Other hybrid models: PYTHIA Angantyr + UrQMD

Hydrodynamics meets PYTHIA Angantyr

Schematic representation of A heavy ion collision

Hydrodynamics meets PYTHIA Angantyr

Schematic representation of A heavy ion collision

Hydrodynamics meets PYTHIA Angantyr

Hydrodynamics

This work: TRENTo + MUSIC + iSS + UrQMD (parametetrs by the Duke group [1])

We utilize these parameters but with a different overall normalization

Minor differences in the two approaches under study

PYTHIA+UrQMD

A SOUTH LARGE STATE

• This work: PYTHIA Angantyr + UrQMD

• Custom PYTHIA Angantyr with hadron vertex model implementation (C. Bierlich) to allow for direct coupling to UrQMD

3

[1] Nuc.Phys.A, 967 (67-73)

Hadron production vs time in the two cases

UNICAMP

Hydrodynamics Particlization

- Thin surface
- Emissions lasts longer

PYTHIA Angantyr Hadron vertex mod.

- Emission over volume
- Shorter emission time

Final-state observables

The basics: multiplicity

PYTHIA: reproduction within \sim 10% for 0-40%

Hydrodynamics: tuned to reproduce central, good (~10%) in 0-50%

Transverse momentum spectra: PYTHIA+UrQMD

Unique to PYTHIA+UrQMD

- Hydrodynamics sampling usually goes to 3-5 GeV/^c
- Our simulations: 4.5 GeV/^c
- PYTHIA: goes far…

Transverse momentum spectra: PYTHIA+UrQMD

Unique to PYTHIA+UrQMD

- Hydrodynamics sampling usually goes to 3-5 GeV/^c
- Our simulations: 4.5 GeV/^c
- PYTHIA: goes far…

Enabling hadronic interactions:

Suppression at high p_T ?

Transverse momentum spectra modification

Low p_T :

• Small radial-flow-like boost

Mid- and high p_T :

- Up to 60% suppression at 5 GeV/c
- High- p_T particles stopped by low- p_T
- Effect progressively smaller at high p_T

Nuclear modification factor R_{AA}

$$
R_{AA} = \frac{dN^{AA}/dp_T}{N_{coll}dN^{pp}/dp_T}
$$

RAA calculation:

- pp reference: PYTHIA Angantyr
- \bullet N_{coll}: from ALICE (Glauber Model)

Without hadronic interactions:

 R_{AA} below unity -> PYTHIA Angantyr violates binary scaling

Nuclear modification factor R_{AA}

$$
R_{AA} = \frac{dN^{AA}/dp_T}{N_{coll}dN^{pp}/dp_T}
$$

RAA calculation:

- pp reference: PYTHIA Angantyr
- $N_{coll}:$ from ALICE (Glauber Model)

Low p_T :

Data not described: radial flow missing?

Nuclear modification factor R_{AA}

$$
R_{AA} = \frac{dN^{AA}/dp_T}{N_{coll}dN^{pp}/dp_T}
$$

RAA calculation:

- pp reference: PYTHIA Angantyr
- N_{coll}: from ALICE (Glauber Model)

Low p_T :

• Data not described: radial flow missing?

Mid- and high p_T :

- Maximum suppression at ~5 GeV/c
- Tends towards no-interactions value at higher momenta

$High-p_T$ particle positions at hadronization

- Position ∝ momentum
- System size (central): $x \approx 10$ fm

$High-p_T$ particle positions at hadronization

- Position ∝ momentum
- System size (central): $x \approx 10$ fm

Two-particle correlation study: homing in on the suppression

UNICAMP

Two-particle correlations in 70-80%

With and without hadronic interactions

UNICAMP

Two-particle correlations in 0-5%

With and without hadronic interactions

Away-side suppression versus centrality

Effect due to interactions in hadronic phase only!

Suppression of the away-side jet is **~30%** in central collisions (0-5%)

14

Away-side suppression versus centrality

Hydrodynamics meets PYTHIA Angantyr

UNICAMP

PYTHIA+UrQMD: Flow from the hadronic phase?

• No hadronic interactions: no near-side Ridge

PYTHIA+UrQMD: Flow from the hadronic phase?

- No hadronic interactions: no near-side Ridge
- With hadronic interactions: long-range near-side Ridge

Elliptic flow coefficient v_2 {4} vs p_T

- Hydrodynamics:
	- low at low- p_T ,
	- high at high- p_T
- PYTHIA+UrQMD:
	- Consistently at 60% of measurement

Elliptic flow coefficient $v_2{4}$ vs p_T

- Hydrodynamics:
	- low at low- p_T ,
	- high at high- p_T
- PYTHIA+UrQMD:
	- Consistently at 60% of measurement

What if…

- PYTHIA Angantyr provided already some of the initial flow?
- How does UrQMD response work at PYTHIA densities?

Adding an initial hadronic flow to PYTHIA

- Rotate momenta immediately after hadronization (Δφ in figure)
- obtain a specific, settable initial $v_2(p_T)$ wrt to event plane

... and then vary the initial v_2 by manually setting it to have the right p_T dependence (~ measured) times a parameter "A" that we change systematically to scale v_2 up.

Goal: check UrQMD hydro-like response in each case.

How to plot? Next slide…

Initial hadronic flow vs final flow, low p_T

At low- p_T :

- UrQMD response diminishes with initial flow
- If very high flow: UrQMD removes some of it (not shown)
- measured value: stable condition

Initial hadronic flow vs final flow, low p_T

At low- p_T :

- UrQMD response diminishes with initial flow
- If very high flow: UrQMD removes some of it (not shown)
- measured value: stable condition

Initial hadronic flow vs final flow, low p_T

At low- p_T :

- UrQMD response diminishes with initial flow
- If very high flow: UrQMD removes some of it (not shown)
- measured value: stable condition

At mid- p_T :

measured value: not necessarily stable condition

How much flow is really needed?

(E.g. via string shoving in Angantyr)

Low- p_T : To recover the ALICE v_2 the v₂^{initial} values need to be similar to the desired final flow

High- p_T : Initial flow can be half of the desired final flow: UrQMD will add more!

Summary

- **PYTHIA Angantyr + UrQMD**: a complete, QGP-free alternative to hydro
- **High-** p_T **spectra**: suppression of high- p_T yields
	- Jet quenching in the hadronic phase?
	- Hadron vertex model: high- p_T "escapes" without interacting
- **Two-particle correlations**
	- Away-side suppression is there, looks similar to data
- **Elliptic flow / collectivity**: 60% of measured v_2 !
	- Less room for QGP effects?...
	- ...but UrQMD response is not strictly additive!
	- Further work will come: string shoving, native PYTHIA hadronic scattering!

22

Thank you!

• **Principles over implementation**: a lot of details still being worked out!

UNICAMI

Backup

Further studies: relating $v_2{2}$, $v_2{4}$ to the initial condition

Further studies: relating $v_2{2}$, $v_2{4}$ to the initial condition

Spectra modification: identified particle species

Spectra modification: identified particle species

• **PYTHIA** creates particles with a peak at around 1-2 fm/c

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- **Hydro** peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- **Hydro** peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- **Hydro** peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- **Hydro** peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- **Hydro** peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- **Hydro** peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- **Hydro** peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- **Hydro** peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- **Hydro** peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- **Hydro** peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

Hydrodynamics meets PYTHIA Angantyr

 00000

UNICAMP

Two-particle correlations: Hadronic collisions

Simulating heavy-ion collisions using a hybrid model based on QCD and hadronic rescattering **56**

Determining centrality

Hydrodynamics meets PYTHIA Angantyr

The density problem

- Is the hadronization configuration from PYTHIA **too dense** for UrQMD to handle?
- Approximate factor: density roughly twice on the average
- PYTHIA does not access dramatically different densities compared to hydro…
	- ...except for some hotspots with large density: we are testing if these are highly relevant or not

Meet the first contender: Hybrid model configuration

 $Pb-Pb 5.02 TeV$

[1] Nuc.Phys.A, 967 (67-73)

- ← TRENTo + Free Streaming + VISH2+1 + FRZOUT + UrQMD (by the Duke group [1]): obtained optimal a posteriori parameters
- We utilize these parameters but with a different overall normalization
- Minor differences in the two approaches under study

Meet the second contender: PYTHIA with hadron positions

15

- Space-time string breakup vertices from 4-momenta *p*, normalized string breakup positions *x*
- Hadron position v^h : average between vertices
- Formalism also extended to complex topologies

Two-particle correlations in 70-80%

With and without hadronic interactions

UNICAMP

Two-particle correlations in 30-40%

With and without hadronic interactions

Two-particle correlations in 0-5%

With and without hadronic interactions

PYTHIA+UrQMD: Flow from the hadronic phase?

