Precision predictions for jet rates

Rene Poncelet In collaboration with Michal Czakon and Alexander Mitov Based on: 1907.12911 and 21xx.xxxx

$$\rho \rho \rightarrow j + X$$
 $\rho \rho \rightarrow jjj + X$

European Research Council Established by the European Commission

31.5.2021 Jets and their substructure from LHC data

Jet rates at the LHC

- Multi-jet rates provide an unique possibility to test (perturbative) QCD
- Parameter extraction:
 - Measurements of aS from event shapes and jet rate ratios (~aS) \rightarrow energy scale dependence \rightarrow test of aS running
 - PDF extraction \rightarrow high-x gluon
- Multi-jet signatures are background for many SM signatures.
- Allow to probe broad ranges of energy scales for heavy new physics
- Large cross sections → large statistics In practice only limited by systematics!

 \rightarrow Theory uncertainties: missing higher orders, resummation, NP-physics, ...

31.5.2021 Jets and their substructure from LHC data

31.5.2021 Jets and their substructure from LHC data

Double virtual corrections

- $2 \rightarrow 2$ Virtual amplitudes
 - Apart from special cases, most SM processes known
 - Di-jet amplitudes long known [Glover'01-'04]
- 2 \rightarrow 3 Two-loop amplitudes:
 - (Non-) planar 5 point massless
 → fast progress recently [Abreu'20'21,Agarwal'21,Chawdhry'20'21]
 → triggered by efficient MI representation [Chicherin,Sotnikov'20]
 - Tri-jet amplitudes in leading colour [Abreu'21]
 - 5 point amplitudes with one external mass: [Badger'21,Abreu'20,Canko'20]
 → Needed for V/H+2jets

Real-virtual corrections

- Multi-leg one-loop amplitudes automated in many codes:
 - \rightarrow MadGraph [Alwall'14]
 - → OpenLoops [Buccioni'19]
 - \rightarrow Recola [Denner'17]
 - → HELAC[Bevilacqua'11]
 - Jet amplitudes: Njet [Badger'13]
- Nowadays part of any NLO MC
- IR-stability crucial for NNLO
 - \rightarrow OpenLoops 2 [Buccioni'19]

31.5.2021 Jets and their substructure from LHC data

Double real corrections

- Cross sections \rightarrow Combination with real radiation
- Various NNLO subtraction schemes are available: qT-slicing [Catain'07], N-jettiness slicing [Gaunt'15/Boughezal'15], Antenna [Gehrmann'05-'08], Colorful [DelDuca'05-'15], Projetction [Cacciari'15], Geometric [Herzog'18], Unsubtraction [Aguilera-Verdugo'19], Nested collinear [Caola'17], Sector-improved residue subtraction [Czakon'10-'14,19] → STRIPPER C++ code
- NNLO QCD di-jet production known:
 - Gluons only [Gehrmann-De Ridder'13]
 - Partially leading colour[Currie'16]
 → studies of single inclusive, di-jet production [NNLOJet '16-...]
 - STRIPPER: complete colour [Czakon'19]
 - → All ingredients for NNLO QCD three jets \rightarrow first results

Single inclusive jet production

- Well studied observable:
 - NNLOJet [Currie, Gehrmann-De Ridder, Gehrmann, Glover, Huss, Pires '16-19]
 - NNLO QCD provides very good description of experimental data
- Full colour [Czakon'19]:
 - Technically very challenging
 - Tests all possible IR subtraction terms
 - Comparison to NNLOJet results:
 - Found full agreement
 - Missing sub leading colour terms small ~1-2 %

3

Single inclusive jet production

- Well studied observable:
 - NNLOJet [Currie, Gehrmann-De Ridder, Gehrmann, Glover, Huss, Pires '16-19]
 - NNLO QCD provides very good description of experimental data
- Full colour [Czakon'19]:
 - Technically very challenging
 - Tests all possible IR subtraction terms
 - Comparison to NNLOJet results:
 - Found full agreement
 - Missing sub leading colour terms small ~1-2 %

NNLO QCD three jet production

- Current status:
 - → NLO QCD [Nagy'03] and NLO EW [Dittmaier'12]
 → complete NLO predictions [Frederix'16,Reyer'19]
- Bottlenecks for NNLO QCD:
 - → double virtual amplitudes:
 → recently published in leading colour approximation [Abreu'21]
 → expected to be a good approximation of full colour amplitudes
 - → handling of real radiation in STRIPPER:
 - \rightarrow Sector-improved residue subtraction conceptually capable
 - \rightarrow no approximations necessary:
 - all channels, all limits, all contributions
 - \rightarrow Tour-de-force \rightarrow preliminary results

Three jet production - Setup

Setup:

- LHC @ 13 TeV, NNPDF31
- Require at least three (two) jets with:
 - ρT > 60 GeV, |y| < 4.4
 - HT2 = ρT1+ρT2 > 250 GeV
- Scales: $\mu R = \mu F = HThat = \Sigma \rho T \rho artons$

R32 ratios:

- Two jet rate = σ^2 Three jet rate = σ^3
- R32 = σ3/σ2
- Differentially in X: R32(X) = (do3/dX)/(do2/dX)
- Scale dependence of R32(X) is determined by correlated variation in σ3 and σ2

Only Approximation made: R2 = F0*F2 + F1*F1
$$\approx$$
 (F0*F2 + F1*F1)|_{leading color} \rightarrow taken from [Abreu'21]

31.5.2021 Jets and their substructure from LHC data

Three jet production – leading pT

31.5.2021 Jets and their substructure from LHC data

Three jet production - R32(pT1)

31.5.2021 Jets and their substructure from LHC data

Three jet production - R32(HT)

 $HT = \Sigma \rho T(jet)$

Scale dependence correlated in ratio

→ reduction of scale dependence

 \rightarrow flat k-factor

→ scale bands in ratio barely overlap

31.5.2021 Jets and their substructure from LHC data

Three jet production – sub-leading jet pTs

- PT2:
 - \rightarrow suffers from slow MC convergence, larger binning
 - \rightarrow shows reasonable perturbative convergence
- PT3:
 → fast MC convergence
 - \rightarrow flat k-factor

Caveat:

- \rightarrow Scale choice based on full event
- \rightarrow reasonable for pT1 and pT2
- $\rightarrow \rho T3 \iff \rho T1 + \rho T2 \rightarrow \rho \sigma tentially large hierarchy$
- \rightarrow investigation with 'jet-based' scale would be useful

Three jet production – azimuthal decorrelation

Kinematic constraints on the azimuthal separation between the two leading jets (φ12)

 φ 12 sensitive to the jet multiplicity:

2j: φ12 = π 3j: φ12 > 2/3π

4j: unconstrained

Study of the ratio

R32(HT,y*, ϕ Max) = (d σ 3(ϕ < ϕ Max)/dHT/dy*)/(d σ 2/dHT/dy*)

31.5.2021 Jets and their substructure from LHC data

Three jet production – R32(HT,y*,φMax)

31.5.2021 Jets and their substructure from LHC data

Summary and Outlook

Jet rates with the sector-improved residue subtraction framework

- Full NNLO QCD predictions for di-jet production available → sub-leading colour contributions small
- Three jets @ the LHC:
 - First predictions available with approximate two-loop contribution! \rightarrow improved scale dependence and stabilized K-factors \rightarrow pT spectra, HT
 - Real radiation for 2→3 can be handled. But efficiency is a concern and needs some attention!
 - Many interesting applications ahead! Stay tuned!

Thank you for your attention!

31.5.2021 Jets and their substructure from LHC data