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How Did | End Up Here?

My physics (current) passion is searches for Long Lived Particles

As | became a professor... | had less and less
time... How could | keep doing physics (e.g.
making plots)!?

make analysis easy and ended up
. % being deputy executive director of

5 Got involved with others looking to
i y
S/ |RIS-HEP.

| got into (particle) physics because
I"'ve the intersection of physics,
computers, and hardware
fascinated me.


http://iris-hep.org/

Software And Particle Physics

‘ IRIS-HEP: 17 institute, ~30 FTE NSF software institute.
* Data Management

e Algorithms
e Analysis The NSF
e Facilities

e Physics Division
e Office of Advanced Cyberinfrastructure

% HEP-CCE: DOE software institute
- - *  GPU Porting of Algorithms and Generators

* |/O and data formats and disk usage


http://iris-hep.org/
https://hepcce.org/
http://www.nsf.gov/

Why Now?



Completing The Story

26.8% Dark
Matter

68.3% Dark
Energy




Challenging the Theory

Nuclear Phy5|cs Tabletop Experiments

Nuclear Phy5|cs

(yy scattermg @ XFEL)

Particle Physics

(CMS @ LHC)


https://tabletop.icepp.s.u-tokyo.ac.jp/?page_id=365
https://www.dunescience.org/
https://www.scoopnest.com/user/Seeker/1266030217732059136-the-axion-dark-matter-experiment-admx-at-uw-is-the-world39s-first-dark-matter-experiment-that39s-hun

Particle Physics

Mt. Blanc

\Js =13 TeV
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Carefully measure every constant

Look for something we have missed

L =Lsy+ Lpsy

= Search for new particles




Energy, Mass Scale Probed

N =o0yz77 X

How often the accelerator
collides protons

How often a particular process happens

How many events we can expect in our detector



Run 4
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Now HL-LHC Projections

ATLAS Preliminary

Projection from Run 2 data
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http://cds.cern.ch/record/2651134/files/1902.10229.pdf

Plans for Run 4 — Upgrade the Detectors

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter
\ A ]

Summary of CMS HL-LHC Upgrades

Barrel ECAL/HCAL

Trigger/HLT/DAQ |®' X R

New Endcap %
Calorimeters =%

New Tracker

MIP Precision Timing Detector

Toroid Magnets  Solenoid Magnet SCf Tracker Pixel Detector TRT Tracker



Plans for Run 4 — Computing

ATLAS Preliminary ATLAS Preliminary

= Resource needs
(2017 Computing model)

— Flat budget model
(+15%l/year)

= Resource needs
(2017 Computing model)

— Flat budget model
(+20%l/year)
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The World Is Changing |
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The World Is Changing |l

A\ | StatsModels
%M Statistics inn Putiron ’ array

i scikits-image

\ \ And many,
j » : many more...

Data Analysis Framework pandas [hiWimd  matplitlib

6 SciPy — 3

=
NumPy jupyter
~4

IPLyl: | /e
tPython @ python Z:?




CO m p u tl n g @ I— H C ’ RecoAnrs]?rlzscitSs the E

underlying physics

Reconstructs hits
into objects
(electrons, etc.)
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CO m p Uti n g @ I_H C ’ Recoﬁ:?rlzscitss the

underlying physics
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The Frontiers of Computing Evolution

Machine Learning
Coprocessors (GPU)
Analysis

OpenData/Reuse



Machine Learning



ML Has Been Around...

International Journal of Modern Physics C | VOL. 06, NO. 04

USING AN ANALOG NEURAL NETWORK TO TRIGGER ON TAU LEPTONS AT CDF

Abstract

At the Collider Detector at Fermilab (CDF), we hav: and implemented a t:

Tau leptons offer a fertile 1 both for standard model tes
hadrons, it is chall h them from ordin:

problem. In th

old. the event is passed to the
work) chip was used to implement the tau lepton neural networ

d.

1995

A Tools < Share

au leptons using analog neural network electronics

the bulk of tau lepto

btained. The iput to the

tunable

Machine Learning is a function fit, or minimization problem

Deep Learning: function has millions of parameters

We learned how to calculate the gradient exactly...


https://www.worldscientific.com/doi/epdf/10.1142/S0129183195000411

We can “calculate” this

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

Toroid Magnets  Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Events / bin

ATLAS Preliminary Open Data 4~ Data
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What you want



Simulation of complex detector elements

Calibration

Separating signal and background



In Simulation

Latent
Space (50)

Discriminator
Output

Conditional WGAN-GP

Dense
NVoxel
Linear

True
momentum

Dense Dense
NVoxel NVoxel
RelU RelLU

Dense
NVoxel
RelLU

Dense
NVoxel
RelU

Generator
Output

ATLAS

1048.6Gey : E“ Simulation Preliminary
) ¥, 0.20<|1|<0.25
o ; — Geant4
— GAN
oss
L b 2E o Epoch: 1000
b L : -
e ? )

ar[GeV)

Photons — Geant4 vs GAN


https://indico.cern.ch/event/973140/

In Analysis

Grab decay from CMS or ATLAS detector picture

Make sure to save to LLP PR plots

Low-mass &
high-mass
separately

Low-mass &
high-mass
separately

Low-mass &

CalRatio Trigger high-mass
separately

Preselection
On jet and event variables

Per-Event BDT Per-Jet NN
Separates signal & bkg events * Separates signal, QCD & BIB jets

event
variables

Event Cleaning & Low-mass &
high-mass

Final Selections separately

ABCD Method

Data-driven background estimation Key

Filtering
Signal Significance & Calculation

Limit-setting if applicable

Includes lifetime extrapolation

20-30% Gain in Sensitivity



Differentiable Programming

ATL ninary Open Data 4 Data
30[ V5= o’ [ ] Higgs
Zz

B Other

Events / bin

Black Box
(NN)
Toroid Magnets  Solenoid Magnet  SCT Tracker Pixel Detector TRT Tracker my, [GeV]
Traditional NN Approach Traditional Approach
Select 4 muons
Lepton Information Black Box - SE|eC;_'On _CUtS OB muons
Environment Information (NN) 4l Combine into Z bosons

Selection cuts on Z’s
Combine into 41 object
Plot my;

o Uk W e



Differentiable Programming

Combine the Approaches

1. Select 4 muons

2. Selection cuts on muons

3. Combine into Z bosons Use ML techniques to optimize!

4. Selection cutsonZ’s Based on figure of merit: expected sensitivity

5. Combine into 4l object

6. Plotmy,
Differentiable Programming allows you to do Differentiable Programming allows you to do
gradient decent through loops, if statements, gradient decent through loops, if statements,
etc. etc.

Take into account systematic errors!


https://medium.com/@DBCerigo/on-why-gradient-descent-is-even-needed-25160197a635

Coprocessors



Why Are Coprocessors Interesting?

A Co-Processor does a specific calculation much more efficiently than a general-purpose CPU

CMS Sirmulation, 18 = 13 TeV, 0l +« PU, BX=25ns
#— Full Raco = Track Raco

PU140

Tima/Event [a.u.]
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The Lay Of The Land...

i) Next Generation HPC Architectures )

» In the next generation of supercomputers we see extensive use of accelerator technologies

* Oak Ridge: Summit (2018) « LLNL: Sierra (2018)
» 4608 IBM AC922 nodes w/ 2x Power9 CPU « 4320 IBM AC922 nodes w/ 2x Power9 CPU
« 3x NVIDIA Volta V100 + NVLink / CPU » 2x NVIDIA Volta V100 + NVLink / CPU

« LBL: NERSC-9 "Perimutter" (2020) Argonne: Aurora A21 (2021) S 3
+ AMD EPYC "Milan" x86 only nodes + * possibly first exascale HPC What is viable:

o :‘aeg CF’UF’ e ge”;g;’;dia GRS * Intel Xeon CPU + Intel X°/gen12 GPU + Optane - GPU’s —for general purpose applications
+ Oak Ridge: Frontier : . .

15 eXSﬂop (2021) Tsukuba: Cygnus (2020) - FPGA — for tailor-made applications

. » 2x Intel Xeon 6162 + 4x NVidia V100 GPU

. AMD EPYC CPU + 4x AMD "Instinct’ GP
L OR e gstinet” GEU - 2x CPU + 4x GPU + 2x Intel Stratix FPGA

« Commercial clouds: Japan: Fugaku (2021)
* Brainwave / Azure FPGA - manycore ARM AB4fx (48+2)
: gr?nglgncé%; gsp U * integrated "SVE" 512 bit GPU-like accelerator
Spain: MareNostrum
» Xeon 8268 + Power9 + V100 GPU
Switzerland: Piz Daint
» Xeon E5 2690 + NVidia P100 GPU




CPU
Optimized for
Serial Tasks

GPU
Optimized for Many
Parallel Tasks

The GPU is optimized for the same parallel task



CondInputLoader

Start

@
O

0o ®
%\O
©

TileRChMaker

00 CaloCellMaker

TileDQstatus (2
—Ser9 A0

g o

)
,‘Oo egammaTopoClusterCopier

p 6‘ _InDetCaloCluserROlSelector
> @ InDetSiSpTrackFinder
CaloTopoCluster InDetAmbiguitySolver o-g°

@,

InDetExtensionProcessor g

InDetTRT_Extension o

InDetTrackCollectionMerger

InDetCopy i

17 on critical path: 5.8s
N\

ATLAS
309 Algorithms: 14.6s

®
o®

9)

OO

o

InDetTrackParticles

MuonlinsideOutReco StreamAOD
® (end)

"‘ .‘1 — StreamESD

(r“; Qe " btagging_antikt4emtopoAlg

022 —© MuonCreatorAlg
g e e
MuonCombinedinDetCandidate 8 q




CPU
Optimized for
Serial Tasks

GPU
Optimized for Many
Parallel Tasks

GPU’s are very good at Linear Algebra
GPU’s are very bad at if statements
Many threads operate in lock-step
There is no i86 instruction set

Porting algorithms is difficult or nearly impossible



Those who say it can't be done are usually
interrupted by others doing it.

(James Baldwin)

sk




Run each event in one block

Decoding — parallelise by readout unit

Clustering — parallelise in (overlapping) detector regions

Tracking — parallelise by track

Vertexing — parallelise by combination



https://indico.cern.ch/event/871092/contributions/3673777/attachments/1976291/3289494/20200127_dcraik_irishep_v2.pdf

s LHCb the exception? Or the Rule?

Two of the most expensive operations:
- Tracking
- Jet reconstruction

o— — Y WY

Qm&wmmm*

= \\‘\ NN e L
RIS O e 1 L

Let's hope it is the rule...



Custom Programming of FPGA’s often used in the trigger

Field Programmable Gate Arrays

Accelerating GNNs on FPGAs for Particle Track Reconstruction using OpenCL and his4ml .
Aneesh Heintz Implementation of a

TR FPGAs software algorithm in

DSP Block

e Re-configurable Integrated circuits : :
o  Consists of several small computational X : Memory Block
units |

e Integrates combinations of
Lookup tables (LUTs)
Registers
On-chip memories (global and local)
Arithmetic hardware

e Advantages of FPGAs

o  Support wide, heterogenous and unique
parallel implementations

o Lower latency & more energy efficient
than GPUs

Programmable

Routing Switch Modules



https://indico.cern.ch/event/924283/contributions/4105258/attachments/2154118/3632911/FPGA_GNN_tracking_FastML.pdf

I I l I Mostly Arbitrary NN’s

Accelerating GNNs on FPGAs for Particle Track Reconstruction using OpenCL and hls4ml
Aneesh Heintz
12-02-2020

TrackML dataset for track reconstruction

Track reconstruction is cast as a
GNN “edge classification” problem

Interest in using GNNSs in
FPGA-based trigger or co-processors
O  Requires FPGA-specific implementation

Graph size vs. p in the pixel barrel & endcaps

Input data represented as a graph
o Nodes — hits
o Edges — linear approx. of particle track

8
e ——— 9

-1000 0 1000

z [mm]
0 150 -1500 -1000  -500

https://www.kagale.com/c/trackml-particle-identification p; > 2 GeV graph

v Cut [GeV]

FPGA Code

Interesting
because of the
trigger


https://github.com/fastmachinelearning/hls4ml

AEWSIE



Pixels
Tracker
ECAL
HCAL
Solenoi

Muons

Reconstruction/Simulation

DEICRELE

“Analysis”
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Analysis

Data

ATLAS Preliminary

= Resource needs
(2017 Computing model)
— Flat budget model
(+15%lyear)

Histograms
& Statistical
Analysis

Not just too long,

but also leads to
bad habits

2018 2020 2022 2024 2026 2028

Year

Write C++ code to access experiment
Data Format

Locate Data in Data Lake

Submit jobs to run on world-wide
GRID of computers on many files
Download & combine data locally
Make plots/look at data

A cycle takes ~weeks




Particle Physics Software Eco-System
ROOT Python

ROOT

The computational backbone of particle Used by industry to analyze data similar
physics for the last 25 years to HEP data
* Maintained by the community and a * Ecosystem of many packages
core of ~10 developers at CERN and maintained by industry and open-
Fermilab. source developers
 C++ (eveninacommand line) * Uses C/C++ for speed, python for
* A framework productive interface
* 1/0, data analysis, histogram filling, * A collection of libraries that
fitting, etc., all carefully put together communicate via standards
e Designed by and for particle physics * 1/0, data analysis, histogram filling,
e Limited use outside fitting, etc., all availible

* Needs additional libraries to satisfy all
of science’s needs
* Growing use by particle physicists



ROOT @™ @ python’

Data Analysis Framework




Declarative “Analysis”

Structured Query Language

SELECT CustomerName, City FROM Customers

The data you want to start from

What parts of the data you want

Write C++ code to access experiment
Data Format

Locate Data in Data Lake 1. Get Name of Data in Data Lake
Submit jobs to run on world-wide 2. Write “simple” query
GRID of computers on many files 3. Make plots/look at data

Download & combine data locally
Make plots/look at data



Industry Has Tackled This

e.g.

Given a query against a registered dataset, automates all
aspects and returns your requested data. Tested against PB of
data.

Many tools Kafka, Hive, Fink, Storm, etc.

Many tools are mature... why not take advantage of them?

* Independent collider collisions: extreme parallelism
* Rectilinear Data Model Ofl/p@

s
* Data Lake Interfaces



Extreme Parallelism

Industry Solution: Columnar Calculations

 Don’t loop over events
* Loop over objects/numbers/arrays

Calculate the mean energy of all jets in an event

1. Load electron energies into memory for all events
2. Scan all at the same time, calculating the mean

No loops, no if statements: very GPU friendly!

np.mean calculates in the column
direction when we set axis = 1

Event 1

Event 2

 What if your data is too large to fit in
memory?

* Complex operations generate unneeded
temporaries



Rectilinear Data

Particle Physics Data is Jagged

Electron 4
LL.].
Event .
Event 3

Each Event does not look the same!

Build out and Extend
the numpy
ecosystem

Electron 5

Outlander Spices
Quarterly Sales 2004 - 2010

B lectron 6

12 Asafoetida Pc
Asafoetida Seed Powder
Leaf (Ground)



https://github.com/scikit-hep/awkward-1.0

Data Access

s ROOT

memmssh Python Ecosystem

Columnar or
Awkward data

* Give it asimple data query: grab only the data you want
* Transmits the data in a compact format to the world



ROOT Tools

ATLAS Preliminary

= Resource needs ® P B’S Of data

(2017 Computing model)

— Flat budget model * SSD’s are very expensive — but fastest way to access data

(+15%l/year)

Particle physics lives and dies by the size of its on-disk data
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RNTuple

* New data format tied to ROOT
 ~25% smaller than current file formats
e 2-5times faster read times
* Should be favorable compared with industry formats!

2018 2020 2022 2024 2026 2028

Year




Statistics

Fundamentally, calculating * Expected Background
the sensitivity, limit, and e Systematic and Statistical How Compatible?
discovery of a signal is fitting Errors on background

* Data

example from , binning with TransfoD

ATLAS eData | mtH
(s=13Tev,36.1fp" Uit +light [Ott+=1c
Single Lepton mtt+=1b mtt+V

gﬁi ° [JNon-tt Total unc.
SR --- ttH (norm)
Pre-Fit

Model is represented as a computational graph

Events / bin

e Each node of the graph
represents a vectorized
n-dimensional array
("tensorized") operation

TensorFlow

¢ The graph (model) is largely
factorized between the
graph and the
graph

e The bottom node is then used
for final log likelihood

=model.logpdf (

°
i}
2

o
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=
©

o

-08 -06 -04 -0.2 02 04 06 08 1

Classification BDT output


https://indico.cern.ch/event/822074/contributions/3471458/attachments/1865561/3067487/20190619_TRExFitter_AS.pdf
https://zenodo.org/record/3961236#.YC4qekqIb-g

OpenData and Reuse



OpenData and Particle Physics

“The replication crisis”
Economics (n=18) Psychology (n=100) Publicly Availible Data Has Benefits Too

Camereretal., 2016 Open Science Collaboration, 2015

* Non-collaboration members can produce science

* New models can be tested

* Tool authors have realistic datasets to experiment on
* Easy to link in other communities for tooling

- Replication p<0.05

* Funding agencies
* Laboratories
* The Community


https://en.wikipedia.org/wiki/Replication_crisis

CERN Has an OpenData Policy!

CERN Open Data Policy for the LHC Experiments

(including Run-1)

Can you imagine anyone running over 1 PB of data?



http://opendata.cern.ch/docs/cern-open-data-policy-for-lhc-experiments#:~:text=The%20CERN%20Open%20Data%20Policy%20reflects%20values%20that,towards%20the%20openness%20and%20preservation%20of%20experimental%20data.

Reproducible research data analysis platform

Hybrid analysis pipelines in the reana reproducible

* Defines the analysis S - 7
* Background Model Ll Higgs-to-four-lepton data anayss [ Describe
 All Errors o
ATLAS * Defines sample set of signals S
EXPERIMENT * Analysis is freeze-dried

HICondt

* New set of signals
e Uses reana resources

REANA Job Controller




@ HEPData

Repository for publication-related High-Energy Physics data

* High Level Results for published papers
 Computer readable

observables phrases

» B

No more overlaying transparencies!

LUMINOSITY
SQRT(S)
Mpges
Channel

Category

Ejies [GeV]  Data : : Total
Background

sumerrors Fillbars(J) Log Scale (X)

Log Scale (v) ]

Variables

Total Ba




Last Thoughts



The Community Outside of HEP

All branches of science are taking advantage of the recent advances in computing

“Can a physicist get a Ph.D. without at least

understanding Machine Learning?”
e Astrophysics

e Particle Physics
* Nuclear Physics (Jefferson Lab’s efforts)

Several examples in this talk

e Pulling techniques and
software from industry into the
community

e Designing our own software
and putting out into industry

Communicator



Conclusions

We must extract as much physics from this
and past investments as possible

Software and computing infrastructure
will require a major upgrade

Industry and others have many mature
and useful tools

We have years of experience to give back

Mention Quantum Computing
Facilities, data management

Quantum Computing
Major advances in computing facilities
Data management

Machine Learning Details would require
several talks all on its own

And not at all limited to just Particle
Physics



Community White Paper
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Introduction

Software and Computing Challenges

Support and |
5 Conclusions
Appendix A List of Workshops
Appendix B Glossary

References

A Roadmap for
HEP Software and Computing R&D
for the 2020s

HEFP Software Foundation'

ABSTRACT: Particle physics has an ambitious and broad experimental programime

for the coming decades.  This mime requires large investments in detecto

tiled new iti periments, or to u
Similarly, it requires commensurate investment in the RiD of software to
manage, process, and analvse the shear amounts of data to be recorded. In planning
for the HL-LHC in particular, it is eritical that all of the collaborating stakeholders
aAgree on i
I thi



Mathusla

We can still do it
on one computer



Stuff to check



