Resolving a Challenging Supersymmetric Low-Scale Seesaw Scenario at the ILC

Joel Jones-Pérez
Pontificia Universidad Católica del Perú (PUCP)

SUSY Seesaw

We know neutrinos needs a mass, but the MSSM doesn't care.

Simplest solution: SUSY Seesaw.

$$
\begin{gathered}
\mathcal{W}=\mathcal{W}_{\mathrm{MSSM}}+Y_{\nu}\left(\hat{L}^{2} \cdot \hat{H}_{u} \hat{\nu}_{R}^{c}\right)+\frac{1}{2} M_{R}\left(\hat{\nu}_{R}^{c} \hat{\nu}_{R}^{c}\right) \\
m_{\nu} \sim \frac{v_{u}^{2}}{2} Y_{\nu}^{*} M_{R}^{-1} Y_{\nu}^{\dagger}
\end{gathered}
$$

Main question: what do colliders have to say about a low-scale SUSY Seesaw?

Joel Jones-Pérez

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Our setup

- Set the R-sneutrino as the LSP.
- Keep μ as low as possible \rightarrow Higgsino-like electroweakinos.
- Ignore squarks and gluinos.
- Objective: Explore collider sensitivity to sleptons.

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Our setup

- Set the R-sneutrino as the LSP.
- Keep μ as low as possible \rightarrow Higgsino-like electroweakinos.
- Ignore squarks and gluinos.
- Objective: Explore collider sensitivity to sleptons.

Possible hierarchy:

$$
\begin{aligned}
& m_{\tilde{\nu}_{R}}^{2}<\mu<m_{\tilde{L}}^{2}, m_{\tilde{E}}^{2} \\
& m_{\tilde{\nu}_{R}}^{2}<m_{\tilde{L}}^{2}, m_{\tilde{E}}^{2}<\mu
\end{aligned}
$$

Our setup

- Set the R-sneutrino as the LSP.
- Keep μ as low as possible \rightarrow Higgsino-like electroweakinos.
- Ignore squarks and gluinos.
- Objective: Explore collider sensitivity to sleptons.

Possible hierarchy:
Strong constraints

$$
\begin{array}{cc}
m_{\tilde{\nu}_{R}}^{2}<\mu<m_{\tilde{L}}^{2}, m_{\tilde{E}}^{2} & \left(2017,13.3 \mathrm{fb}^{-1}\right): \\
m_{\tilde{\nu}_{R}}^{2}<m_{\tilde{L}}^{2}, m_{\tilde{E}}^{2}<\mu & \mu \gtrsim 400 \mathrm{GeV} \\
\tilde{\tilde{L}}^{2} \gtrsim 600 \mathrm{GeV}
\end{array}
$$

Joel Jones-Pérez

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Our setup

- Set the R-sneutrino as the LSP.
- Keep μ as low as possible \rightarrow Higgsino-like electroweakinos.
- Ignore squarks and gluinos.
- Objective: Explore collider sensitivity to sleptons.

Possible hierarchy:
Strong constraints

$$
\begin{array}{cc}
m_{\tilde{\nu}_{R}}^{2}<\mu<m_{\tilde{L}}^{2}, m_{\tilde{E}}^{2} & \left(2017,13.3 \mathrm{fb}^{-1}\right): \\
m_{\tilde{\nu}_{R}}^{2}<m_{\tilde{L}}^{2}, m_{\tilde{E}}^{2}<\mu & \mu \gtrsim 400 \mathrm{GeV} \\
m_{\tilde{L}} \gtrsim 600 \mathrm{GeV}
\end{array}
$$

Joel Jones-Pérez

Sneutrino Sector

We need to add new soft SUSY breaking terms:

$$
\begin{aligned}
\mathcal{V}^{\text {soft }}= & \mathcal{V}_{\mathrm{MSSM}}^{\text {soft }}+\left(m_{\tilde{\nu}_{R}}^{2}\right)_{i j} \tilde{\nu}_{R, i}^{*} \tilde{\nu}_{R, j}+\frac{1}{2}\left(B_{\tilde{\nu}}\right)_{i j} \tilde{\nu}_{R, i} \tilde{\nu}_{R, j} \\
& +\left(T_{\nu}\right)_{i j} \tilde{L}_{i} \cdot H_{u} \tilde{\nu}_{R, j}
\end{aligned}
$$

Sneutrino Sector

We need to add new soft SUSY breaking terms:

$$
\begin{aligned}
\mathcal{V}^{\text {soft }}= & \mathcal{V}_{\mathrm{MSSM}}^{\text {soft }}+\left(m_{\tilde{\nu}_{R}}^{2}\right)_{i j} \tilde{\nu}_{R, i}^{*} \tilde{\nu}_{R, j}+\frac{1}{2}\left(B_{\tilde{\nu}}\right)_{i j} \tilde{\nu}_{R, i} \tilde{\nu}_{R, j} \\
& +\left(T_{\nu}\right)_{i j} \tilde{L}_{i} \cdot H_{u} \tilde{\nu}_{R, j}
\end{aligned}
$$

Additional simplifications:
T_{ν}
Assumed proportional to $Y_{v^{\prime}}$, so negligible
$B_{\tilde{\nu}}$
New source of LNV, taken equal to zero for this work

Sneutrino Sector

Sneutrino mass matrix:

$$
M_{\tilde{\nu}}^{2}=\left(\begin{array}{cc}
m_{\tilde{L}}^{2}+\frac{1}{2} m_{Z}^{2} \cos 2 \beta & 0 \\
0 & m_{\tilde{\nu}_{R}}^{2}+M_{R}^{\dagger} M_{R}
\end{array}\right)
$$

LR mixing very small! Mass eigenstates will be almost pure $\tilde{\nu}_{L}$ or $\tilde{\nu}_{R}$

For simplicity, soft masses are taken diagonal.

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

MSSM Slepton Sector

D-Term contribution to mass splitting:

$$
\begin{aligned}
& \left(m_{\tilde{\ell}_{L}}-m_{\tilde{\nu}_{L}}\right)_{D} \approx \frac{\left(\sin ^{2} \theta_{W}-1\right) m_{Z}^{2} \cos 2 \beta}{2 m_{\tilde{L}}}>0 \\
& m_{\tilde{e}_{L}}>m_{\tilde{\nu}_{e L}} \quad \quad m_{\tilde{\mu}_{L}}>m_{\tilde{\nu}_{\mu L}}
\end{aligned}
$$

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

MSSM Slepton Sector

D-Term contribution to mass splitting:

$$
\begin{aligned}
& \left(m_{\tilde{\ell}_{L}}-m_{\tilde{\nu}_{L}}\right)_{D} \approx \frac{\left(\sin ^{2} \theta_{W}-1\right) m_{Z}^{2} \cos 2 \beta}{2 m_{\tilde{L}}}>0 \\
& m_{\tilde{e}_{L}}>m_{\tilde{\nu}_{e L}}
\end{aligned}
$$

Same contribution, assuming $m_{\tilde{L}}^{2}=m_{\tilde{E}}^{2}$

$$
\begin{array}{r}
\left(m_{\tilde{\ell}_{R}}-m_{\tilde{\nu}_{L}}\right)_{D} \approx \frac{\left(-\sin ^{2} \theta_{W}-\frac{1}{2}\right) m_{Z}^{2} \cos 2 \beta}{2 m_{\tilde{L}}}>0 \\
m_{\tilde{e}_{R}}>m_{\tilde{\nu}_{e L}} r \\
m_{\tilde{\mu}_{R}}>m_{\tilde{\nu}_{\mu L}}
\end{array}
$$

Joel Jones-Pérez

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

MSSM Slepton Sector

D-Term contribution to mass splitting:

$$
\begin{aligned}
& \left(m_{\tilde{\ell}_{L}}-m_{\tilde{\nu}_{L}}\right)_{D} \approx \frac{\left(\sin ^{2} \theta_{W}-1\right) m_{Z}^{2} \cos 2 \beta}{2 m_{\tilde{L}}}>0 \\
& m_{\tilde{e}_{L}}>m_{\tilde{\nu}_{e L}} \quad \quad m_{\tilde{\mu}_{L}}>m_{\tilde{\nu}_{\mu L}}
\end{aligned}
$$

Same contribution, assuming $m_{\tilde{L}}^{2}=m_{\tilde{E}}^{2}$
$\left(m_{\tilde{\ell}_{R}}-m_{\tilde{\nu}_{L}}\right)_{D} \approx \frac{\left(-\sin ^{2} \theta_{W}-\frac{1}{2}\right) m_{Z}^{2} \cos 2 \beta}{2 m_{\tilde{L}}}>0$

$$
m_{\tilde{e}_{R}}>m_{\tilde{\nu}_{e L}} \quad m_{\tilde{\mu}_{R}}>m_{\tilde{\nu}_{\mu L}}
$$

L - sneutrinos are lighter than
charged sleptons

Joel Jones-Pérez

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

MSSM Slepton Sector

Decay modes for selectrons, smuons:

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

MSSM Slepton Sector

F-Term contribution to stau mass splitting:

$$
\left(m_{\tilde{\tau}}-m_{\tilde{\nu}_{L}}\right)_{F} \approx \pm \frac{m_{\tau} \mu \tan \beta}{2 m_{\tilde{L}}} \quad \begin{aligned}
& m_{\tilde{\tau}_{1}} \sim m_{\tilde{\nu}_{\tau L}} \\
& m_{\tilde{\tau}_{2}}>m_{\tilde{\nu}_{\tau L}}
\end{aligned}
$$

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

MSSM Slepton Sector

F-Term contribution to stau mass splitting:

$$
\left(m_{\tilde{\tau}}-m_{\tilde{\nu}_{L}}\right)_{F} \approx \pm \frac{m_{\tau} \mu \tan \beta}{2 m_{\tilde{L}}} \quad \begin{aligned}
& m_{\tilde{\tau}_{1}} \sim m_{\tilde{\nu}_{\tau L}} \\
& m_{\tilde{\tau}_{2}}>m_{\tilde{\nu}_{\tau L}}
\end{aligned}
$$

Different decay
mode for $\tilde{\tau}_{1}$

Joel Jones-Pérez

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

LHC Bounds (N. Cerna)

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Slepton Production at the LHC

Drell-Yan production favours $\tilde{\nu}_{L} \tilde{\ell}_{L}$ initial state

Cross-section at the

Joel Jones-Pérez

Slepton Decay modes:

Selectrons, smuons:

Charged slepton starts a small cascade, involving L-sneutrino and very soft fermions

Final states have Z / h pairs, and missing energy due to R-sneutrino. Evaluated in CheckMATE.

Parameter scan set up in Amazon Web Service

Joel Jones-Pérez

Search for selectrons at LHC:

Search for selectrons at LHC:

Joel Jones-Pérez

Search for selectrons at LHC:

Joel Jones-Pérez

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Slepton Decay modes:

Staus:

Lightest stau decays directly into R-sneutrino.
Final states have $\mathrm{Z} / \mathrm{h}+\mathrm{W}$, and missing energy due to R-sneutrino.

Search for staus at LHC:

$$
m_{\tilde{\nu}_{R}}^{2}=0
$$

Multi-lepton searches by CMS still most sensitive.

Ruled out

- Ambiguous

Search for staus at LHC:

Joel Jones-Pérez

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Prospects at the ILC (J. Masias)

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Sleptons at the ILC

We will start producing slepton pairs:

Cross-section at the ILC (1 TeV), according to WHIZARD.

Type B polarization.
$\left(e_{R}^{-} e_{L}^{+}\right)$

Joel Jones-Pérez

Sleptons at the ILC

Cutflow, $500 \mathrm{fb}^{-1}$ integrated luminosity

Scenario	SE	ST
No cuts	14713	14745
$p_{\text {miss }}>50 \mathrm{GeV}$	12941	12997
Exactly four jets with $p>20 \mathrm{GeV}$	4740	3770
Exactly two reconstructed SM bosons	869	1092
$p_{\text {lepton }}<25 \mathrm{GeV}$	862	1084
$\left\|\cos \left(\theta_{\text {miss }}\right)\right\|<0.99$	758	922
Efficiency (\%)	5.2	6.3

$\begin{array}{ll}\mathrm{SE}: & m_{\tilde{E}_{1}}=m_{\tilde{L}_{1}} \\ \mathrm{ST}: & m_{\tilde{E}_{3}}=m_{\tilde{L}_{3}}\end{array}$
All background: 417 events
Efficiency: 0.08\%
Main sources: $t \bar{t}, Z W^{+} W^{-}, 2 \nu W^{+} W^{-}$

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Required luminosity (fb ${ }^{-1}$) at ILC to get $\mathbf{5} \boldsymbol{\sigma}$

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Slepton Mass Reconstruction: Endpoint Method

Reconstruct W boson and measure its energy.
Min / max values of W boson energy: endpoints, E_{B-}, E_{B+}

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Slepton Mass Reconstruction: Endpoint Method

$$
m_{\tilde{\ell}}=\frac{2 E_{\mathrm{beam}}}{E_{B+}+E_{B-}} E_{B}^{\prime} \quad \text { Boson energy in slepton rest frame }
$$

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Slepton Mass Reconstruction: Endpoint Method

$$
m_{\tilde{\ell}}=\frac{2 E_{\mathrm{beam}}}{E_{B+}+E_{B-}} E_{B}^{\prime}
$$

Boson energy in slepton rest frame

$$
E_{B}^{\prime}=\frac{1}{\sqrt{2}} \sqrt{\left(E_{B+} E_{B-}+m_{B}^{2}\right) \pm \sqrt{\left(E_{B+}^{2}-m_{B}^{2}\right)\left(E_{B-}^{2}-m_{B}^{2}\right)}}
$$

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Slepton Mass Reconstruction: Endpoint Method

$$
m_{\tilde{\ell}}=\frac{2 E_{\mathrm{beam}}}{E_{B+}+E_{B-}} E_{B}^{\prime}
$$

Boson energy in slepton rest frame

$$
E_{B}^{\prime}=\frac{1}{\sqrt{2}} \sqrt{\left(E_{B+} E_{B-}+m_{B}^{2}\right) \pm \sqrt{\left(E_{B+}^{2}-m_{B}^{2}\right)\left(E_{B-}^{2}-m_{B}^{2}\right)}}
$$

Slepton Mass Reconstruction: Endpoint Method

$$
m_{\tilde{\ell}}=\frac{2 E_{\text {beam }}}{E_{B+}+E_{B-}} E_{B}^{\prime}
$$

Boson energy in slepton rest frame

$$
E_{B}^{\prime}=\frac{1}{\sqrt{2}} \sqrt{\left(E_{B+} E_{B-}+m_{B}^{2}\right) \pm \sqrt{\left(E_{B+}^{2}-m_{B}^{2}\right)\left(E_{B-}^{2}-m_{B}^{2}\right)}}
$$

Need two datasets, for example, decays into W and Z bosons.
Require that both datasets reproduce same LSP mass:

$$
m_{\tilde{\nu}_{R}}=\sqrt{m_{\tilde{\ell}}^{2}+m_{B}^{2}-2 E_{B}^{\prime} m_{\tilde{\ell}}}
$$

Slepton Mass Reconstruction: Light Staus with 500 fb $^{-1}$

Adding B and \mathbf{L} polarization for h-like

- SM Background
$\square \tilde{\tau}_{1} \tilde{\tau}_{1}$$\tilde{v}_{\mathrm{L}} \tilde{V}_{\mathrm{L}}$
Other SUSY

Scenario	ST	Theory
$m_{\tilde{\tau}_{1}}(\mathrm{GeV})$	296.91 ± 10.69	294.47
$m_{\tilde{\nu}_{L}}(\mathrm{GeV})$	293.32 ± 3.61	293.37
$m_{\tilde{\nu}_{R}}(\mathrm{GeV})$	101.14 ± 1.36	101.98

Slepton Mass Reconstruction: Light Selectrons with 500 fb $^{-1}$

SM Background
$\square \tilde{v}_{L} \tilde{v}_{L}$
$\square \tilde{e}_{L} \tilde{e}_{L}+\tilde{e}_{R} \tilde{e}_{R}$

Scenario	SE	Theory
$m_{\tilde{\nu}_{L}}(\mathrm{GeV})$	293.63 ± 3.12	293.37
$m_{\tilde{\nu}_{R}}(\mathrm{GeV})$	100.52 ± 1.65	101.98

Conclusions

- The LHC is not really sensitive to SUSY models where $m_{\tilde{\nu}_{R}}^{2}<m_{\tilde{L}}^{2}=m_{\tilde{E}}^{2}<\mu$, single slepton families constrained to be heavier than $\sim 150 \mathrm{GeV}$.
- A 1 TeV run of the ILC can probe a much larger part of the parameter space, most of it leading to a discovery with less than $1000 \mathrm{fb}^{-1}$.
- Endpoint method can reconstruct masses with $500 \mathrm{fb}^{-1}$, as long as sleptons decay into on-shell SM bosons.

Thanks!

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Backup

Neutrino Sector

After diagonalizing the neutrino mass matrix:

3 active v_{L} 3 sterile v_{R}

3 light v_{1}
3 heavy v_{h}

$$
U=\left(\begin{array}{cc}
U_{a \ell} & U_{a h} \\
U_{s \ell} & U_{s h}
\end{array}\right)
$$

Using a Casas-Ibarra parametrization, we can reconstruct the Yukawa matrices:

$$
Y_{\nu}=-i \frac{\sqrt{2}}{v_{u}} U_{\mathrm{PMNS}}^{*} H^{*} m_{\ell}^{1 / 2}\left(m_{\ell} R^{\dagger}+R^{T} M_{h}\right) M_{h}^{-1 / 2} \bar{H}
$$

$$
H \sim I \quad \bar{H} \sim I
$$

Complex orthogonal matrix

Neutrino Sector

Yukawa couplings can be enhanced by taking a large γ_{56}.

$$
\begin{aligned}
& \left(Y_{\nu}\right)_{a 5}= \pm\left(Z_{a}^{\mathrm{NH}}\right)^{*} \sqrt{\frac{2 m_{3} M_{5}}{v_{u}^{2}}} \cosh \gamma_{56} e^{\mp i \rho_{56}} \\
& \left(Y_{\nu}\right)_{a 6}=-i\left(Z_{a}^{\mathrm{NH}}\right)^{*} \sqrt{\frac{2 m_{3} M_{6}}{v_{u}^{2}}} \cosh \gamma_{56} e^{\mp i \rho_{56}}
\end{aligned}
$$

With this, the mass matrix gets a structure similar to the inverse seesaw.

Neutrino Sector

For definiteness, we set:

$$
\begin{array}{ll}
M_{5}=M_{6} & \text { (So we do not exceed Ovßß) } \\
M_{5,6}=20 \mathrm{GeV} & \text { (So they do not contribute } \\
\text { much to R-sneutrino masses) } \\
\gamma_{56}=8 & \text { (So we do not exceed LFV) }
\end{array}
$$

Neutrino sector is fixed.

Joel Jones-Pérez

$$
m_{\tilde{\nu}_{R}}^{2}<\mu<m_{\tilde{L}}^{2}=m_{\tilde{E}}^{2}
$$

Chargino production: $\quad p p \rightarrow \tilde{\chi}^{+} \tilde{\chi}^{-} \rightarrow \ell^{+} \ell^{-} \tilde{\nu}_{R} \tilde{\nu}_{R}^{*}$

- Ruled out
- Allowed
- Ambiguous

Scenario 1:
$\mu=m_{\tilde{\nu}_{R}}+25 \mathrm{GeV}$
Scenario 2:
$\mu=400 \mathrm{GeV}$

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

$$
m_{\tilde{\nu}_{R}}^{2}<\mu<m_{\tilde{L}}^{2}=m_{\tilde{E}}^{2}
$$

Scenario 1

$$
\mu=m_{\tilde{\nu}_{R}}+25 \mathrm{GeV}
$$

- Ruled out
- Allowed
- Ambiguous

Very strong constraints on slepton mass!

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Branching Ratios $m_{\tilde{\nu}_{R}}<m_{\tilde{\ell}}<\mu$

$$
m_{\bar{L}}(\mathrm{GeV})
$$

Joel Jones-Pérez

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Branching Ratios $m_{\tilde{\nu}_{R}}<m_{\tilde{\ell}}<\mu$

Joel Jones-Pérez

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

$$
\mu=400 \mathrm{GeV}
$$

- Ruled out
- Allowed
- Ambiguous

If electroweakinos are heavy, we have weak constraint!

Degenerate scenario at LHC:

Resolving a challenging SUSY low-scale seesaw scenario at the ILC

Getting the endpoints

1. Group all events into W-like, Z-like, and h-like datasets:

$$
\begin{aligned}
\chi_{W}^{2}\left(m_{1}, m_{2}\right) & =\frac{\left(m_{1}-m_{W}\right)^{2}+\left(m_{2}-m_{W}\right)^{2}}{\sigma^{2}} \\
\chi_{Z}^{2}\left(m_{1}, m_{2}\right) & =\frac{\left(m_{1}-m_{Z}\right)^{2}+\left(m_{2}-m_{Z}\right)^{2}}{\sigma^{2}} \\
\chi_{h}^{2}\left(m_{1}, m_{2}\right) & =\frac{\left(m_{1}-m_{h}\right)^{2}+\left(m_{2}-m_{h}\right)^{2}}{\sigma^{2}}
\end{aligned}
$$

Getting the endpoints

2. Generate a SM distribution from MC events, by fitting parameters:
$f_{S M}\left(E ; E_{\mathrm{SM}-}, a_{0-2}, \sigma_{\mathrm{SM}}, \Gamma_{\mathrm{SM}}\right) \quad$ Voigt function

$$
=\int_{E_{\mathrm{SM}-}}^{\infty}\left(a_{2} E^{2}+a_{1} E^{\prime}+a_{0}\right) V\left(E^{\prime}-E, \sigma_{\mathrm{SM}}, \Gamma_{\mathrm{SM}}\right) d E^{\prime}
$$

3. Generate 100 samples of SM background using SM distribution. Implement statistical errors by modifying number of events in each bin using a Poisson distribution.

Getting the endpoints

4. For each SM sample, fit the sum of SUSY and SM spectra:
$f\left(E ; E_{B-}, E_{B+}, b_{0-2}, \sigma_{1}, \Gamma_{1}\right)$

$$
\begin{aligned}
& =f_{S M}\left(E ; E_{\mathrm{SM}-}, a_{0-2}, \sigma_{\mathrm{SM}}, \Gamma_{\mathrm{SM}}\right) \\
& \quad+\int_{E_{B-}}^{E_{B+}}\left(b_{2} E^{\prime 2}+b_{1} E^{\prime}+b_{0}\right) V\left(E^{\prime}-E, \sigma_{1}, \Gamma_{1}\right) d E^{\prime}
\end{aligned}
$$

5. Get endpoints from fit. Use 100 samples to get average and standard deviation.
6. For h-like events, background is negligible. Divide into subsets.

Slepton Mass Reconstruction: Degenerate Soft Masses with 500

 fb^{-1}

Adding \mathbf{B} and \mathbf{L} polarization for h -like

- SM Background
$\square \tilde{\tau}_{1} \tilde{\tau}_{1}$$\tilde{v}_{\mathrm{L}} \tilde{V}_{\mathrm{L}}$
Other SUSY

Scenario	DEG	Theory
$m_{\tilde{\ell}_{1}}(\mathrm{GeV})$	290.51 ± 10.01	294.47
$m_{\tilde{\nu}_{L}}(\mathrm{GeV})$	293.41 ± 2.15	293.37
$m_{\tilde{\nu}_{R}}(\mathrm{GeV})$	100.05 ± 0.67	101.98

