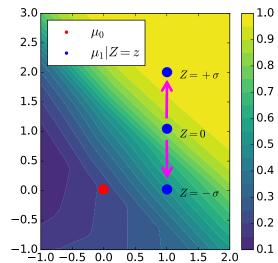
- Loss encodes performance of classifier and adversary
 - Classifier penalized when adversary does well at predicting Z
- Hyper-parameter λ controls trade-off
 - Large λ enforces f(...) to be pivotal, e.g. robust to nuisance
 - Small λ allows f(...) to be more optimal

[arXiv:1611.01046]

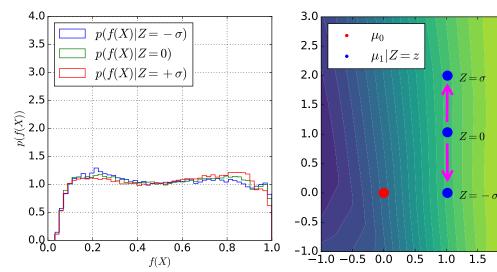
Learning to Pivot: Toy Example

2D example $x \sim \mathcal{N}\left((0,0), \begin{bmatrix} 1 & -0.5\\ -0.5 & 1 \end{bmatrix}\right)$ when Y = 0, $x \sim \mathcal{N}\left((1,1+Z), \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\right)$ when Y = 1.

4.0 $p(f(X)|Z = -\sigma)$ 3.5 p(f(X)|Z=0)3.0 $p(f(X)|Z = +\sigma)$ 2.5 $(X)^{f}$ 1.5 1.0 0.5 0.0 0.8 0.2 0.4 0.6 1.0 f(X)



- Without adversary (top) large variations in network output with nuisance parameter
- With adversary (bottom) performance is independent!



0.84

0.72

0.60

0.48

0.36

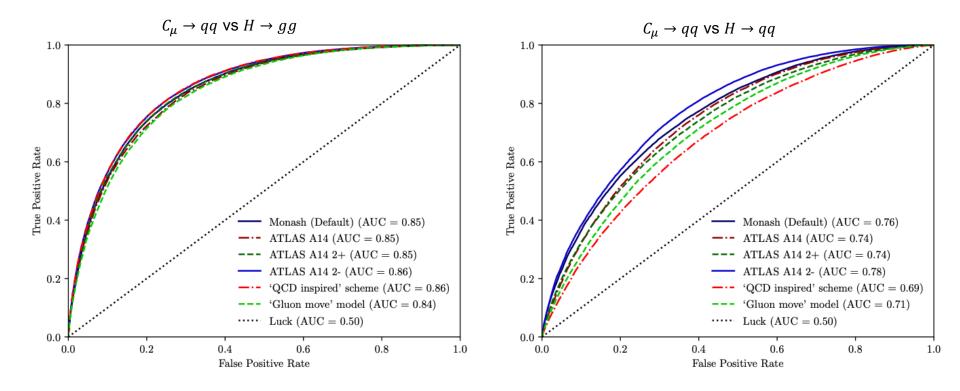
0.24

0.12

2.0

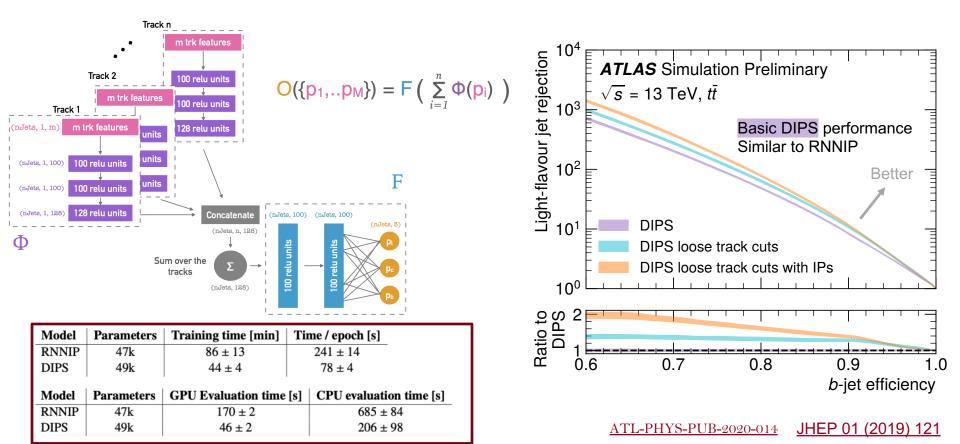
Modeling Comparisons

arXiv:2105.04582

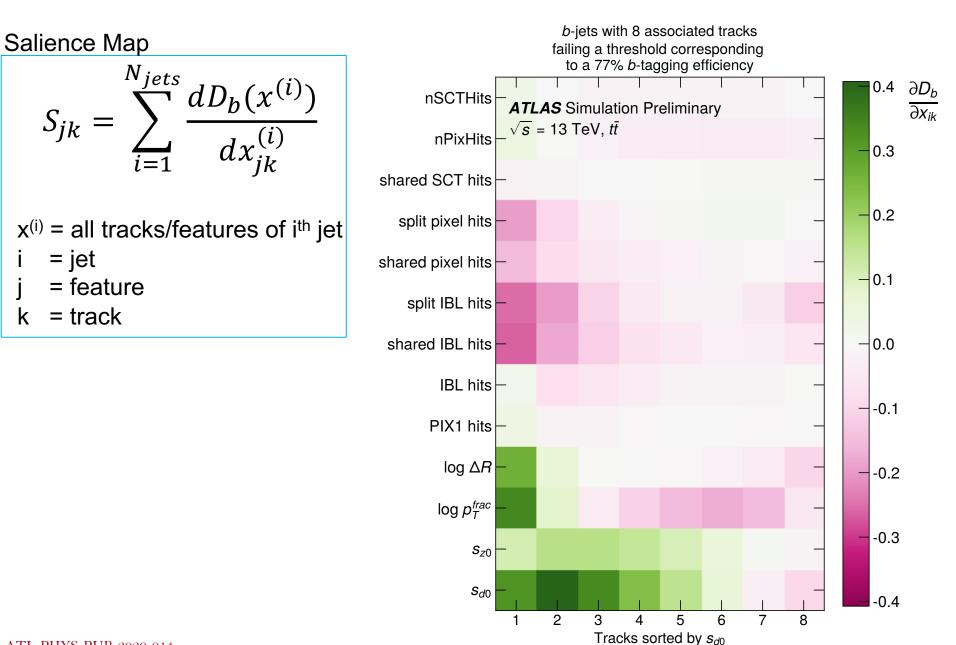


Next Generation: DIPS – Deep Impact Parameter Sets

- Challenges of RNN Tagging
 - Must choose sequence ordering, not inherent, which is best?
 - Requires iteration over tracks, can't be parallelized
- Deep Sets: permutation invariant and parallelizable model

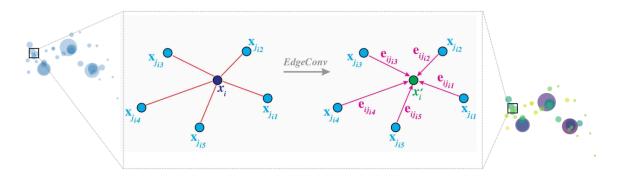


Sanity Checks



ATL-PHYS-PUB-2020-014

Next Generation: ParticleNet with Graph Neural Networks



Phys. Rev. D 101, 056019 (2020) CMS-DP-2020-002

Signal efficiency

