Beautiful mixing and *CP* violation at LHCb Particle Physics Seminar, University of Manchester

Philippe d'Argent (CERN)

28.05.2021

• SM remarkably succesful!

• But leaves many open questions:

- Where has all the antimatter gone?
- What is dark matter and dark energy?
- What about gravity?
- • •
- How to uncover new phenomena?

- Direct detection probes masses $m < \sqrt{s}/2$
- Simpler to interpret

- Precision measurement of decay rates and CPV
- Probes much higher energy scales

- SM remarkably succesful!
- But leaves many open questions:
 - Where has all the antimatter gone?
 - What is dark matter and dark energy?
 - What about gravity?
 - • •
- How to uncover new phenomena?

- Direct detection probes masses $m < \sqrt{s}/2$
- Simpler to interpret

- Precision measurement of decay rates and CPV
- Probes much higher energy scales

Outline

- CP Violation in the SM
- Direct CPV in $B^+ \rightarrow DK^+$ decays
- Mixing-induced CPV in $B_s^0 \rightarrow D_s^- K^+ \pi^+ \pi^-$ decays

Part 1: CP Violation in the SM

CKM Matrix

- In the SM quarks can change flavor by emission of a W^\pm boson
- CKM matrix describes flavor transitions across generations

- Matrix elements determine the transition probability
- Complex elements are only source of CPV in SM

Unitarity of CKM Matrix

• CKM elements not predicted by SM \rightarrow determine experimentally:

- Magnitudes: Measure decay rates (eg $|V_{ub}|$ from $\Gamma(\Lambda_b \rightarrow p\mu^- \bar{\nu}_{\mu})$)
- Phases: Measure CPV
- Unitarity: Only 3 real parameters and 1 phase are independent
 ⇒ Key test of the SM: Verify unitarity with global CKM fit

CKM angle γ

- γ is the phase between $b \rightarrow c$ and $b \rightarrow u$ decays
- $\bullet\,$ Can be determined entirely from tree decays \Rightarrow SM benchmark
- Significant experimental progress over past 25 years
- Close sensitivity gap:
 - Direct measurement: $\gamma = (71.1^{+4.1}_{-4.5})^\circ$ [HFLAV20]
 - Indirect measurement: $\gamma = (65.7^{+1.0}_{-2.5})^{\circ}$ [CKMfitter19]

Why LHCb?

- High *b* production cross-section
- Excellent time resolution (pprox 45fs)
- Excellent momentum and mass resolution $(dp/p \approx 0.4 0.6\%)$
- Excellent PID

Part 2: Direct CP Violation

How to measure CP Violation ?

- Global phase is not observable: $A \rightarrow Ae^{i\theta}, |A|^2 \rightarrow |A|^2$
- Need at least two interfering processes with different: Weak phase : $CP\theta = -\theta$ Strong phase: $CP\delta = +\delta$ $\Gamma(i, sf) = \Gamma(\bar{i}, s\bar{j})$
- Asymmetry: $A_{CP} = \frac{\Gamma(i \rightarrow f) \Gamma(\bar{i} \rightarrow \bar{f})}{\Gamma(i \rightarrow f) + \Gamma(\bar{i} \rightarrow \bar{f})} \propto \frac{a_2}{a_1} sin(\Delta \theta) sin(\Delta \delta)$

Example: Direct CPV in $B^{\pm} \rightarrow DK^{\pm}$

6/39

Example: Direct CPV in $B^{\pm} \rightarrow DK^{\pm}$

Direct CPV in $B^{\mp} \rightarrow DK^{\mp}, D \rightarrow K^+K^-$

- Measurement with full Run 1+2 (9fb⁻¹) LHCb data [JHEP04(2021)081]
- Decay rates: $\Gamma \propto |A^c + e^{i(\delta_B \gamma)}A^u|^2$, $\overline{\Gamma} \propto |A^c + e^{i(\delta_B + \gamma)}A^u|^2$
- CP Asymmetry: $A_{CP} \propto r_B \sin(\delta_B) \sin(\gamma) \approx 10\%$
- Only two observables but 3 unknowns
 ⇒ no standalone measurement of γ possible with D → KK only

Direct CPV in $B^{\mp} \rightarrow DK^{\mp}, D \rightarrow K^{+}K^{-}$

Analysis also uses information from:

- $B^{\mp} \rightarrow D\pi^{\mp}$ with $r_B^{D\pi} \approx 0.005$
- Partially reconstructed $B^{\pm}
 ightarrow D^{*} (
 ightarrow D\gamma, D\pi^{0}) h^{\pm}$
- Additional channels: $D \to \pi^+\pi^-$, $D \to K^-\pi^+$, $D \to K^+\pi^-$

Direct CPV in $B^{\mp} \rightarrow DK^{\mp}, D \rightarrow \pi^{+}\pi^{-}$

Analysis also uses information from:

- $B^{\mp} \rightarrow D\pi^{\mp}$ with $r_B^{D\pi} \approx 0.005$
- Partially reconstructed $B^{\pm}
 ightarrow D^{*} (
 ightarrow D^{\gamma}, D\pi^{0}) h^{\pm}$
- Additional channels: $D \to \pi^+\pi^-$, $D \to K^-\pi^+$, $D \to K^+\pi^-$

Direct CPV in $B^{\mp} \rightarrow DK^{\mp}, D \rightarrow K^{\mp}\pi^{\pm}$

Analysis also uses information from:

- $B^{\mp} \rightarrow D\pi^{\mp}$ with $r_B^{D\pi} \approx 0.005$
- Partially reconstructed $B^{\pm}
 ightarrow D^{*} (
 ightarrow D^{\gamma}, D\pi^{0}) h^{\pm}$
- Additional channels: $D \to \pi^+\pi^-$, $D \to K^-\pi^+$, $D \to K^+\pi^-$

9/39

Direct CPV in $B^{\mp} \rightarrow DK^{\mp}, D \rightarrow K^{\pm}\pi^{\mp}$

Analysis also uses information from:

- $B^{\mp} \rightarrow D\pi^{\mp}$ with $r_B^{D\pi} \approx 0.005$
- Partially reconstructed $B^\pm o D^* (o D\gamma, D\pi^0) h^\pm$
- Additional channels: $D \to \pi^+\pi^-$, $D \to K^-\pi^+$, $D \to K^+\pi^-$

Direct CPV in $B^{\pm} \rightarrow D^{(*)}h^{\pm}$

[JHEP04(2021)081]

- In total 30 observables (asymmetries, ratios) are measured
 ⇒ Combined information allows deriving tight constraints on r_B, δ_B, γ
- Combination with other measurements resolves ambiguities

Part 3: Mixing-induced CP vioaltion

Neutral Meson Mixing

- Neutral mesons can change their flavor via box-diagram transition
- Effective SE for time-development:

$$-i\frac{\partial}{\partial t} \begin{pmatrix} |B_{s}^{0}(t)\rangle \\ |B_{s}^{0}(t)\rangle \end{pmatrix} = (\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}) \begin{pmatrix} |B_{s}^{0}(t)\rangle \\ |B_{s}^{0}(t)\rangle \end{pmatrix}$$

- Flavor eigenstates $(B_s^0, \overline{B}_s^0) \neq Mass$ eigenstates (B_L, B_H) :
- Mixing probabilities:

 $P(B_s^0 \to B_s^0) = e^{-\Gamma_s t} \left[\cosh(\Delta \Gamma_s / 2 t) + \cos(\Delta m_s t) \right]$

 $P(B_s^0
ightarrow ar{B}_s^0) = e^{-\Gamma_s t} \left[\cosh(\Delta \Gamma_s / 2 t) - \cos(\Delta m_s t)
ight]$

with oscillation frequency $\Delta m_s \propto |V_{ts}V_{tb}|^2$, mean lifetime $\tau = 1/\Gamma_s$ and lifetime difference $\Delta\Gamma_s$

Mixing-induced CPV in $B_s \rightarrow D_s K$

Mixing-induced CPV in $B_s \rightarrow D_s K$

Mixing-induced CPV in $B_s \rightarrow D_s K$

Measurement of CKM γ from $B_s \rightarrow D_s K$

The actual decay rates are more complicated and follow from the SE:

$$\frac{\Gamma(t|q,f)}{e^{-\Gamma_{s}t}} \propto \left(1+r^{2}\right) \cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + qf\left(1-r^{2}\right) \cos\left(\Delta m_{s}t\right) \\ - 2r\cos(\delta - f(\gamma - 2\beta_{s})) \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - 2qfr\sin(\delta - f(\gamma - 2\beta_{s}))\sin\left(\Delta m_{s}t\right)$$

 $\begin{array}{l} q=+1(-1) \mbox{ for } B^0_s \ (\bar{B}^0_s) \mbox{ initial state} \\ f=+1(-1) \mbox{ for } D^-_s K^+ \ (D^+_s K^-) \mbox{ final state} \end{array}$

- 4 observables: $\Gamma(B_s^0 \to f), \Gamma(\bar{B}_s^0 \to f), \Gamma(B_s^0 \to \bar{f}), \Gamma(\bar{B}_s^0 \to \bar{f})$
- 3 unknown physical parameters: r, δ, γ
 - \Rightarrow Standalone measurement of CKM angle $\gamma!$

Measurement of CKM γ from $B_s \rightarrow D_s K$

- 4 observables: $\Gamma(B_s^0 \to f), \Gamma(\bar{B}_s^0 \to f), \Gamma(B_s^0 \to \bar{f}), \Gamma(\bar{B}_s^0 \to \bar{f})$
- 3 unknown physical parameters: r, δ, γ
 - \Rightarrow Standalone measurement of CKM angle $\gamma!$

How to select $B_s \rightarrow D_s K$ candidates?

- Reconstruct three D_s final-states: $KK\pi$, $\pi\pi\pi$ and $K\pi\pi$
- Both B_s and D_s fly O(1cm) before they decay
 ⇒ require vertex separation
- Final state particles are expected to have large IP and p_T
- Use PID info from RICH detectors to discriminate π and K
- Main suppression of comb. bkg with MVA using kinematic, topological variables and track/vertex fit quality

$B_s \rightarrow D_s K$ data sample

- Analysis using Run-I LHCb data set (3fb⁻¹) [JHEP03(2018)059]
- Signal yield of 6k
- Leakage of misidentified partially reconstructed bkg into signal region: $B_s \rightarrow (D_s^* \rightarrow D_s \underbrace{\gamma}_{\text{not rec.}} \underbrace{\gamma}_{\text{rec. as K}}$
- Bkg statistically subtracted by applying event weights

Experimental challenges

$$\mathcal{P}(t|q,f) \propto \left(rac{\mathrm{d}\Gamma(t'|q,f)}{\mathrm{d}t'}\otimes R(t-t')
ight)\epsilon(t)$$

• Time-resolution:

How well can we measure the decay time?

• Time-acceptance:

Does the selection bias our measurement?

• Tagging:

Have we produced a B_s^0 or a \bar{B}_s^0 ?

Calibration channel $B_s \rightarrow D_s \pi$

- Identical topology, similar kinematics
- Apply same selection (except PID cut on bachelor track)
 ⇒ Signal yield of 100k
- Flavor specific decay: $B_s^0 \rightarrow D_s^- \pi^+$ but $B_s^0 \not\rightarrow D_s^+ \pi^ \Rightarrow$ Simplified PDF:

$$\Gamma(t|q, f) \propto e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + q f \cos\left(\Delta m_s t\right)
ight]$$

- Fit initial+final state averaged $B_s \to D_s \pi$ decay time distribution: $\langle \Gamma(t) \rangle \propto \epsilon(t) e^{-\Gamma_s t} \cosh\left(\frac{\Delta \Gamma_s t}{2}\right)$ ($\Gamma_s, \Delta \Gamma_s \text{ fixed to PDG value}$)
- Acceptance $\epsilon(t)$ parameterized with cubic spline

Time-Resolution

- Use prompt K and D_s to create 'fake' B_s candidates with known decay time t = 0
- Spread of reconstructed decay times = Resolution

•
$$\langle \sigma_t \rangle \approx$$
 45fs $\ll 2\pi/\Delta m_s \approx$ 350 fs

Opposite Side

- *b*-quarks are produced in a $q\bar{q}$ pair
- OS: Use other B in the event to infer flavor of signal B_s
 ⇒ Search for flavor specific decays

- *b*-quarks are produced in a $q\bar{q}$ pair
- OS: Use other B in the event to infer flavor of signal B_s
 ⇒ Search for flavor specific decays
- SS: Use fragmentation of B_s (ss̄ created from vacuum)
 ⇒ Search for high momentum K in vicinity of B_s

- *b*-quarks are produced in a $q\bar{q}$ pair
- OS: Use other B in the event to infer flavor of signal B_s
 ⇒ Search for flavor specific decays
- SS: Use fragmentation of B_s (ss̄ created from vacuum)
 ⇒ Search for high momentum K in vicinity of B_s
- Tagging algorithms use MVA techniques to increase performance

Tagging calibration on $B_s \rightarrow D_s \pi$ data

- Taggers provide a decision for $\epsilon_{tag} \approx 80\%$ of the events
- How often are they wrong?

• Mixing asymmetry of
$$B_s \to D_s \pi$$
:

$$A_{mix} = \frac{N(B_s^0 \to f) - N(\bar{B}_s^0 \to f)}{N(B_s^0 \to f) + N(\bar{B}_s^0 \to f)} = \frac{\text{Unmixed - Mixed}}{\text{Unmixed + Mixed}} = (1 - 2\omega) \cos(\Delta m_s t)$$

$$\Rightarrow \text{Mistag } \omega \approx 35\%$$

- Effective fraction of events with correct tag: $\epsilon_{\rm eff} = \epsilon_{\rm tag} \, (1 2 \, \omega)^2$
- Poor tagging performance $\epsilon_{\rm eff} \approx 6\%$ is compensated by high B production cross-section

21 / 39

Results

• Decay-time fit to $B_s \rightarrow D_s K$:

$$r = 0.37^{+0.10}_{-0.09}$$

$$\delta = (358^{+13}_{-14})^{\circ}$$

$$\gamma = (128^{+17}_{-22})^{\circ}$$

- Systematics well under control (acceptance, resolution, tagging, bkg subtraction, fit bias, nuisance asymmetries, ...)
- Measurement statistically limited

Part 4: Measurement of the CKM angle γ from $B_s \rightarrow D_s K \pi \pi$

Measurement of CKM γ from $B_s \rightarrow D_s K \pi \pi$

Method can be extended to multi-body decays

• Advantage:

Strong phase not constant but depends on kinematic configuration (5D phase space)

• Disadvantage:

Complicated hadronic structure

Measurement of CKM γ from $B_s \rightarrow D_s K \pi \pi$

• Method can be extended to multi-body decays

• Advantage:

Strong phase not constant but depends on kinematic configuration (5D phase space)

• Disadvantage:

Complicated hadronic structure

Resonances

- Decay via intermediate hadron state
- Short lived resonance: $\tau \approx \mathcal{O}(10^{-23}s) \Rightarrow \Gamma_0 = \frac{1}{\tau} \approx \mathcal{O}(100 \text{MeV})$
- Peak in scattering amplitude:

- Non-isotropic distribution of decay products if **R** has **spin**
- Angular distribution given by spherical harmonics:

$$\begin{aligned} \mathsf{J} &= \mathsf{0} : A \propto \mathsf{1} \\ \mathsf{J} &= \mathsf{1} : A \propto cos\theta \\ \mathsf{J} &= \mathsf{2} : A \propto (cos\theta^2 - \frac{1}{3}) \\ \mathsf{J} &: A \propto P_J(\theta) \end{aligned}$$

Parameterization of intermediate-state amplitudes

Measurement of CKM γ from $B_s \rightarrow D_s K \pi \pi$

Full time-dependent amplitude PDF

$$\begin{aligned} \frac{\mathrm{d}\Gamma(x,t)}{\mathrm{e}^{-\Gamma_{s}t}\,\mathrm{d}t\,\mathrm{d}\Phi_{4}} &\propto \left(|\mathcal{A}_{f}^{c}(x)|^{2}+r^{2}\,|\mathcal{A}_{f}^{u}(x)|^{2}\right)\,\cosh\left(\frac{\Delta\Gamma_{s}\,t}{2}\right) \\ &+q\,f\,\left(|\mathcal{A}_{f}^{c}(x)|^{2}-r^{2}\,|\mathcal{A}_{f}^{u}(x)|^{2}\right)\,\cos\left(\Delta m_{s}\,t\right) \\ &-2\mathrm{Re}\left(\mathcal{A}_{f}^{c}(x)^{*}\,r\,\mathcal{A}_{f}^{u}(x)\,\mathrm{e}^{i\delta-if(\gamma-2\beta_{s})}\right)\,\sinh\left(\frac{\Delta\Gamma_{s}\,t}{2}\right) \\ &-2q\,f\,\mathrm{Im}\left(\mathcal{A}_{f}^{c}(x)^{*}\,r\,\mathcal{A}_{f}^{u}(x)\,\mathrm{e}^{i\delta-if(\gamma-2\beta_{s})}\right)\,\sin\left(\Delta m_{s}\,t\right) \end{aligned}$$

 $\begin{array}{l} q=+1(-1) \mbox{ for } B^0_s \ (\bar{B}^0_s) \mbox{ initial state} \\ f=+1(-1) \mbox{ for } D^-_s K^+ \ (D^+_s K^-) \mbox{ final state} \end{array}$

$B_s \rightarrow D_s^{\mp} K^{\pm} \pi^{\pm} \pi^{\mp}$ model-independent PDF

Phasespace integrated PDF

$$\frac{\mathrm{d}\Gamma(t)}{e^{-\Gamma_{s}t}\,\mathrm{d}t} \propto \cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + qf\,C\cos\left(\Delta m_{s}t\right) \\ + A_{f}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - q\,S_{f}\sin\left(\Delta m_{s}t\right)$$

$$C = \frac{1 - r^2}{1 + r^2}, \ A_f^{\Delta\Gamma} = -\frac{2 r \kappa \cos\left(\delta - f\left(\gamma - 2\beta_s\right)\right)}{1 + r^2}, \ S_f = f \frac{2 r \kappa \sin\left(\delta - f\left(\gamma - 2\beta_s\right)\right)}{1 + r^2}$$

Coherence factor dilutes sensitivity: $\kappa \equiv \frac{|\int \mathcal{A}^{c}(x)^{*} \mathcal{A}^{u}(x) d\Phi_{4}|}{\sqrt{\int |\mathcal{A}^{c}(x)|^{2} d\Phi_{4}} \sqrt{\int |\mathcal{A}^{u}(x)|^{2} d\Phi_{4}} \in [0, 1]$

- Measurement with full Run 1+2 (9fb⁻¹) LHCb data [JHEP03(2021)137]
- Selection similar to $B_s \rightarrow D_s K$ analysis
- Have selected 7.5k signal events (150k calibration events)

Experimental challenges

$$\mathcal{P}(x, t, q_t) = [P(x, t', q_t) \bigotimes R(t, t')] \cdot \epsilon(t)$$

Measurement of the B_s mixing frequency

• New high precision (0.3 %) measurement with $B_s \rightarrow D_s \pi$:

 $\Delta m_s = (17.7683 \pm 0.0051 \pm 0.0032) \mathrm{ps}^{-1}$ [arxiv:2104.04421]

- LHCb average: $\Delta m_s = (17.7666 \pm 0.0057) \text{ps}^{-1}$
- Legacy measurement as crucial input for future time-dependent CP measurements

Plenty of possible decay channels ! How to select them ?

Decay channel $B_s \to D_c^- [K_1(1270)^+ [S, D] \to \pi^+ K^* (892)^0]$ $B_{\rm s} \rightarrow D_{\rm s}^{-} [K_1(1270)^+ \rightarrow \pi^+ K^*(1430)^0]$ $B_s \to D_c^{-} [K_1(1270)^+ [S, D] \to K^+ \rho(770)^0]$ $B_s \rightarrow D_c^- [K_1(1400)^+ [S, D] \rightarrow \pi^+ K^* (892)^0]$ $B_s \to D_s^- [K_1(1400)^+ [S, D] \to K^+ \rho(770)^0]$ $B_5 \rightarrow D_5^- [K(1460)^+ \rightarrow K^+ \sigma]$ $B_{\rm s} \rightarrow D_{-}^{-} [K(1460)^+ \rightarrow \pi^+ K^*(892)^0]$ $B_5 \rightarrow D_c^- [K(1460)^+ \rightarrow K^+ \rho(770)^0]$ $B_{\rm s} \rightarrow D_{\rm s}^{-} [K^*(1410)^+ \rightarrow \pi^+ K^*(892)^0]$ $B_s \to D_c^- [K^*(1410)^+ \to K^+ \rho(770)^0]$ $B_{\rm s} \rightarrow D_{\rm c}^{-} [K_2^*(1430)^+ \rightarrow \pi^+ K^*(892)^0]$ $B_s \to D_s^{-} [K_2^{*}(1430)^+ \to K^+ \rho(770)^0]$ $B_{5} \rightarrow D_{c}^{-} [K^{*}(1680)^{+} \rightarrow \pi^{+} K^{*}(892)^{0}]$ $\begin{array}{l} B_{\rm s} \to D_{\rm s}^{-} \left[K^{*}(1680)^{+} \to K^{+} \rho(770)^{0} \right] \\ B_{\rm s} \to D_{\rm s}^{-} \left[K_{2}(1770)^{+} \to \pi^{+} K^{*}(892)^{0} \right] \end{array}$ $B_s \rightarrow D_s^- [K_2(1770)^+ \rightarrow K^+ \rho(770)^0]$ $B_s \rightarrow \sigma^0 (D_c^- K^+)_s$ $B_{s}[S, P, D] \rightarrow \rho(770)^{0} (D_{c}^{-}K^{+})_{V}$ $B_s \to K^* (892)^0 (D_s^- \pi^+)_s$ $B_{s}[S, P, D] \rightarrow K^{*}(892)^{0} (D_{c}^{-} \pi^{+})_{V}$ $B_s \rightarrow (D_s^- K^+)_S (\pi^+ \pi^-)_S$

pprox 100 in total !

Amplitude model selection

- Overwhelmingly high number of possible amplitudes
- Adding more fit parameters will describe this data better
 ⇒ Overfitting

LASSO

- Data-driven method for model selection [M. Williams, arXiv:1505.05133]
- Include "all" amplitudes, but penalize complexity in the likelihood:

 $-2 \cdot \log(L) \rightarrow -2 \cdot \log(L) + \lambda \cdot \sum_{i} |r_i|$

• Larger λ value produces simpler model

LASSO: Toy experiment

• Generated: pdf = 1 + x

• Fitted pdf =
$$1 + \sum_{i=1}^{10} c_i x^i$$

•
$$-2 \cdot \log(L) \rightarrow -2 \cdot \log(L) + \lambda \cdot \sum_i |c_i|$$

Time-dependent Amplitude Fit

Full time-dependent amplitude fit with LASSO model

Selected 8 $b \rightarrow c$ and 8 $b \rightarrow u$ amplitudes

Time-dependent Amplitude Fit

Full time-dependent amplitude fit with LASSO model

Selected 8 $b \rightarrow c$ and 8 $b \rightarrow u$ amplitudes

Selected LASSO amplitudes

Total amplitudes: $A^{c}(x) = \sum_{i} a_{i}^{c} A_{i}(x)$, $A^{u}(x) = \sum_{i} a_{i}^{u} A_{i}(x)$ with fit fractions: $F_{i}^{c(u)} = \int |a_{i}^{c(u)} A_{i}(x)|^{2} d\Phi_{4} / \int |A^{c(u)}(x)|^{2} d\Phi_{4}$

Decay Channel	F ^c [%]	F ^u [%]
$B_s \to D_s (K_1(1270) \to K^*(892) \pi)$	$13.0 \pm 2.4 \pm 2.7 \pm 3.4$	$4.1 \pm 2.2 \pm 2.9 \pm 2.6$
$B_s \rightarrow D_s (K_1(1270) \rightarrow K \rho(770))$	$16.0\pm1.4\pm1.8\pm2.1$	$5.1 \pm 2.2 \pm 3.5 \pm 2.0$
$B_s \to D_s (K_1(1270) \to K_0^*(1430) \pi)$	$3.4\pm0.5\pm1.0\pm0.4$	$1.1\pm0.5\pm0.6\pm0.5$
$B_s \rightarrow D_s \left(K_1(1400) \rightarrow K^*(892) \pi \right)$	$63.9 \pm 5.1 \pm 7.4 \pm 13.5$	$19.3 \pm 5.2 \pm 8.3 \pm 7.8$
$B_s \rightarrow D_s (K^*(1410) \rightarrow K^*(892) \pi)$	$12.8 \pm 0.8 \pm 1.5 \pm 3.2$	$12.6\pm2.0\pm2.6\pm4.1$
$B_s \rightarrow D_s (K^*(1410) \rightarrow K \rho(770))$	$5.6 \pm 0.4 \pm 0.6 \pm 0.7$	$5.6 \pm 1.0 \pm 1.2 \pm 1.8$
$B_s \rightarrow D_s (K(1460) \rightarrow K^*(892) \pi)$		$11.9\pm2.5\pm2.9\pm3.1$
$B_s \rightarrow (D_s \pi)_P K^*(892)$	$10.2\pm1.6\pm1.8\pm4.5$	$28.4 \pm 5.6 \pm 6.4 \pm 15.3$
$B_s \rightarrow (D_s K)_P \rho(770)$	$0.9\pm0.4\pm0.5\pm1.0$	
Sum	$125.7 \pm 6.4 \pm 6.9 \pm 19.9$	$88.1 \pm 7.0 \pm 10.0 \pm 20.9$

[JHEP03(2021)137]

37 / 39

CKM γ from $B_s \rightarrow D_s K \pi \pi$

Good agreement between methods!

Conclusion: LHCb γ combination

- LHCb continues to produce world-leading results on CPV and mixing in B decays
- Last LHCb average: $\gamma = (74^{+5}_{-6})^{\circ}$ [LHCb-CONF-2018-002]
- New average $\gamma = (67 \pm 4)^{\circ}$ includes:
 - $B^{\pm}
 ightarrow D^{(*)} K^{\pm}$ with D
 ightarrow hh updated with Run2 data [JHEP04(2021)081]
 - TD $B_s o D_s^{\mp} K^{\pm} \pi^{\pm} \pi^{\mp}$ for the first time [JHEP03(2021)137]
 - and more, see LHCb-CONF-2020-003
- Getting closer to challenge precision of global fits: $\gamma = (65.7^{+1.0}_{-2.5})^{\circ}$ [CKMfitter]
- New high precision measurement of Δm_s vital input for global CKM fits

Questions?

Backup: Kinematic of 4-body Decays

Four-momenta	
Meson masses $(p_i^2 = m_i^2)$	-4
E, p conservation	
Arbitrary orientation	
Independent variables	5

Decay rate

- $\mathrm{d}\Gamma \approx |M_{\mathrm{fi}}|^2 \, \Phi_4 \, \mathrm{d}m_{12}^2 \, \mathrm{d}m_{23}^2 \, \mathrm{d}m_{34}^2 \, \mathrm{d}m_{123}^2 \, \mathrm{d}m_{234}^2$
- $\bullet\,$ Phase space density function is not flat $(\Phi_4 \neq 1)$
- 5D phasespace \Rightarrow cannot easily be visualized

Backup: $B^{\mp} \rightarrow D^{(*)}K^{\mp}$ results

[JHEP04(2021)081, JHEP02(2021)169]

d'Argent

Beautiful mixing and CP violation at LHCb

Backup: $B^{\mp} \rightarrow D^{(*)}\pi^{\mp}$ results

<u>350</u> <u>350</u> LHCb LHCP $\delta^{D\pi}_B$ $\delta^{D\pi}_B$ 9 fb⁻¹ 300 300 250 $250 \cdot$ 200 200 50 100 150 0.000 0.002 0.0040.006 0.008 0.010 0 γ [°] $r_B^{D\pi}$ $[\circ]_{\mu^{*}0}^{[\circ]} g_{B}^{0}$ $\frac{LHCb}{9 \text{ fb}^{-1}}$ LHCb $9 {
m fb}^{-1}$ 100 100 5050 $^{0}_{0}^{1}$ 8.00 50 100 150 0.02 0.04 0.06 $\gamma \; [^\circ]$ $r_B^{D^*\pi}$

[JHEP04(2021)081, JHEP02(2021)169]

Backup: Tagging

Backup: Time-Resolution

Backup: LASSO optimization

How to choose λ ?

- BIC(λ) = -2·log(L) + r·log(N_{events})
 r = Number of parameters with: |c_i| > threshold
- Balances gain in fit quality vs. complexity
- Optimal value $\lambda \approx 4$

Backup: Time-dependent Amplitude Fit

Full time-dependent amplitude fit with LASSO model

Selected 8 $b \rightarrow c$ and 8 $b \rightarrow u$ amplitudes

