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Motivation

From the model point of view:
I Extra space-time dimensions were originally introduced to “alleviate” the so called hierarchy

problem, i.e. the large difference between the electroweak and the GUT (or even the Planck)
energy scales. N. Arkani-Hamed et. al, PLB429, 1998

I Models with large extradimensions can also accommodate non-zero neutrino masses, specifically,
of the Dirac type which are naturally small. N. Arkani-Hamed et. al, PRD65, 1998 & K. R. Dienes et.
al, NPB557, 1999

From the phenomenological point of view:
I The LED model turns out to be pretty testable at neutrino oscillation experiments (Davoudiasl et. al.

2002, Machado et. al. 2011).
I MINOS (2016) experiment (PRD94) set a constrain to the LED compactification radius:

R < 0.45µm at 90% of C.L. when the lightest neutrino mass m0 → 0.
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Model signatures/consequences

LED model (Davoudiasl et. al 2002) :
In this model, three bulk right-handed neutrinos coupled (via
Yukawas’s) to the three active brane neutrinos.
After compactification of the effective extra dimension
(R ≡ compactification radius), from the four dimensional (brane) point
of view, the right-handed neutrino appears as an infinite tower of
sterile neutrinos or Kaluza-Klein (KK) modes.

m(0)
i = f (m0,R),

m0 ≡ absolute neutrino
mass

Phenomenological consequences:
The sterile-active mixings and the new oscillation frequencies modify the active 3ν-oscillations
therefore distorting the neutrino event energy spectrum.
Departures from the standard oscillations due to the existence of LED can then be probed at
neutrino oscillation experiments ( Long & Short baselines).
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Prior studies
At neutrino oscillation experiments

SBN program: G. Stenico, DVF & O.L.G Peres arxiv:1808.05450

R ≡ compactification radius
m0 ≡ absolute neutrino mass

DUNE FD-only: Berryman et. al. arxiv:1603.00018

IceCUBE: A. Esmaili et. al. arxiv:1409.3502

Daya Bay & T2K data: Di Lura et. al. arxiv:1411.5330

Reactor anomaly: P.A.M Machado et. al.

arxiv:1107.2400

So far, MINOS is the only experimental collaboration that has constrained R with data. Thus,
MINOS sensitivity will be our reference.
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Vacuum probabilities
Three-active neutrino oscillation probability:
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make the identification:

m(n)
k =

λ
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R

n�1→ n
R , and for the ‘modified’ mixing Uαk L0n

k

Four free parameters mD
1 , mD

2 , mD
3 , and R in the theory, which can be reduced to m0 and R .

For n = 0 and mDR � 1, 3ν-flavor phenomenology must be satisfied Davoudiasl et. al 2002.
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Main features
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DUNE FD; R=1µm, m0=0

3ν-case
LED

LED, finite σE/E

Most active (sterile) case corresponds to n = 0
(n� 1). The standard 3ν-neutrino oscillations
are recovered in the limit R → 0.

Global reduction of survival probabilities,
which is typically noticeable at high energies
(Machado et. al 2011).
Appearance of modulations and fast
oscillations to Kaluza-Klein states.

These shape-like features can be exploited
at the analysis level. This have been done in
MINOS (2016).
Sensitivity analyses for several osc. Exps
(Machado et. al 2011), IceCube (Esmaili et.
al. 2014), DUNE (Berryman et. al 2016...
“revamped” for DUNE FD TDR & ND CDR),
and SBN (Stenico, DVF, Peres 2018).
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Previous DUNE setup
40kt × (3.5yr(ν) + 3.5yr(ν̄)) × 1.07MW = 300 kt MW years of exposure

Information considered in the analysis:
Signal: CC, ν and ν̄, appearance and disappearance oscillation channels included in the
analysis.
Only FD information is considered, but ND fixes the flux normalization.

Systematics
T. Alion et. al. arxiv:1606.09550→ First GLoBES files release.

Signal normalization systematical errors:
σ(νe) = 0.02, σ(ν̄e) = 0.02, σ(νµ) = 0.05, σ(ν̄µ) = 0.05.
Background normalization systematical errors:
σ(νµ) = 0.05, σ(νe) = 0.05, σ(ντ ) = 0.2, σ(ν̄e) = 0.05 & σ(NCdis) = 0.1.
At this point, bin-to-bin uncorrelated systematics (or SHAPE syst.) not included!

Fluxes
The “Optimized Engineered Nov2017”.
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DUNE Sensitivity to LED; 300 kt-MW-years of exposure
DUNE TDR arxiv:2002.03005
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D.V. Forero

Thanks to S. De Rijck we can show MINOS sensitivity result (Asimov data).
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How sensitive is the ND?
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3ν-case
LED

LED, finite σE/E

Reduction of survival probability, noticeable
departure from 1.
Appearance of modulations and fast
oscillations to Kaluza-Klein states.

These shape-like features can be exploited
at the analysis level.
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Using ND information [previous DUNE setup]
mass=67.2Tons; baseline=575m
Information considered in the analysis:

Signal: CC, ν and ν̄, appearance and disappearance oscillation channels included in the
analysis.
Only ND information is considered.

Systematics See sterile section in TDR

Fluxes
The “Optimized Engineered Nov2017” for ND.
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DUNE ND-only Sensitivity to LED; 0.5 Kt-MW-yrs of exposure
The importance of the shape systematics

DUNE ND CDR, arxiv:2103.13910
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In coll. with A. Sousa, E. Fernandez-M, M. Blennow & S. Rosauro, as part of the DUNE BSM Physics WG
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Work in progress...



Current DUNE setup
40kt × (6.5yr(ν) + 6.5yr(ν̄)) × 1.2MW=624 kt-MW-yrs of exposure ≡ 10 yrs(staged)

Information considered in the analysis:
Signal: CC, ν and ν̄, appearance and disappearance oscillation channels included in the
analysis.
Only FD information is considered, but ND fixes the flux normalization.

Systematics

B. Abi, et. al, arxiv:2103.04797→ Latest GLoBES files: Erec binwidth= (TDR binwidth)/2 .

Signal normalization systematical errors:
σ(νe) = 0.02, σ(ν̄e) = 0.02, σ(νµ) = 0.05, σ(ν̄µ) = 0.05.
Background normalization systematical errors:
σ(νµ) = 0.05, σ(νe) = 0.05, σ(ντ ) = 0.2, σ(ν̄e) = 0.05 & σ(NCdis) = 0.1.
bin-to-bin uncorrelated systematics (or SHAPE syst.) included, as explained in slide 9.

Fluxes
The “Optimized Engineered Nov2017”.
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Estimating the level of the ‘shape’ systematics
Atmospheric plane, the importance of the shape systematics

LBL phys. Potential of the DUNE Exp. arxiv:2006.16043, FIG. 26
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Estimating the level of the ‘shape’ systematics
ZOOMING IN the Atmospheric plane, when using TDR binning result quoted as ‘NB’
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In coll. with A. Sousa, E. Fernandez-M, M. Blennow & S. Rosauro, as part of the DUNE BSM Physics WG
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DUNE Sensitivity to LED, preliminary results
FD-Only, with TDR binning & 2 KK modes

624 kt-MW-years of exposure ≡ 10 yrs (staged). DUNE 90% of C.L for 2 d.o.f:
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In coll. with A. Sousa, E. Fernandez-M, M. Blennow & S. Rosauro, as part of the DUNE BSM Physics WG
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Towards a two-detector fit [previous DUNE setup]
First results for 2 KK modes, with the old binning
Includding a shape-like systematic error in the signal (uncorrelated between detectors) in the ND.
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In coll. with A. Sousa, E. Fernandez-M, M. Blennow & S. Rosauro, as part of the DUNE BSM Physics WG
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Summary

The LED model (N. Arkani-Hamed et. al, PLB429, 1998) turns out to be pretty testable at
neutrino oscillation experiments (Davoudiasl et. al 2002).
Neutrino oscillations within this LED model provide unique features that can be explored in
parallel to the search for a sterile neutrino oscillation at the eV energy-scale in the economical
‘3+1’ scenario.
Long-baseline experiments detecting neutrinos at high energies, and with a percent-level
energy resolution, are good candidates for LED probes.
In particular, combining information from near and far detectors allows to probe lighter and
heavier KK modes simultaneously. Therefore, a two-detector analysis with realistic
systematics is very promising for future LED searches.
Neutrino oscillation experiments provide a competitive, model independent constrain to R,
which is complementary to other searches, for instance in neutrinoless double beta decay
experiments, in core collapse supernovae, at colliders like the LHC, and in kinematical tests
(Basto et. al 2012).
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Back up



Near Future Plans

To understand the departures from 3-flavor results in arxiv:2006.16043, FIG. 26 obtained
when estimating of the level of systematics, using GLoBES files (first procedure).
To implement covariance matrices for the 2-detector analysis including LED (second
procedure).
First procedure is considered as a cross check of the second one, at least for the FD-only
sensitivity to LED.
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A comment on the degrees of freedom
Possible approaches
MINOS Approach:

mD
1 , mD

2 , mD
3 and R are free parameters.

Do not assume ∆m2
j1 to be known, so they are free.

This is the correct approach for a single experiment without considering external
measurements.

Alternative approach from Basto et. al. (PLB 718(2013)) arxiv:1205.6212:
(Also followed in Berryman et. al. (PRD 94(2016)) arxiv:1603.00018)

For a given hierarchy, one can use the ‘known ∆m2
j1’ to reduce the d.o.f from 4 to 2:

m0 ≡ mD
1 (mD

3 ) for NO(IO) and R.
This assume ∆m2

j1 to be known or within some small range, for instance 1σ range from global
fits or PDG.
External measurements, added as penalties to the χ2, can be included.

Both approaches produce the same sensitivity when ∆m2
j1 are free in the fit.

We followed the 2nd approach also let the atmospheric parameters to float free in the analysis.
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