

Resolving a Challenging Supersymmetric Low-Scale Seesaw Scenario at the ILC

Joel Jones-Pérez

Pontificia Universidad Católica del Perú (PUCP)

Based on the following work:

N. Cerna, T. Faber, JJP, W. Porod (1705.06583) N. Cerna, JJP, J. Masias, W. Porod (2102.06236)

SUSY Seesaw

We know neutrinos needs a mass, but the MSSM doesn't care.

Simplest solution: SUSY Seesaw.

$$\mathcal{W} = \mathcal{W}_{\text{MSSM}} + Y_{\nu} \left(\hat{L} \cdot \hat{H}_{u} \, \hat{\nu}_{R}^{c} \right) + \frac{1}{2} M_{R} \left(\hat{\nu}_{R}^{c} \, \hat{\nu}_{R}^{c} \right)$$
$$m_{\nu} \sim \frac{v_{u}^{2}}{2} Y_{\nu}^{*} \, M_{R}^{-1} \, Y_{\nu}^{\dagger}$$

Main question: what do colliders have to say about a low-scale SUSY Seesaw?

Our setup

- Set the R-sneutrino as the LSP.
- Keep μ as low as possible \rightarrow Higgsino-like electroweakinos.
- Ignore squarks and gluinos.
- Objective: Explore collider sensitivity to sleptons.

Our setup

- Set the R-sneutrino as the LSP.
- Keep μ as low as possible \rightarrow Higgsino-like electroweakinos.
- Ignore squarks and gluinos.
- Objective: Explore collider sensitivity to sleptons.

Possible hierarchy:

$$m_{\tilde{\nu}_R}^2 < \mu < m_{\tilde{L}}^2, \, m_{\tilde{E}}^2$$

$$m_{\tilde{\nu}_R}^2 < m_{\tilde{L}}^2, \, m_{\tilde{E}}^2 < \mu$$

Our setup

- Set the R-sneutrino as the LSP.
- Keep μ as low as possible \rightarrow Higgsino-like electroweakinos.
- Ignore squarks and gluinos.
- Objective: Explore collider sensitivity to sleptons.

Possible hierarchy:

$$m_{ ilde{
u}_R}^2 < \mu < m_{\tilde{L}}^2, \, m_{\tilde{E}}^2$$
 (2017, 13.3 fb⁻¹):
$$\mu \gtrsim 400 \, {\rm GeV}$$
 $m_{\tilde{\nu}_R}^2 < m_{\tilde{L}}^2, \, m_{\tilde{E}}^2 < \mu$ $m_{\tilde{L}} \gtrsim 600 \, {\rm GeV}$

Strong constraints

Our setup

- Set the R-sneutrino as the LSP.
- Keep μ as low as possible \rightarrow Higgsino-like electroweakinos.
- Ignore squarks and gluinos.
- Objective: Explore collider sensitivity to sleptons.

Possible hierarchy:

$$m_{ ilde{
u}_R}^2 < \mu < m_{\tilde{L}}^2, \, m_{\tilde{E}}^2$$
 (2017, 13.3 fb⁻¹):
$$\mu \gtrsim 400 \, {\rm GeV}$$
 $m_{\tilde{\nu}_R}^2 < m_{\tilde{L}}^2, \, m_{\tilde{E}}^2 < \mu$ $m_{\tilde{L}} \gtrsim 600 \, {\rm GeV}$

Strong constraints

Sneutrino Sector

We need to add new soft SUSY breaking terms:

$$\mathcal{V}^{soft} = \mathcal{V}^{soft}_{\text{MSSM}} + (m_{\tilde{\nu}_R}^2)_{ij} \tilde{\nu}_{R,i}^* \tilde{\nu}_{R,j} + \frac{1}{2} (B_{\tilde{\nu}})_{ij} \tilde{\nu}_{R,i} \tilde{\nu}_{R,j} + (T_{\nu})_{ij} \tilde{L}_i \cdot H_u \tilde{\nu}_{R,j}$$

Sneutrino Sector

We need to add new soft SUSY breaking terms:

$$\mathcal{V}^{soft} = \mathcal{V}^{soft}_{\text{MSSM}} + (m_{\tilde{\nu}_R}^2)_{ij} \tilde{\nu}_{R,i}^* \tilde{\nu}_{R,j} + \frac{1}{2} (B_{\tilde{\nu}})_{ij} \tilde{\nu}_{R,i} \tilde{\nu}_{R,j} + (T_{\nu})_{ij} \tilde{L}_i \cdot H_u \, \tilde{\nu}_{R,j}$$

Additional simplifications:

 T_{ν}

Assumed proportional to Y_v, so negligible

 $B_{\tilde{\nu}}$

New source of LNV, taken equal to zero for this work

Sneutrino Sector

Sneutrino mass matrix:

$$M_{\tilde{\nu}}^{2} = \begin{pmatrix} m_{\tilde{L}}^{2} + \frac{1}{2}m_{Z}^{2}\cos 2\beta & 0 \\ 0 & m_{\tilde{\nu}_{R}}^{2} + M_{R}^{\dagger}M_{R} \end{pmatrix}$$

LR mixing very small! Mass eigenstates will be almost pure $ilde
u_L$ or $ilde
u_R$

For simplicity, soft masses are taken diagonal.

D-Term contribution to mass splitting:

$$(m_{\tilde{\ell}_L} - m_{\tilde{\nu}_L})_D \approx \frac{(\sin^2 \theta_W - 1)m_Z^2 \cos 2\beta}{2m_{\tilde{L}}} > 0$$

$$m_{\tilde{e}_L} > m_{\tilde{\nu}_{eL}}$$
 $m_{\tilde{\mu}_L} > m_{\tilde{\nu}_{\mu L}}$

D-Term contribution to mass splitting:

$$(m_{\tilde{\ell}_L} - m_{\tilde{\nu}_L})_D \approx \frac{(\sin^2 \theta_W - 1)m_Z^2 \cos 2\beta}{2m_{\tilde{L}}} > 0$$

$$m_{\tilde{e}_L} > m_{\tilde{\nu}_{eL}}$$

$$m_{\tilde{\mu}_L} > m_{\tilde{\nu}_{\mu L}}$$

Same contribution, assuming $~m_{\tilde{L}}^2=m_{\tilde{E}}^2$

$$(m_{\tilde{\ell}_R} - m_{\tilde{\nu}_L})_D \approx \frac{(-\sin^2 \theta_W - \frac{1}{2})m_Z^2 \cos 2\beta}{2m_{\tilde{L}}} > 0$$

$$m_{\tilde{e}_R} > m_{\tilde{\nu}_{eL}}$$

$$m_{\tilde{\mu}_R} > m_{\tilde{\nu}_{\mu L}}$$

D-Term contribution to mass splitting:

$$(m_{\tilde{\ell}_L} - m_{\tilde{\nu}_L})_D \approx \frac{(\sin^2 \theta_W - 1)m_Z^2 \cos 2\beta}{2m_{\tilde{L}}} > 0$$

$$m_{\tilde{e}_L} > m_{\tilde{\nu}_{eL}}$$

$$m_{\tilde{\mu}_L} > m_{\tilde{\nu}_{\mu L}}$$

Same contribution, assuming $~m_{\tilde{L}}^2=m_{\tilde{E}}^2$

$$(m_{\tilde{\ell}_R} - m_{\tilde{\nu}_L})_D \approx \frac{(-\sin^2 \theta_W - \frac{1}{2})m_Z^2 \cos 2\beta}{2m_{\tilde{L}}} > 0$$

$$m_{\tilde{\mu}_R} > m_{\tilde{\nu}_{\mu L}}$$

L - sneutrinos are lighter than charged sleptons

Joel Jones-Pérez

 $m_{\tilde{e}_R} > m_{\tilde{\nu}_{eL}}$

Decay modes for selectrons, smuons:

F-Term contribution to stau mass splitting:

$$(m_{\tilde{\tau}} - m_{\tilde{\nu}_L})_F \approx \pm \frac{m_{\tau} \mu \tan \beta}{2m_{\tilde{L}}}$$
 $m_{\tilde{\tau}_1} \sim m_{\tilde{\nu}_{\tau L}}$ $m_{\tilde{\tau}_2} > m_{\tilde{\nu}_{\tau L}}$

F-Term contribution to stau mass splitting:

$$(m_{\tilde{\tau}} - m_{\tilde{\nu}_L})_F \approx \pm \frac{m_{\tau} \mu \tan \beta}{2m_{\tilde{L}}}$$
 $m_{\tilde{\tau}_1} \sim m_{\tilde{\nu}_{\tau L}}$ $m_{\tilde{\tau}_2} > m_{\tilde{\nu}_{\tau L}}$

Different decay mode for $ilde{ au}_1$

LHC Bounds (N. Cerna)

Slepton Production at the LHC

Drell-Yan production favours $\; ilde{
u}_L \, ilde{\ell}_L \;$ initial state

Cross-section at the LHC (13 TeV), according to MadGraph.

Slepton Decay modes:

Selectrons, smuons:

Charged slepton starts a small cascade, involving L-sneutrino and very soft fermions

Final states have Z / h pairs, and missing energy due to R-sneutrino. Evaluated in CheckMATE.

Parameter scan set up in Amazon Web Service

Search for selectrons at LHC:

Constrained mainly by multi-lepton searches (CMS 1709.05406)

Ruled out

Allowed

Ambiguous

Ambiguous

Search for selectrons at LHC:

Projection at the end of LHC lifetime has a hard time extending the reach above ~175 GeV.

Constrained mainly by multi-lepton searches (CMS 1709.05406)

Allowed

Ruled out

Ambiguous

Search for selectrons at LHC:

Projection at the end of LHC lifetime has a hard time extending the reach above ~175 GeV.

Constrained mainly by multi-lepton searches (CMS 1709.05406)

Allowed

Ruled out

Slepton Decay modes:

Staus:

Lightest stau decays directly into R-sneutrino.

Final states have Z / h + W, and missing energy due to R-sneutrino.

Search for staus at LHC:

$$m_{\tilde{\nu}_B}^2 = 0$$

Multi-lepton searches by CMS still most sensitive.

- Ruled out
- Allowed
- Ambiguous

Search for staus at LHC:

Multi-lepton searches by CMS still most sensitive.

Allowed Ruled out **Ambiguous** 250

For stau masses above 150 GeV,

there are no constaints.

Prospects at the ILC (J. Masias)

Sleptons at the ILC

We will start producing slepton pairs:

Cross-section at the ILC (1 TeV), according to WHIZARD.

Type **B** polarization. $(e_R^- e_L^+)$

Sleptons at the ILC

Cutflow, 500 fb⁻¹ integrated luminosity

Scenario	SE	ST
No cuts	14713	14745
$p_{\rm miss} > 50 {\rm ~GeV}$	12941	12997
Exactly four jets with $p > 20 \text{ GeV}$	4740	3770
Exactly two reconstructed SM bosons	869	1092
$p_{\text{lepton}} < 25 \text{ GeV}$	862	1084
$ \cos(\theta_{\rm miss}) < 0.99$	758	922
Efficiency (%)	5.2	6.3

SE: $m_{ ilde{E}_1}=m_{ ilde{L}_1}$

ST: $m_{ ilde{E}_3}=m_{ ilde{L}_3}$

All background: 417 events

Efficiency: 0.08%

Main sources: $t \bar{t}$, $Z W^+W^-$, $2\nu W^+W^-$

Required luminosity (fb⁻¹) at ILC to get 5σ

Reconstruct W boson and measure its energy.

Min / max values of W boson energy: **endpoints**, E_{B-} , E_{B+}

$$m_{\tilde{\ell}} = \frac{2E_{\rm beam}}{E_{B+} + E_{B-}} E_B'$$
 Boson energy in slepton rest frame

$$m_{\tilde{\ell}} = \frac{2E_{\rm beam}}{E_{B+} + E_{B-}} E_B'$$
 Boson energy in slepton rest frame

$$E_B' = \frac{1}{\sqrt{2}} \sqrt{(E_{B+} E_{B-} + m_B^2) \pm \sqrt{(E_{B+}^2 - m_B^2)(E_{B-}^2 - m_B^2)}}$$

$$m_{\tilde{\ell}} = \frac{2E_{\rm beam}}{E_{B+} + E_{B-}} E_B'$$
 Boson energy in slepton rest frame

$$E_B' = \frac{1}{\sqrt{2}} \sqrt{(E_{B+} E_{B-} + m_B^2) \pm \sqrt{(E_{B+}^2 - m_B^2)(E_{B-}^2 - m_B^2)}}$$

$$m_{\tilde{\ell}} = \frac{2E_{\rm beam}}{E_{B+} + E_{B-}} E_B'$$
 Boson energy in slepton rest frame

$$E_B' = \frac{1}{\sqrt{2}} \sqrt{(E_{B+} E_{B-} + m_B^2) \pm \sqrt{(E_{B+}^2 - m_B^2)(E_{B-}^2 - m_B^2)}}$$

Need two datasets, for example, decays into W and Z bosons.

Require that both datasets reproduce same LSP mass:

$$m_{\tilde{\nu}_R} = \sqrt{m_{\tilde{\ell}}^2 + m_B^2 - 2E_B' m_{\tilde{\ell}}}$$

Slepton Mass Reconstruction: Light Staus with 500 fb⁻¹

	SM	Background
--	----	------------

~	~
T 4	T
• 1	

 $\tilde{v}_{\mathsf{L}} \tilde{v}_{\mathsf{l}}$

Other SUSY

Scenario	ST	Theory
$m_{ ilde{ au}_1}({ m GeV})$	296.91 ± 10.69	294.47
$m_{\tilde{\nu}_L} \; (\mathrm{GeV})$	293.32 ± 3.61	293.37
$m_{\tilde{\nu}_R} \; (\mathrm{GeV})$	101.14 ± 1.36	101.98

Slepton Mass Reconstruction: Light Selectrons with 500 fb⁻¹

	SM	Backgroun	C
--	----	-----------	---

 $\tilde{v}_{\mathsf{L}} \tilde{v}_{\mathsf{L}}$

■ ẽ_Lẽ_L + ẽ_Rẽ_R

Scenario	SE	Theory
$m_{\tilde{\nu}_L} \; (\mathrm{GeV})$	293.63 ± 3.12	293.37
$m_{\tilde{\nu}_R} \; (\mathrm{GeV})$	100.52 ± 1.65	101.98

Conclusions

- The LHC is not really sensitive to SUSY models where $m_{\tilde{\nu}_R}^2 < m_{\tilde{L}}^2 = m_{\tilde{E}}^2 < \mu \ \ , \ \text{single slepton families constrained to be heavier than \sim 150 GeV.}$
- A 1 TeV run of the ILC can probe a much larger part of the parameter space, most of it leading to a discovery with less than 1000 fb⁻¹.
- Endpoint method can reconstruct masses with 500 fb⁻¹, as long as sleptons decay into on-shell SM bosons.

Thanks!

Backup

Neutrino Sector

After diagonalizing the neutrino mass matrix:

3 active
$$v_L$$
 3 light v_I

$$U = \left(\begin{array}{cc} U_{a\ell} & U_{ah} \\ U_{s\ell} & U_{sh} \end{array}\right)$$

3 sterile v_{R}

3 heavy v_h

Using a Casas-Ibarra parametrization, we can reconstruct the

Yukawa matrices:

$$Y_{\nu} = -i\frac{\sqrt{2}}{v_u}U_{\text{PMNS}}^*H^*m_{\ell}^{1/2}\left(m_{\ell}R^{\dagger} + R^TM_h\right)M_h^{-1/2}\bar{H}$$

$$H \sim I \quad \bar{H} \sim I$$

Complex orthogonal matrix

Neutrino Sector

Yukawa couplings can be enhanced by taking a large γ_{56} .

$$(Y_{\nu})_{a5} = \pm (Z_a^{\text{NH}})^* \sqrt{\frac{2m_3 M_5}{v_u^2}} \cosh \gamma_{56} e^{\mp i\rho_{56}}$$

$$(Y_{\nu})_{a6} = -i(Z_a^{\text{NH}})^* \sqrt{\frac{2m_3 M_6}{v_u^2}} \cosh \gamma_{56} e^{\mp i\rho_{56}}$$

With this, the mass matrix gets a structure similar to the inverse seesaw.

Neutrino Sector

For definiteness, we set:

$$M_5 = M_6$$

(So we do not exceed $0v\beta\beta$)

$$M_{5,6} = 20 \text{ GeV}$$

(So they do not contribute

much to R-sneutrino masses)

$$\gamma_{56} = 8$$

(So we do not exceed LFV)

Neutrino sector is **fixed**.

$$m_{\tilde{\nu}_R}^2 < \mu < m_{\tilde{L}}^2 = m_{\tilde{E}}^2$$

Chargino production:

$$pp \to \tilde{\chi}^+ \tilde{\chi}^- \to \ell^+ \ell^- \tilde{\nu}_R \tilde{\nu}_R^*$$

- Ruled out
- Allowed
- Ambiguous

Scenario 1: $\mu = m_{\tilde{\nu}_R} + 25 \, \mathrm{GeV}$

Scenario 2: $\mu = 400 \, \mathrm{GeV}$

$$m_{\tilde{\nu}_R}^2 < \mu < m_{\tilde{L}}^2 = m_{\tilde{E}}^2$$

$$\mu = m_{\tilde{\nu}_R} + 25 \,\mathrm{GeV}$$

Very strong constraints on slepton mass!

Branching Ratios $m_{\tilde{\nu}_R} < m_{\tilde{\ell}} < \mu$

Branching Ratios $m_{\tilde{\nu}_R} < m_{\tilde{\ell}} < \mu$

$$\mu = 400 \, \mathrm{GeV}$$

- Ruled out
- Allowed
- Ambiguous

If electroweakinos are heavy, we have weak constraint!

Ambiguous

Degenerate scenario at LHC:

Projection at the end of LHC lifetime has a hard time extending the reach above 250 GeV.

Constrained mainly by multi-lepton searches

Allowed

Ruled out

CMS Collaboration (1709.05406) CheckMATE (1709.05406 [hep-ph])

Getting the endpoints

1. Group all events into W-like, Z-like, and h-like datasets:

$$\chi_W^2(m_1, m_2) = \frac{(m_1 - m_W)^2 + (m_2 - m_W)^2}{\sigma^2}$$

$$\chi_Z^2(m_1, m_2) = \frac{(m_1 - m_Z)^2 + (m_2 - m_Z)^2}{\sigma^2}$$

$$\chi_h^2(m_1, m_2) = \frac{(m_1 - m_h)^2 + (m_2 - m_h)^2}{\sigma^2}$$

Getting the endpoints

2. Generate a SM distribution from MC events, by fitting parameters:

$$f_{SM}(E;\,E_{\rm SM-},\,a_{0-2},\,\sigma_{\rm SM},\,\Gamma_{\rm SM})$$
 Voigt function
$$=\int_{E_{\rm SM-}}^\infty (a_2E'^2+a_1E'+a_0)\,V(E'-E,\sigma_{\rm SM},\Gamma_{\rm SM})\,dE'$$

3. Generate 100 samples of SM background using SM distribution. Implement statistical errors by modifying number of events in each bin using a Poisson distribution.

Getting the endpoints

4. For each SM sample, fit the sum of SUSY and SM spectra:

$$f(E; E_{B-}, E_{B+}, b_{0-2}, \sigma_1, \Gamma_1)$$

$$= f_{SM}(E; E_{SM-}, a_{0-2}, \sigma_{SM}, \Gamma_{SM})$$

$$+ \int_{E_{B-}}^{E_{B+}} (b_2 E'^2 + b_1 E' + b_0) V(E' - E, \sigma_1, \Gamma_1) dE'$$

- 5. Get endpoints from fit. Use 100 samples to get average and standard deviation.
- 6. For h-like events, background is negligible. Divide into subsets.

Slepton Mass Reconstruction: Degenerate Soft Masses with 500 fb⁻¹

- SM Background
- $\tilde{\tau}_1 \tilde{\tau}_1$
- $\tilde{v}_{\mathsf{L}}\tilde{v}_{\mathsf{L}}$
- Other SUSY

Scenario	DEG	Theory
$m_{\tilde{\ell}_1}({ m GeV})$	290.51 ± 10.01	294.47
$m_{\tilde{\nu}_L} \; (\mathrm{GeV})$	293.41 ± 2.15	293.37
$m_{\tilde{\nu}_R} \; (\mathrm{GeV})$	100.05 ± 0.67	101.98