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AlZ: Ab Initio Artificial Intelligence

Machine learning that incorporates
first principles, best practices, and domain knowledge
from fundamental physics

Symmetries, conservation laws, scaling relations, limiting behaviors, locality, causality,
unitarity, gauge invariance, entropy, least action, factorization, unit tests,
exactness, systematic uncertainties, reproducibility, verifiability, .. .
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Confronting the Black Box

How do we develop robust machine learning for jet analyses?
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Likelihood Ratio Trick

Key example of simulation-based inference

Many QCD/collider/jet problems
can be expressed in this form!

Goal: Estimate p(x) / q(x)

Training Data:  Finite samples P and Q

Learnable Function: f(x) parametrized by, e.g., neural networks

Loss Function(al): [, = —< log f(:l?)>P + <f(:l?) — 1>Q

. . p(x
Asymptotically: argmin L = Q Likelihood ratio
f(x) q()
—min L = / dz p(z) log plz) Kullback—Leibler divergence
f(z) q(x)

[see e.g. Cranmer, Pavez, Louppe, arXiv 2015; D’Agnolo, Wulzer, PRD 2019;
simulation-based inference in Cranmer, Brehmer, Louppe, PNAS 2020;

relation to f-divergences in Nguyen,Wainwright, Jordan, AoS 2009; Nachman, |DT, arXiv 2021]
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https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1806.02350
https://arxiv.org/abs/1911.01429
https://arxiv.org/abs/math/0510521
https://arxiv.org/abs/2101.07263

Asymptotically, same structure as Lagrangian mechanics!

Action: L = /dm L(x)

Lagrangian: L(x) = —p(x)log f(z) 4+ q(x) (f(:l:) — 1)

oL _
of

Requires shift in theoretical focus from solving problems to specifying problems

Euler-Lagrange: 0 Solution: ()



https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1806.02350
https://arxiv.org/abs/1911.01429
https://arxiv.org/abs/math/0510521
https://arxiv.org/abs/2101.07263

“What is the machine learning?”

For this loss function, an estimate of the likelihood ratio
derived from sampled data and regularized by the
network architecture and training paradigm

“But where’s the physics?!”

In the choice of loss function, data samples,
network architecture, and training paradigm

€€ ))
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Many Reasons to be Wary!

“A Framework for Understanding Unintended Consequences of Machine Learning”
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(b) Model Building and Implementation

. Historical bias arises when there is a misalignment be-

tween world as it is and the values or objectives to be
encoded and propagated in a model. It is a normative con-
cern with the state of the world, and exists even given per-
fect sampling and feature selection.

. Representation bias arises while defining and sampling

a development population. It occurs when the develop-
ment population under-represents, and subsequently fails
to generalize well, for some part of the use population.

. Measurement Bias arises when choosing and measur-

ing features and labels to use; these are often proxies for
the desired quantities. The chosen set of features and la-
bels may leave out important factors or introduce group-
or input-dependent noise that leads to differential perfor-
mance.

. Aggregation bias arises during model construction, when

distinct populations are inappropriately combined. In
many applications, the population of interest is heteroge-
neous and a single model is unlikely to suit all subgroups.

. Evaluation bias occurs during model iteration and evalu-

ation. It can arise when the testing or external benchmark
populations do not equally represent the various parts of
the use population. Evaluation bias can also arise from the
use of performance metrics that are not appropriate for the
way in which the model will be used.

. Deployment Bias occurs after model deployment, when

a system is used or interpreted in inapppropriate ways.

For collider physics,“bias” = “systematic uncertainty”
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[h/t David Kaiser, MIT SERC; Suresh, Guttag, arXiv 2019]


https://computing.mit.edu/cross-cutting/social-and-ethical-responsibilities-of-computing/
https://arxiv.org/abs/1901.10002

Machine Learning for |et Substructure

Jets from fragmentation
of quarks and gluons

How can we leverage theory to advance machine learning for jets?
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My (Evolving) Perspective

When striving for “interpretable machine learning”
we are essentially hoping that likelihood ratios can be
approximated via theoretically well-motivated forms

We can impose theoretical priors by judicious choice of
network architecture that captures the underlying
structures and symmetries of our problem

Machine learning methods can only be as robust and reliable
as the data samples used for training

We are making progress towards uncertainty quantification,
using more elaborate loss functions and training paradigms

Examples below are representative, not exhaustive; apologies!

[see HEPML-LivingReview for extensive bibliography]
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https://iml-wg.github.io/HEPML-LivingReview/

When striving for “interpretable machine learning”
we are essentially hoping that likelihood ratios can be
approximated via theoretically well-motivated forms
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Compute Likelihood Ratios Directly?

Yes, you can! And if you have enough calculational power, you should!

Shower Deconstruction Color Singlet Identification
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[Soper, Spannowsky, PRD 201 1] [Buckley, Callea, Larkoski, Marzani, SciPost 2020]

Challenge is that in most cases, best estimate of likelihood ratio
comes from complex simulations with no closed form expression
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https://arxiv.org/abs/1102.3480
https://arxiv.org/abs/2006.10480

ldentifying Novel Jet Observables

When likelihood ratio is not a function of standard high-level observables

Signal/Background Pairs
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[Faucett, JDT,Whiteson, PRD 202 1; using Komiske, Metodiev, DT, JHEP 2018]
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https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/1712.07124

Theory-Inspired Likelihood Parametrizations

Flexible frameworks for parton-shower-like modeling
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[Andreassen, Feige, Frye, Schwartz, EPJC 2019] [Lai, Neill, Ptoskon, Ringer, arXiv 2020] [Cranmer, Drnevich, Macaluso, Pappadopulo, arXiv 202 1]

These methods are based on constrained generative models,
hopefully generalizing better than generic methods

Exhibit close relationship between generation and inference
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https://arxiv.org/abs/1804.09720
https://arxiv.org/abs/2012.06582
https://arxiv.org/abs/2105.10512

Sidestepping Per-Event Likelihood Ratios!?

Could be helpful, though per-event information is usually complete

2I

Collider events are independent p(zi|04)  p({x1,..., 2N }[04)
and identically distributed... = p(zil0s)  p({z1,....on}|0B)

Top Quark Mass, 172.5 versus 175 GeV
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per-event binary classifiers
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[Nachman, DT, arXiv 202|; see mixed sample discussion in Metodiev, Nachman, |DT, JHEP 2017]
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https://arxiv.org/abs/2101.07263
https://arxiv.org/abs/1708.02949

We can impose theoretical priors by judicious choice of
network architecture that captures the underlying
structures and symmetries of our problem
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Jet Representations

Pixelized Image
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[e.g. Brehmer, Macaluso, Pappadopulo,
Cranmer, NeurlPS 2020]
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Graphs

Pairwise Interactions

[e.g. Moreno, Cerri, Duarte, Newman, Nguyen,
Periwal, Pierini, Serikova, Spiropulu,Vlimant, EPJC 2020]

Imposes implicit theoretical prior (typically a good thing!)
Influences choice of network architecture


https://arxiv.org/abs/2012.09719
https://arxiv.org/abs/2011.08191
https://arxiv.org/abs/1908.05318

From Principles to Network Architectures

Permutation Equivariance Lorentz Equivariance
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[Dolan, Ore, PRD 2021] [Bogatskiy, Anderson, Offermann, Roussi, Miller, Kondor, arXiv 2020]
Lund Plane Emissions Infrared and Collinear Safety
Inl/A

[Dreyer, Qu, JHEP 2021] [Komiske, Metodiey, |DT, JHEP 2019]

Jesse Thaler (MIT) — Theory Perspective on Machine Learning for Jets 18


https://arxiv.org/abs/2012.08526
https://arxiv.org/abs/2012.00964
https://arxiv.org/abs/2006.04780
https://arxiv.org/abs/1810.05165

Energy Flow Networks

Architecture designed around symmetries and interpretability

Permutation Linear weights
Latent space of dim 7 invariant  (IRC safe)

S(T) =F(Vi,Va,..., Vi) Va(j) = ZE ?a(m)
eJ

Easy to plot!

[Komiske, Metodiev, DT, JHEP 2019; see also Komiske, Metodiev, |DT, JHEP 2018; code at energyflow.network;
special case of Zaheer, Kottur, Ravanbakhsh, Poczos, Salakhutdinov, Smola, NIPS 2017;
histogram pooling in Cranmer, Kreisch, Pisani,Villaescusa-Navarro, Spergel, Ho, ICLR SimDL 2021]
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https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1712.07124
https://energyflow.network/
https://arxiv.org/abs/1703.06114
https://simdl.github.io/files/40.pdf

Learning from the Machine

q &
VS.

For £ = 2, EFN learns radial moments: Z 2; f(6;)  cf Angularities: f(8) = 8
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Traditional QCD observables emphasize homogeneous angular scaling
But EFN reveals that likelihood ratio exhibits collinear/wide-angle separation
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[Komiske, Metodiev, DT, JHEP 2019;
cf. Larkoski, JDT, Waalewijn, [HEP 2014; using Berger, Kucs, Sterman, PRD 2003; Ellis,Vermilion,Walsh, Hornig, Lee, JHEP 2010]
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https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1408.3122
https://arxiv.org/abs/hep-ph/0303051
https://arxiv.org/abs/1001.0014
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EFNs3: Quark vs. Gluon
PyTHIA 8.230, /s = 14 TeV
R =04, pr € [500,550] GeV

——— EFN,

— C(A,B)

=== BDT(\W, A2 \(1/2))
Angularity A(V)
Angularity \(2)
Angularity \(1/2)
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Quark Jet Efficiency

EFN outperformed a
domain expert (i.e. me)

But we reverse engineered
the machine (and learned
something about QCD)
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https://arxiv.org/abs/1001.0014

More Network Architectures for Interpretability

Rendering the black box more transparent

Input Feature Relevance Analytic Calculations
Feature Significance for Model 3 Neuron weights
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[Agarwal, Hay, lashvili, Mannix, McLean, Morris, Rappoccio, Schubert, JHEP 2021 ] [Kasieczka, Marzani, Soyez, Stagnitto, |HEP 2020]

Imposing specific theoretical structures might reduce performance
but might also yield better robustness/generalizability

Jesse Thaler (MIT) — Theory Perspective on Machine Learning for Jets 22


https://arxiv.org/abs/2011.13466
https://arxiv.org/abs/2007.04319

Machine learning methods can only be as robust and reliable
as the data samples used for training
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Signal Background

Quark/Gluon Classification [8388] [8858]
“Hello, World!” of et Physics | [ Gl [0
Quark Gluon
= 4/3 C,=3=9/3
h Quark — 1]

Find © such that
h(GIuon)

|
-

p(J|G)
Bestyoucando: A(J) = |1
s ande M) =\ @i

Likelihood ratio yields optimal binary classifier (and vice versa)

[see e.g. Gras, Hoche, Kar, Larkoski, Lonnblad, Platzer, Siodmok, Skands, Soyez, JDT, JHEP 2017;
Komiske, Metodiev, Schwartz, JHEP 2017; Komiske, Metodiey, |DT, JHEP 2018]
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https://arxiv.org/abs/1704.03878
https://arxiv.org/abs/1612.01551
https://arxiv.org/abs/1809.01140

What do you mean by “quark’ and “gluon™?

Jets are clusters of colorless hadrons!

Parton shower “truth” is but a (useful) fiction!



https://arxiv.org/abs/1704.03878
https://arxiv.org/abs/1612.01551
https://arxiv.org/abs/1809.01140

Topic Modeling to Disentangle Data Samples

While you can’t unambiguously label individual jets, you can
extract quark and gluon distributions from hadron-level measurements

EFP-Extracted Fractions C Z+jet |
N A et 1 A
o CZ2 Gluon Yy ¥4
fosl P . SIES
: SEEE
= S K/
200 U/ ¥ JE¥E/
. U/ ¥ ¥/E¥
o) KIEE E7E
JEE/ /7 /¥ |

0.0 2?5 570 7T5 1(;.0 12.5 15.0
Soft Drop Multiplicity nsp Key concept from natural language

processing: “anchor words”

[Komiske, Metodiev, DT, JHEP 2018; cf. ATLAS, PRD 2019; using Metodiev, Nachman, JDT, JHEP 2017; Metodiev, DT, PRL 2018]
see also Blanchard, Flaska, Handy, Pozzi, Scott, PLMR 201 3; Katz-Samuels, Blanchard, Scott, J]MLR 2016]
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https://arxiv.org/abs/1809.01140
https://arxiv.org/abs/1906.09254
https://arxiv.org/abs/1708.02949
https://arxiv.org/abs/1802.00008
https://arxiv.org/abs/1303.1208
https://arxiv.org/abs/1710.01167

Parameterized Data Samples

Incorporating nuisance parameters into training

Learn to Pivot... ...or Learn to Profile?

1 p(f(X)|Z= —0) —Uncertainty Aware Data Augmentation

)| PUDIZ=—0) ) S —onee 5 |
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NLL - min(NLL)
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0 . . . . .
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[Louppe, Kagan, Cranmer, NeurlPS 2017] [Ghosh, Nachman,Whiteson, arXiv 2021]

Regardless of the approach, inspires renewed theoretical focus
on uncertainty modeling for Monte Carlo generation
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https://arxiv.org/abs/1611.01046
https://arxiv.org/abs/2105.08742

We are making progress towards uncertainty quantification,
using more elaborate loss functions and training paradigms
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Loss Function for Bayesian Analyses

Treating network parameters as having a prior distribution

Jet Energy Scale Event Generation
900 XlO_l
| LO1 —— BINN
—— Training Data
800+ 081 mmm +/- oprea
~ 2 0.6
& 700; 504
_4: / =Z U.
& 3 0.2
600 ¥l max +/- 0 (68%) '
—— truth 0.0
500/~ || - predicted 215 ié
500 600 700 800 900 20 10 60
PT,j [GeV] pr.e+ [GeV]
[Kasieczka, Luchmann, Otterpohl, Plehn, SciPost 2020] [Bellagente, HauBmann, Luchmann, Plehn, arXiv 2021]

Use ELBO loss to capture both statistical and systematic uncertainties
Worth developing a frequentist version of this approach!?
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https://arxiv.org/abs/2003.11099
https://arxiv.org/abs/2104.04543

Nothing intrinsically wrong with Bayesian analyses,
but have to be aware of cases with strong prior dependence

/dé’ 0 p(f|data) # m@axp(data\@)

If needed, can treat neural networks as static objects
and calibrate them as if they were ordinary observables

[see further discussion in Cranmer, Pavez, Louppe, arXiv 2015; Nachman, SciPost 2020]



https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1909.03081

Training Paradigm for Preserved Uncertainties

When the goal is to maintain statistical properties

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Sample with wrong physics Sample with correct physics | :
but all positive weights but some negative weights :
1N /o 5 w\x

‘Classiﬁer‘

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Plain reweighting yields all
positive weights with correct  Dwrong (:13) X w(az) = Dcorrect (CU)
asymptotic probability density

Improved resampling through 5p 2 <w2>
auxiliary neural network yields — —

- - D <w>2
correct statistical uncertainties

[Nachman, JDT, PRD 2020; building on Andersen, Gutschow, Maier, Prestel, EPJC 2020]
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https://arxiv.org/abs/2007.11586
https://arxiv.org/abs/2005.09375
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Case Study in Jet Physics at Large Hadron Collider

Original sample: large
weight cancellations

Initial Weights
Neural Resampler, K=1
—=- Neural Resampler, Optimal K
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desired distribution
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https://arxiv.org/abs/2007.11586
https://arxiv.org/abs/2005.09375

Theory Perspective on ML for Jets

When striving for “interpretable machine learning”
we are essentially hoping that likelihood ratios can be
approximated via theoretically well-motivated forms

We can impose theoretical priors by judicious choice of
network architecture that captures the underlying
structures and symmetries of our problem

Machine learning methods can only be as robust and reliable
as the data samples used for training

We are making progress towards uncertainty quantification,
using more elaborate loss functions and training paradigms

Looking forward to your thoughts and discussion!
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Backup Slides
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Using All Five LHC Interaction Points

THEORY

L g

Pl P2 P5 P8 RI

[from my talk at ML4Jets 2018, with apologies]
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https://indico.cern.ch/event/745718/contributions/3146636/
http://www.theorycoffeeco.com/

E.g. Quark/Gluon Classification

In various limits, likelihood ratio is monotonically related to...

Soft-dropped Multiplicity IRC Safe Multiplicity

log 2 0.5
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[Frye, Larkoski, DT, Zhou, J[HEP 2017] [Larkoski, Metodiev, JHEP 2019]

Away from these limits, the likelihood ratio is
not typically simple, elegant, or interpretable (but we can hope!)
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https://arxiv.org/abs/1704.06266
https://arxiv.org/abs/1906.01639

E.g. Detector Unfolding

: Multi-dimensional unbinned detector corrections
OmniFold . . o o
via iterated application of likelihood ratio trick

Detector-level Particle-level
. Data
S
Sl
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[Andreassen, Komiske, Metodiev, Nachman, |DT, PRL 2020; + Suresh, ICLR SimDL 2021;
Komiske, McCormack, Nachman, arXiv 2021; see unfolding comparison in Petr Baron, arXiv 2021]

EefE
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https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/2105.04448
https://arxiv.org/abs/2105.09923
https://arxiv.org/abs/2104.03036

Back to the Future with ALEPH Archival Data
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[talk by Badea, ICHEP 2020; cf. ALEPH, EPJC 2004]
[see also Badea, Baty, Chang, Innocenti, Maggi, McGinn, Peters, Sheng, DT, Lee, PRL 2019; HI, DIS2021]
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Energy Flow Representation

Emphasizes infrared and collinear safety Theory

Detection

Composite Hadrons

D&

Energy Flow: [ . |
o £ ~ lim n; T (t, vtn)

Robust to hadronization and detector effects
t— 00

Well-defined for massless gauge theories

[see e.g. Sveshnikov, Tkachov, PLB 1996; Hofman, Maldacena, JHEP 2008; Mateu, Stewart, |]DT, PRD 201 3;
Belitsky, Hohenegger, Korchemsky, Sokatchev, Zhiboedov, PRL 2014; Chen, Moult, Zhang, Zhu, PRD 2020]
[complementary perspective on IRC unsafe information in Chakraborty, Lim, Nojiri, Takeuchi, JHEP 2020]
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Machine Learning Collinear QCD /q/% vs.%

Latent Dimension 256

EFNs56: Quark vs. Gluon
—1 9 PyrHia 8.230, /s = 14 TeV
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Collinear Soft

[Komiske, Metodiev, DT, JHEP 2019]
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En Route to the Lund Plane /;/% vs.%

Coordinate transformation to the emission plane

R
J

Log Radial Distance In

0 /2 T 3 /2 27
Azimuthal Angle ¢

[Komiske, Metodiev, DT, JHEP 2019; see also Dreyer, Salam, Soyez, |HEP 2018]
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