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Jets in the medium

Jet

m Quark-gluon plasma (QGP) created in heavy ion collision:
deconfined phase, hot dense medium

m Jets serve as hard probe to the medium properties

m Jets are quenched in the medium via parton energy loss
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Jet modifications: ambiguous interpretations

0 0.05 o1 015 R m Interplay: jet substructures, e.g., Ry, could
g af op ALICE Preliminary — be modified during the passage through the
2 350 mPb-PbO-10%  |Sy=502TeV .
Fb'i ab Sys. uncertainty CRh=arg;d Jle't]s |inél-éf7 med|um and/OI’ . )
250 o 60<p, , %80 Gevic — affect the amount of jet energy loss and then this
2f #* b Zcftl;ggz,/’ % e jet doesn’t pass the pr cut in the selection, i.e.,
e o, selection bias.
osf ' s m Jets produce emissions with smaller Ry in
£’& 2f :s:;z«;':::: w P medium than in vacuum: presumes medium scale
& : dominates
m Jets with larger Ry in vacuum are more
. suppressed in medium: presumes vacuum scale

o 02 04 06 08 o dominates

m Can we disentangle these two effects with
knowledge of the degree of quenching for e4¢
individual measured jets?

m Ratio of jet observables distr.
between medium and vacuum,
BOTH with plf* > pSut
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Energy Ioss ratio & Jet selections

R Study jet observables for jets that belong to 2 different

E; wre gquenching classes:
= B o — Unquenched class: xj» > 0.9.

f B e — Quenched class:  xjn < 0.9.
Ef Medium induced
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final energy pr > 200 GeV — Steeply falling energy
loss dist. Biased by little quenched samples!

— Initial Energy Selection (IES): impose pr cut on

initial energy via xjn, pr/xjn > 200 GeV & pr > 100
jjf‘: GeV — More support of fairly quenched jets |n‘ the
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quenched class. More distinguishable!
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Hybrid model

m Vacuum jets using p7 min = 50
GeV, with oversampling power
P

m PbPb collisions in 0-5%
centrality at \/s = 5.02 ATeV.

m Reconstructed jets with anti-kr,
R = 0.4, required to be |n| < 2

m PYTHIA8 down to hadronization scale and pr' > 100 GeV.
m Strongly coupled energy loss at every stage m ~ 250,000 jets. 80% for training

and 20% for validation.
m Hadrons from the hydro. wake (medium response)

Casalderrey-Solana, Gulhan, Milhano, Daniel Pablos, Rajagopal JHEP ’15,16,17
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CNN Prediction & Interpretability
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Jet radius, R,
Rg ratio between PbPb and pp jets

m FES: Selection bias towards jets with
smaller Ry, originated by pr cut.

m IES:

— Unquenched class: still biased due to
Xjn cut: to belong to this class, a jet had
better to be with smaller R,, compared
with all pp jets.

— Quenched class presents features
related to energy loss, compared with
unquenched class: jet quenching leads
to enhancement of large Rj.

Yi-Lun Du

Inclusive in predicted xj, mmm
FES Predicted xf,<0.90 mmm

25 Predicted x§,>0.90 m T

0-5%, R=0.4
pp Jet pr > 200 GeV'

1/NjetsdN/dRy (PbPb/pP)
o

PbPb Jet pr > 200 GeV

Inclusive in predicted xf, mmm
|ES Predicted xf,<0.90 mmm
Predicted xf,>0.90

PbPb Jet pr > 100 GeV
& prixf, > 200 GeV/

Ry

| —— | S
0.00 0.05 0.0 0.15 0.20 0.25 030 035 0.00 0.05 0.10 0.5 020 025 030 035

June 3, 2021 7/15



Soft Drop multiplicity, nsp

ngp ratio between PbPb and pp jets

m FES: Selection bias towards jets with
fewer ngp, originated by pr cut.

m IES:

— Unquenched class: still biased due to
Xjn cut: to belong to this class, a jet had
better to be with fewer ngp, compared
with all pp jets.

— Quenched class presents features
related to energy loss, compared with
unquenched class: jet quenching leads
to enhancement of large ngp.
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Groomed momentum sharing fraction, z,

z4 ratio between PbPb and pp jets

m FES: No selection bias observed. Scale
of emission isn’t strongly dependent on
splitting fraction z,.

m IES:

— Quenched class presents features
related to energy loss, compared with
unquenched class: jet quenching leads
to enhancement of smaller z, subjets.

Y.-L. Du, D. Pablos, K. Tywoniuk, JHEP03(2021)206
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Applications: Jet tomography, length VS x;,

O 030

Normalized to

Due to the strong correlation
between L and x,, selecting

Histogram for L w/weights

[ 0.95<xf<1
0.85<x}, <0.95
1 0.75<x},<0.85
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1 0.25<x},<0.60

l
|

i

jets with different x;, will
naturally select jets that

traversed different L.

— Great potential to make
tomographic application!

Yi-Lun Du

y (fm)

10
0.25<x}, <0.60 0.60<x}, <075 0.75<x},<0.85
5
0
-5
10
0.85<x}, <0.95
5
0
=5
.
-0 -5 0 5 10 -5 0 5 10 -5 0 5
X (fm) X (fm) X (fm)
June 3, 2021 10/15

0.030

0.025

0.020

0.015

0.010

0.005



Applications: creation points & orientation
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Y.-L. Du, D. Pablos, K. Tywoniuk, arXiv: 2106.11271
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m |ES “removes” final state interactions (selection
bias), since we record “all” jets.

m |ES provides access to the genuine jet creation
point distribution and initial orientation.
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Conclusion and outlook

m CNN can extract energy loss jet-by-jet from jet image with good performance

m Procedure generalisable to many jet quenching models

m Jet shape contains significant predictive power: angular distribution of soft particles
m Mitigate selection bias and reveal medium effects on various jet observables

m Open opportunity to make tomographic study

— Generalizability to other MC quenching models?

Applicability to more realistic environment: fluctuating background?
Better performance from other state-of-the-art neural networks?
Extract traversed length with better precision?

Unfold jet initial properties apart from jet energy?
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Backup: Groomed jet image VS xj,

Average of normalized groomed Average of normalized groomed Average of normalized groomed Input Output | Network | Loss
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Backup: Prediction performance with FCNN

Jet shape " FF
Input (size) Output Network Loss — gfigfg::
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interpretability!
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Backup: Jet tomography with y;, & v»

2 i
=V p,z( —p!: Creation points density for centrality 30-40%, R = 0.4 @ y/Syy = 5.02 TeV, FES, pr > 100 GeV
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m Top row: In-plane jets
(vo > 0) going left (px < 0)
and right (px > 0)

m Bottom row: Out-of-plane
jets (vo < 0) going up i
(py > 0) and down (p, < 0) ey

m To get very quenched, jets
have to travel longer in
medium. So v» & py , are
helpful for jet tomography.
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