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fermions, labeled  1 and  2.

diagram gives rise to a force of the form

V (r) =
G

2
F

4⇡3r5
, (1)

where GF is the Fermi constant. The force is very weak. At distances larger than about

a nanometer its magnitude is smaller that the gravitational force between two protons. At

this scale, the electromagnetic Van der Waals force overpowers both. Thus, it has not been

observed yet and furthermore, there is no realistic proposal to build an experiment that

could see it. It is, therefore, an interesting question to ask if there is any way to probe this

force that has not been explored yet.

In many cases in the past, to observe a very small effect, one looked for symmetries

that are broken by it. For example, the weak interaction was observed, even though it

is much weaker than the strong and electromagnetic interactions, because it violates the

flavor symmetries of these stronger forces. Thus, one way to try to achieve sensitivity to the

two-neutrino force is to look for symmetries that it violates.

In this paper, we point out that the two-neutrino force is the largest long-range parity-
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FIG. 5: Tree-level interaction between the electron and a nucleus.

In the following sections, we shall consider the special case of the hydrogen atom. While

experiments are not done with it, it simplifies the theoretical investigation. When we con-

sider hydrogen, we replace the sub-index N with p.

B. The tree-level process

We begin by briefly revisiting the effective parity-violating potential due to the interaction

between an electron and a nucleus at tree level via Z exchange in the SM as depicted in

Fig. 5. In the SM, the coupling of the Z boson to a pair of identical fermions is given by

LZ ̄ =
1

2

g

cos ✓W
 ̄

h
(g V � g

 
A�

5)/Z 
i
, (9)

where ✓W is the Weak angle. g V and g
 
A are the vectorial and axial couplings of the fermion

 to the Z boson. As an example, the coupling constants for the electron and the proton

(which can be treated as an elementary particle at energy scales relevant to atomic physics)

are given by:

g
e
V =

✓
�
1

2
+ 2 sin2

✓W

◆
, g

e
A = �

1

2
, g

p
V =

✓
1

2
� 2 sin2

✓W

◆
, g

p
A =

GA

2
, (10)

where GA ⇡ 1.25 [28] is the axial form factor of the proton.

The resulting parity-violating potential is given by Eq. (7) with the constants and the

radial function given by:

12

H1 = H
tree
1 =

g
2

2 cos2 ✓W
g
e
Ag

p
V , (11)

H2 = H
tree
2 =

g
2

2 cos2 ✓W
g
e
V g

p
A, (12)

C = C
tree =

g
2

2 cos2 ✓W

g
e
V g

p
A

2me
, (13)

F (r) = F
tree(r) =

e
�mZr

4⇡r
. (14)

In the APV literature, most notably in [29], the terms that depend on nuclear spin (that

is, terms that come with H2 and C) are ignored. This is because, in most heavy atoms used

in APV experiments, the nuclei have paired nucleons with opposite spins, and a net nuclear

spin of zero. Thus, terms in the potential containing the nuclear spin vanish. This is not

true for the case of hydrogen, where the nucleus consists of just one spin-half proton.

C. Loop level processes: The effective four-Fermi operator with neutrinos

Now that we have discussed the tree level diagram that violates parity, we move on to

loop level effects. The diagrams that contribute to atomic parity violation at one loop are

given in Fig. 6. At atomic energy scales, the use of the four-Fermi approximation is well

justified and so in this section, we will derive expressions for the four-Fermi vertices with

two fermions of the same type  and two neutrinos.

In the SM, the four-Fermi interactions between two neutrinos and two fermions are ob-

tained by integrating out the Z and W bosons in the diagrams shown in Fig. 7. However,

since we consider massive neutrinos, we need to incorporate flavor mixing. The Z-boson

case is simple because the interactions of neutrinos with the Z boson is universal and thus

diagonal in any basis:

LZ = �
g

2cW
�ij ⌫̄i /Z⌫j, (15)

with cW ⌘ cos ✓W . The corresponding four-Fermi operator for a vertex involving two

fermions  , and two neutrino mass eigenstates, ⌫i and ⌫j, due to Z exchange is therefore

(OZ)ij = �
g
2

8m2
Zc

2
W

[ ̄�µ(g V � g
 
A�

5) ]�ij[⌫̄j�µ(1� �
5)⌫i], (16)

where g
 
A and g

 
V are defined above Eq. (10).
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Figure 2: Example diagrams representing the interaction with QW (2) and (3), QW

perturbed by the hyperfine interaction (4), and the nuclear AM (5), respectively.

where N and Z are the number of neutrons and protons, respectively, QW =

2ZC1p + 2NC1n ⇡ �N , and ⇢̃ = (⇢n + ⇢p)/2 and �⇢ = (⇢n � ⇢p) with ⇢n,p the

normalized nucleon density. In the calculations, it is assumed that ⇢n = ⇢p = ⇢,

and the second term in (2) drops out. In reality, there is a small di↵erence between

average radii of protons and neutrons, the so-called neutron skin. Though small,

this gives an important correction that will be discussed in the coming sections.

The spatial components of the vector electron part of (1) lead to the nuclear-

spin-dependent (NSD) Hamiltonian

ĥ
Z
NSD =

�GFp
2

Z
K � 1/2

I(I + 1)
↵ · I⇢(r), (3)

where ↵ = �0�, Z = �C2n,p, and K = (I + 1/2)(�1)I+1/2�l with l the orbital

momentum of the unpaired nucleon. This contribution is suppressed due to a

number of factors; the coe�cient |C2N | ⌧ |QW |, and also (unlike in the NSI case)

the nucleons do not contribute coherently. In the shell model only the valence

(unpaired) nucleons contribute. There is also a NSD contribution that comes

from the interaction with QW perturbed by the hyperfine interaction [18, 19],

ĥ
Q
NSD =

GFp
2
Q

↵ · I
I

⇢(r), (4)

which is suppressed by the ratio of hyperfine to fine-structure coe�cients: Q =

�1
3QW

↵µN
mpRN

' 2.5⇥ 10�4
A

2/3
µN (A = N + Z, mp is the nucleon mass, ↵ is the

fine-structure constant, RN is the nuclear radius, and µN is the nuclear magnetic

moment).

For heavy atoms, however, it is the contribution from the AM of the nucleus

that dominates the NSD e↵ects. The Hamiltonian describing the interaction of

atomic electrons with the nuclear AM is

ĥ
a
NSD =

GFp
2
a

K

I(I + 1)
↵ · I⇢(r), (5)

where a ⇠ ↵A
2/3 for heavy atoms. The investigation of AMs will be discussed

further in Sec. 3.3.

dominates over the neutrino mediated diagrams that we are interested in. We ultimately

deal with eigenstates of F̂ 2, which do not have definite `, so we need to make sure that the

eigenstate of F̂ 2 is a superposition of eigenstates of L̂2 with ` � 2.

A. Matrix elements of the tree-level potential

In order to extract some features of the tree-level parity violating potential, we write out

the potential here as given in Eqs. (11)-(14), but we suppress most of the dimensionless

constants for the sake of clarity:

V
tree
PNC ⇠

g
2

me


e
�mZr

r
~�e · ~p+

e
�mZr

r
~�p · ~p+ (~�e ⇥ ~�p) · ~r

✓
e
�mZr

r

◆�
. (40)

We are interested in computing the matrix elements of this potential in the space of hydrogen

eigenfunctions. In this section, we simply consider the radial integrals in the matrix elements

since the angular integrals simply give some O(1) number upon evaluation. We define

⌘ ⌘ r/a0, where r is the radial coordinate. The radial part of the wavefunction, close to the

origin, behaves as u(⌘) ⇠ ⌘
`. Given this, we can write the matrix element as an integral:

hn`m|V
tree
PNC |n

0
`
0
m

0
i ⇠

Z 1

0

d⌘ ⌘
2
⌘
`0
V

tree
PNC(⌘)⌘

`
, (41)

Note that, although the above dependence of the wavefunction is only correct near the origin,

we integrate all the way to ⌘ ! 1 because the potential drops very rapidly in magnitude

and so the contribution far away from zero from the wavefunction is negligible anyway.

Terms in the potential of Eq. (40) that have angular dependence make the integral vanish

unless `0 = `±1 (from the properties of the spherical harmonics). Without loss of generality,

we take the smaller of the two to be `, and the larger to be `+ 1. Then the matrix element

goes as (notice that the momentum operator introduces a factor of 1/⌘, as does a gradient)

hn`m|V
tree
PNC |n

0
, `± 1, m0

i ⇠
↵

mea
2
0

Z 1

0

d⌘ ⌘
`+1 exp (�mZa0⌘) ⌘

`
,

⇠
↵
2`+5

m
2`+3
e

m
2`+2
Z

= me↵
2`+5

✓
me

mZ

◆2`+2

. (42)

B. Matrix elements of the neutrino loop potential

There are two terms in the loop potential (33): the “helicity” term and the spin-cross

term. Once again, we consider only the radial integrals since the angular integrals give some

22

Bttvnjoh!b*!b!tubujd!ovdmfvt!boe!c*!uibu!uif!fmfduspo!wfmpdjuz!jt!b!tnbmm!qbsbnfufs-!
uif!nptu!hfofsbm!QW.qpufoujbm!jt!

has a rotated plane of polarization relative to the incident light. Experimentally, therefore,

a measurement of this rotation is a measure of APV. From our theoretical perspective, the

important quantity that encodes the effects of APV is R, defined in Eq. (6).

IV. PARITY VIOLATING FORCES IN ATOMIC SYSTEMS

A. Generic effects

The general expression for a non-relativistic potential between two fermions contains

only a handful of terms – the only difference between the potentials mediated by different

mechanisms is in the numerical coefficients coming with each term and the form of the radial

function [27].

Consider a generic atom with a nucleon of mass mN . We are looking for the parity

violating potential due to some Feynman diagram. To that end, we make two simplifying

assumptions:

1. We consider a static nucleus, that is, we neglect effects that scale like me/mN .

2. We treat the electron velocity, ve, as a small parameter and keep only terms linear in

ve.

Under these assumptions, the most general form of the parity-violating potential from [27]

reduces to the following:

VPNC(r) = H1F (r)~�e · ~ve +H2F (r)~�N · ~ve + C(~�e ⇥ ~�N) · ~r [F (r)] , (7)

where ~�e/2 is the spin of the electron, ~�N/2 is the net nuclear spin, H1, H2 (for “helicity”,

since the corresponding terms look like helicity) and C (for cross-product) are real constants,

and F (r) is a radial real function.

The values of the H1, H2, C, and F (r) depend on the specific diagram. In case there are

several diagrams, each diagram contributes linearly to the total potential, so we can write

VPNC(r) =
X

i

V
i
PNC(r) (8)

and we add a sub-index i to H1, H2, C, and F (r).
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Appendix A: Calculation of the parity violating force between the electron and the

proton

Our approach here closely follows the methodology of [2]. For the sake of simplicity,

we start by assuming just one flavor for the neutrino. In that case we find the following

four-Fermi operator for two fermions of type  and two neutrinos by summing over the Z

and W diagrams:

O4 = �
GF
p
2
[ ̄�µ(a � b

 
�
5) ][⌫̄�µ(1� �

5)⌫], (A1)

where a
 and b

 are the effective couplings to the Z as defined in Eqs. (20) and (21).

They depend on the particular fermion in question, depending on whether the W exchange

contributes, the Z exchange contributes, or both.

The two-neutrino potential can be calculated by a double insertion of this operator,

and the evaluation of the resulting amplitude, and by taking the Fourier transform of the

amplitude. The Feynman diagram that is relevant is given in Fig. 1. The corresponding

matrix element is given by

iM = �
(�iGF )2

2
ēN̄

⇥
�e
µ�

N
⌫

⇤ Z d4
kd4

k
0

(2⇡)4
�
4(q � k � k

0)Tr

i�µ i(�/k

0 +m)

k02 �m2
i�⌫

i(/k +m)

k2 �m2

�
eN.

(A2)

Here, �f
µ = �µ(af � bf�

5), with af and bf depending on the type of fermion in question. N

stands for nucleus, which in our case is just the proton. We can write the matrix element

as iM = ēN̄ iFeN , where:

F = �i
G

2
F

2

⇥
�e
µ�

N
⌫

⇤ Z d4
kd4

k
0

(2⇡)4
�
4(q � k � k

0)Tr

�µ (�/k

0 +m)

k02 �m2
�⌫

(/k +m)

k2 �m2

�
. (A3)

We then evaluate the trace, and consider only the symmetric part, since the antisymmetric

28

H1 = H
tree
1 =

g
2

2 cos2 ✓W
g
e
Ag

p
V , (11)

H2 = H
tree
2 =

g
2

2 cos2 ✓W
g
e
V g

p
A, (12)

C = C
tree =

g
2

2 cos2 ✓W

g
e
V g

p
A

2me
, (13)

F (r) = F
tree(r) =

e
�mZr

4⇡r
. (14)

In the APV literature, most notably in [29], the terms that depend on nuclear spin (that

is, terms that come with H2 and C) are ignored. This is because, in most heavy atoms used

in APV experiments, the nuclei have paired nucleons with opposite spins, and a net nuclear

spin of zero. Thus, terms in the potential containing the nuclear spin vanish. This is not

true for the case of hydrogen, where the nucleus consists of just one spin-half proton.

C. Loop level processes: The effective four-Fermi operator with neutrinos

Now that we have discussed the tree level diagram that violates parity, we move on to

loop level effects. The diagrams that contribute to atomic parity violation at one loop are

given in Fig. 6. At atomic energy scales, the use of the four-Fermi approximation is well

justified and so in this section, we will derive expressions for the four-Fermi vertices with

two fermions of the same type  and two neutrinos.

In the SM, the four-Fermi interactions between two neutrinos and two fermions are ob-

tained by integrating out the Z and W bosons in the diagrams shown in Fig. 7. However,

since we consider massive neutrinos, we need to incorporate flavor mixing. The Z-boson

case is simple because the interactions of neutrinos with the Z boson is universal and thus

diagonal in any basis:

LZ = �
g

2cW
�ij ⌫̄i /Z⌫j, (15)

with cW ⌘ cos ✓W . The corresponding four-Fermi operator for a vertex involving two

fermions  , and two neutrino mass eigenstates, ⌫i and ⌫j, due to Z exchange is therefore

(OZ)ij = �
g
2

8m2
Zc

2
W

[ ̄�µ(g V � g
 
A�

5) ]�ij[⌫̄j�µ(1� �
5)⌫i], (16)

where g
 
A and g

 
V are defined above Eq. (10).
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for the neutrinos is given by:

LW = �
g
p
2
U↵i

¯̀
L↵ /W⌫i, (17)

where the fields ` represent leptons and i (↵) represents mass (flavor) indices, and U↵i are

the elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The operator for

the case of two external  leptons of flavor ↵ and two neutrino mass eigenstates i and j is

then given by

(OW )ij = �
g
2

8m2
W

U↵jU
⇤
↵i[⌫̄j�

µ(1� �
5) ][ ̄�µ(1� �

5)⌫i],

= �
g
2

8m2
W

U↵jU
⇤
↵i[ ̄�

µ(1� �
5) ][⌫̄j�µ(1� �

5)⌫i], (18)

where we used the Fierz transformations to obtain the second line.

The sum of the operators in Eqs. (16) and (18) yields the four-fermion vertex between

two neutrino mass eigenstates and two  leptons. Using GF = g
2
/4
p
2m2

W , we obtain

Oij = (OZ)ij + (OW )ij (19)

= �
GF
p
2

h
 ̄�

µ
{�ij(g

 
V � g

 
A�

5) + U↵jU
⇤
↵i(1� �

5)} 
i ⇥
⌫̄j�µ(1� �

5)⌫i
⇤
,

= �
GF
p
2

h
 ̄�

µ(a ij � b
 
ij�

5) 
i ⇥
⌫̄j�µ(1� �

5)⌫i
⇤
.

We emphasize that there is no sum over i, j or ↵ here. In Eq. (20), we introduced the

effective vectorial and axial couplings, aij and bij respectively, in terms of the couplings to

the Z. If  is a lepton and therefore has a flavor index ↵, we have:

a
 
ij = �ijg

 
V + U↵jU

⇤
↵i, b

 
ij = �ijg

 
A + U↵jU

⇤
↵i. (20)

If  were not a lepton, it would not couple to neutrinos through the W , and therefore the

PMNS matrix would not be involved. Then we would have:

a
 
ij = �ijg

 
V , b

 
ij = �ijg

 
A, (21)

In order to compute the neutrino force between two fermionic species  1 and  2, we need

to insert the operator Oij twice in order to obtain the diagram in Fig. 1. If both  1 and  2

are leptons, we have nine diagrams from assigning three neutrino mass eigenstates into the

two propagators. Each diagram is labeled by two indices i and j, and we sum over them. If

 1 or  2 is a non-lepton, then the only possible four-Fermi vertices are the ones with both

neutrinos in the same mass eigenstate. Thus, there are three diagrams over which to sum
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for the neutrinos is given by:

LW = �
g
p
2
U↵i

¯̀
L↵ /W⌫i, (17)

where the fields ` represent leptons and i (↵) represents mass (flavor) indices, and U↵i are

the elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The operator for

the case of two external  leptons of flavor ↵ and two neutrino mass eigenstates i and j is

then given by

(OW )ij = �
g
2

8m2
W

U↵jU
⇤
↵i[⌫̄j�

µ(1� �
5) ][ ̄�µ(1� �

5)⌫i],

= �
g
2

8m2
W

U↵jU
⇤
↵i[ ̄�

µ(1� �
5) ][⌫̄j�µ(1� �

5)⌫i], (18)

where we used the Fierz transformations to obtain the second line.

The sum of the operators in Eqs. (16) and (18) yields the four-fermion vertex between

two neutrino mass eigenstates and two  leptons. Using GF = g
2
/4
p
2m2

W , we obtain

Oij = (OZ)ij + (OW )ij (19)

= �
GF
p
2

h
 ̄�

µ
{�ij(g

 
V � g

 
A�

5) + U↵jU
⇤
↵i(1� �

5)} 
i ⇥
⌫̄j�µ(1� �

5)⌫i
⇤
,

= �
GF
p
2

h
 ̄�

µ(a ij � b
 
ij�

5) 
i ⇥
⌫̄j�µ(1� �

5)⌫i
⇤
.

We emphasize that there is no sum over i, j or ↵ here. In Eq. (20), we introduced the
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a
 
ij = �ijg

 
V + U↵jU

⇤
↵i, b

 
ij = �ijg

 
A + U↵jU

⇤
↵i. (20)
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a
 
ij = �ijg

 
V , b

 
ij = �ijg

 
A, (21)

In order to compute the neutrino force between two fermionic species  1 and  2, we need

to insert the operator Oij twice in order to obtain the diagram in Fig. 1. If both  1 and  2

are leptons, we have nine diagrams from assigning three neutrino mass eigenstates into the

two propagators. Each diagram is labeled by two indices i and j, and we sum over them. If

 1 or  2 is a non-lepton, then the only possible four-Fermi vertices are the ones with both

neutrinos in the same mass eigenstate. Thus, there are three diagrams over which to sum
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(a) (b)

FIG. 6: The loop level diagrams that contribute to the binding of the electron to the

nucleus in an atomic system.

(a) (b)

FIG. 7: The two diagrams that contribute to the effective four-Fermi vertex for two

neutrinos and two fermions  . The Z-diagram in Fig. 7a corresponds to the effective

operator OZ . The W diagram in Fig. 7b corresponds to the effective operator OW .

The case of the W exchange is more complicated as we need to take into account the

non-diagonal nature of the flavor mixing. The W interaction Lagrangian in the mass basis
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FIG. 1: The four-Fermi effective diagram for two-neutrino exchange forces between two

fermions, labeled  1 and  2.

diagram gives rise to a force of the form

V (r) =
G

2
F

4⇡3r5
, (1)

where GF is the Fermi constant. The force is very weak. At distances larger than about

a nanometer its magnitude is smaller that the gravitational force between two protons. At

this scale, the electromagnetic Van der Waals force overpowers both. Thus, it has not been

observed yet and furthermore, there is no realistic proposal to build an experiment that

could see it. It is, therefore, an interesting question to ask if there is any way to probe this

force that has not been explored yet.

In many cases in the past, to observe a very small effect, one looked for symmetries

that are broken by it. For example, the weak interaction was observed, even though it

is much weaker than the strong and electromagnetic interactions, because it violates the

flavor symmetries of these stronger forces. Thus, one way to try to achieve sensitivity to the

two-neutrino force is to look for symmetries that it violates.

In this paper, we point out that the two-neutrino force is the largest long-range parity-

3

e−e−

p p
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has a rotated plane of polarization relative to the incident light. Experimentally, therefore,

a measurement of this rotation is a measure of APV. From our theoretical perspective, the

important quantity that encodes the effects of APV is R, defined in Eq. (6).

IV. PARITY VIOLATING FORCES IN ATOMIC SYSTEMS

A. Generic effects

The general expression for a non-relativistic potential between two fermions contains

only a handful of terms – the only difference between the potentials mediated by different

mechanisms is in the numerical coefficients coming with each term and the form of the radial

function [27].

Consider a generic atom with a nucleon of mass mN . We are looking for the parity

violating potential due to some Feynman diagram. To that end, we make two simplifying

assumptions:

1. We consider a static nucleus, that is, we neglect effects that scale like me/mN .

2. We treat the electron velocity, ve, as a small parameter and keep only terms linear in

ve.

Under these assumptions, the most general form of the parity-violating potential from [27]

reduces to the following:

VPNC(r) = H1F (r)~�e · ~ve +H2F (r)~�N · ~ve + C(~�e ⇥ ~�N) · ~r [F (r)] , (7)

where ~�e/2 is the spin of the electron, ~�N/2 is the net nuclear spin, H1, H2 (for “helicity”,

since the corresponding terms look like helicity) and C (for cross-product) are real constants,

and F (r) is a radial real function.

The values of the H1, H2, C, and F (r) depend on the specific diagram. In case there are

several diagrams, each diagram contributes linearly to the total potential, so we can write

VPNC(r) =
X

i

V
i
PNC(r) (8)

and we add a sub-index i to H1, H2, C, and F (r).
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Appendix A: Calculation of the parity violating force between the electron and the

proton

Our approach here closely follows the methodology of [2]. For the sake of simplicity,

we start by assuming just one flavor for the neutrino. In that case we find the following

four-Fermi operator for two fermions of type  and two neutrinos by summing over the Z

and W diagrams:

O4 = �
GF
p
2
[ ̄�µ(a � b

 
�
5) ][⌫̄�µ(1� �

5)⌫], (A1)

where a
 and b

 are the effective couplings to the Z as defined in Eqs. (20) and (21).

They depend on the particular fermion in question, depending on whether the W exchange

contributes, the Z exchange contributes, or both.

The two-neutrino potential can be calculated by a double insertion of this operator,

and the evaluation of the resulting amplitude, and by taking the Fourier transform of the

amplitude. The Feynman diagram that is relevant is given in Fig. 1. The corresponding

matrix element is given by

iM = �
(�iGF )2

2
ēN̄

⇥
�e
µ�

N
⌫

⇤ Z d4
kd4

k
0

(2⇡)4
�
4(q � k � k

0)Tr

i�µ i(�/k

0 +m)

k02 �m2
i�⌫

i(/k +m)

k2 �m2

�
eN.

(A2)

Here, �f
µ = �µ(af � bf�

5), with af and bf depending on the type of fermion in question. N

stands for nucleus, which in our case is just the proton. We can write the matrix element

as iM = ēN̄ iFeN , where:

F = �i
G

2
F

2

⇥
�e
µ�

N
⌫

⇤ Z d4
kd4

k
0

(2⇡)4
�
4(q � k � k

0)Tr

�µ (�/k

0 +m)

k02 �m2
�⌫

(/k +m)

k2 �m2

�
. (A3)

We then evaluate the trace, and consider only the symmetric part, since the antisymmetric
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 are the effective couplings to the Z as defined in Eqs. (20) and (21).

They depend on the particular fermion in question, depending on whether the W exchange
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N
⌫

⇤ Z d4
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k
0
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�
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5), with af and bf depending on the type of fermion in question. N

stands for nucleus, which in our case is just the proton. We can write the matrix element

as iM = ēN̄ iFeN , where:

F = �i
G

2
F

2

⇥
�e
µ�

N
⌫

⇤ Z d4
kd4

k
0

(2⇡)4
�
4(q � k � k

0)Tr

�µ (�/k

0 +m)

k02 �m2
�⌫

(/k +m)

k2 �m2

�
. (A3)

We then evaluate the trace, and consider only the symmetric part, since the antisymmetric
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that contribute are the three diagrams with the same neutrino mass eigenstate on both

propagators in the loop. Using Eqs. (20) and (21), we find that in this case, the corresponding

couplings are diagonal and are given by (superscripts refer to the electron and the proton

respectively)

a
e
ii =

✓
�
1

2
+ 2s2W + |Uei|

2

◆
, a

p
ii =

✓
1

2
� 2s2W

◆

b
e
ii =

✓
�
1

2
+ |Uei|

2

◆
, b

p
ii =

GA

2
⇡ 0.625, (28)

where GA is the axial form factor, as defined below Eq. (10), and sW = sin ✓W . Since both

propagators have the same mass eigenstate, the non-diagonal entries in aij and bij are zero.

For the same reason, we only keep one index i from now on.

Using the couplings from Eq. (28), we calculate the parity-violating potential from the

neutrino loop, which results in a form given by Eq. (8) (see appendix A for details of the

calculation). with the constants and the radial function given by (no sum over i in any of

the expressions):

H1i = H
loop
1i = �2

a
p
i b

e
i

me
, (29)

H2i = H
loop
2i = 2

a
e
i b

p
i

me
, (30)

Ci = C
loop
i =

✓
a
e
i b

p
i

me
+

a
p
i b

e
i

mp

◆
, (31)

Fi = F
loop
i (r) = V⌫i⌫i(r), (32)

where V⌫i⌫i(r) can be found in Eq. (2).

Using the fact that s2W ⇡ 0.23, so that api is very small and that me ⌧ mp, we note that

H1i is negligible. The parity-violating potential then simplifies to:

V
loop
PNC ⇡

X

i

GA

me

✓
�
1

4
+ s

2
W +

1

2
|Uei|

2

◆h
(2~�p · ~pe)V⌫i⌫i(r) + (~�e ⇥ ~�p) · ~rV⌫i⌫i(r)

i
. (33)

Eqs. (29)-(33) are the key results in our work. The parity-violating terms obtained here have

the same spin structure as in the case of the tree-level potential, but the radial behavior

is different. Investigation of these terms in the neutrino potential has not been carried out

before.
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parity-conserving form of the two-neutrino potential to leading order in v for the case of a

single flavor of neutrinos with mass m⌫ is given by

V
Dirac
⌫⌫ (r) =

G
2
Fm

3
⌫

4⇡3

K3(2m⌫r)

r2
, V

Majorana
⌫⌫ (r) =

G
2
Fm

2
⌫

2⇡3

K2(2m⌫r)

r3
, (2)

where Kn(x) is the nth order modified Bessel functions of the second kind.

An additional effect in neutrino physics, due to the non-zero masses, is flavor mixing

(for a review, see, for example, Ref. [15]). This phenomenon was incorporated into the

computation of the two-neutrino force in Ref. [16], although a closed form for the neutrino

force was not attained. One can also look in [17] for a treatment of the spin-independent

part of the neutrino force with flavor mixing. Lastly, thermal corrections to the neutrino

force, in both the Dirac and Majorana cases, were computed in [18].

All the calculations mentioned above compute terms in the potential that are parity

conserving, i.e. parity-violating terms have been ignored. In this work, we go beyond the

leading-order results in v and compute terms in the potential that are spin and momentum

dependent and also parity violating. Our key results are described in section IV, and their

implications are described in Sec. VI. We keep terms to first order in v in our non-relativistic

calculation.

III. OBSERVING ATOMIC PARITY VIOLATION – A REVIEW

In this section, we review the concepts of Atomic Parity Violation (APV) that are relevant

to the present work. We look at atomic parity violation from the perspective of transitions

in atoms, more specifically, stimulated emission processes, wherein an emission is caused by

shining light on a sample of atoms. For a more detailed review of APV from both theoretical

and experimental perspectives, see Refs. [19–22].

The key idea behind looking for APV is to exploit the fact that in the presence of a parity

violating term in the atomic Hamiltonian, the energy eigenstates have no definite parity. As

per the well-known selection rules, electric dipole (E1) transitions happen between states

of opposite parity while magnetic dipole (M1) transitions take place only between states of

same parity. If the energy eigenstates, however, have no definite parity, then both E1 and

M1 transitions are allowed between them. Since the parity violating interactions are usually

very weak compared to the parity conserving ones, we treat them as perturbations to a parity

6
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VI. EFFECTS OF THE NEUTRINO FORCE ON HYDROGEN EIGENSTATES

AND TRANSITIONS

In this section, we treat the neutrino potential in Eq. (33) as a perturbation to the

hydrogen atom Hamiltonian. We work in the limit mp ! 1, so that the proton is essentially

static. We assume that the neutrino is of Dirac nature subsequently in this paper, but one

could also treat them as Majorana fermions and perform an analogous computation.

The neutrino force is much smaller than the fine or hyperfine interactions and therefore,

we need to include the fine-structure and the hyperfine splittings as well in our calculations.

As always, we should look for an operator that commutes with the neutrino potential, and

use the eigenbasis of this operator as the basis of choice in first-order degenerate perturbation

theory. Since the neutrino potential is a scalar, we know that an operator that commutes

with it is F̂
2, where

~F ⌘ ~Le + ~Se + ~Sp

is the total angular momentum of the entire system. We also define ~J ⌘ ~Le+ ~Se as the total

angular momenta of the electron alone.

The unperturbed eigenstates |n, f,mf , j, `, sp, sei with which we work are simultaneous

eigenstates of Ĥ0, F̂
2
, F̂z, Ĵ

2
, L̂

2
e, Ŝ

2
p and Ŝ

2
e , where Ĥ0 = ~p

2
/2me � e

2
/r is the unperturbed

hydrogen atom with only the Coulombic interaction. The eigenvalues of F̂ 2
, F̂z, Ĵ

2
, L̂

2
e, Ŝ

2
p

and Ŝ
2
e are f(f +1),mf , j(j +1), `(`+1), sp(sp +1) and se(se +1) respectively. Every state

is thus described by 7 quantum numbers. But se = sp = 1/2 are fixed numbers, and so

we really need just 5 numbers to label a state. This is indeed what we expect since the

hydrogen atom has a total of 8 degrees of freedom (dof): there are 3 position dof and 1 spin

dof each for the electron and the proton. However, we do not care about the three dof of

the center of mass, leaving us with 5 dof to describe the internal dynamics of our system.

The angular momentum states can be constructed using the standard procedure of angu-

lar momentum addition using Clebsch-Gordon coefficients, as done in Ref. [30], for instance.

The orbital angular momentum of the electron ` takes values 0, 1, 2, . . . Depending on `,

the result of the angular-momentum addition of one orbital angular momentum and two

spin-1/2 systems (the electron and the proton are both spin-1/2) can be summarized in the
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Ĥ0
⃗F ≡ ⃗L e + ⃗S e + ⃗S p

⃗J ≡ ⃗L e + ⃗S e

following notation:

`⌦
1

2
⌦

1

2
= (`+ 1)� `| {z }

j=(2`+1)/2

� `� (`� 1)| {z }
j=(2`�1)/2

. (34)

These vector spaces contain eigenstates of the hydrogen atom written in the basis of F̂ 2 for

a given principal quantum number n. The first two vector spaces in the direct sum consist

of states with a well-defined value of j = (2`+ 1)/2, while the latter two vector spaces have

well-defined j = (2`� 1)/2.

In the unperturbed hydrogen atom, all these states would be degenerate. But with the

perturbations, such as the fine structure corrections and the hyperfine splitting interactions

included, the degeneracy is lifted, and only the degeneracy in mf is left. The energy of an

eigenstate with quantum numbers f, j, `, se = sp = 1
2 , for the case where ` > 0, is given by

(see Ref. [31])

Enfj` = (E0)n + (Efine)nj + (Ehyperfine)nfj` (35)

where:

(E0)n = �
↵
2
me

2n2
, (36)

(Efine)nj = �
↵
4
me

2n4

✓
n

j + 1
2

�
3

4

◆
, (37)

(Ehyperfine)nfj` =
↵
4
gp

mp
a
3
0

`(`+ 1)m2
e

�
f(f + 1)� j(j + 1)� 3

4

�

4j(j + 1)

⌧
1

r3

�

n`

(38)

are the energies contributed by the Coulombic potential, fine structure and hyperfine in-

teractions respectively, r is the radial coordinate of the electron, a0 = (me↵)
�1 is the Bohr

radius, and gp ⇡ 5.56 is the g-factor of the proton [32].

As a reminder, in first-order perturbation theory, in the presence of a perturbation V ,

the corrected states are given by

| 
1
qi = | 

0
qi+

X

p 6=q

h 
0
p|V | 

0
qi

E0
q � E0

p

| 
0
pi (39)

Here, | 0
pi are the states in our chosen eigenbasis. Note that in this basis our perturbation

is diagonal in each degenerate subspace. Under the perturbation, we say that the states in

this basis “mix” among themselves to give the true eigenstates of the system.

The energy difference between states of different n is much larger than that for those

states with the same principal quantum number. Since the corrections to the eigenstates in
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are the energies contributed by the Coulombic potential, fine structure and hyperfine in-
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�1 is the Bohr
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radius, and gp ⇡ 5.56 is the g-factor of the proton [32].
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Here, | 0
pi are the states in our chosen eigenbasis. Note that in this basis our perturbation

is diagonal in each degenerate subspace. Under the perturbation, we say that the states in

this basis “mix” among themselves to give the true eigenstates of the system.

The energy difference between states of different n is much larger than that for those

states with the same principal quantum number. Since the corrections to the eigenstates in
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dominates over the neutrino mediated diagrams that we are interested in. We ultimately

deal with eigenstates of F̂ 2, which do not have definite `, so we need to make sure that the

eigenstate of F̂ 2 is a superposition of eigenstates of L̂2 with ` � 2.

A. Matrix elements of the tree-level potential

In order to extract some features of the tree-level parity violating potential, we write out

the potential here as given in Eqs. (11)-(14), but we suppress most of the dimensionless

constants for the sake of clarity:

V
tree
PNC ⇠

g
2

me


e
�mZr

r
~�e · ~p+

e
�mZr

r
~�p · ~p+ (~�e ⇥ ~�p) · ~r

✓
e
�mZr

r

◆�
. (40)

We are interested in computing the matrix elements of this potential in the space of hydrogen

eigenfunctions. In this section, we simply consider the radial integrals in the matrix elements

since the angular integrals simply give some O(1) number upon evaluation. We define

⌘ ⌘ r/a0, where r is the radial coordinate. The radial part of the wavefunction, close to the

origin, behaves as u(⌘) ⇠ ⌘
`. Given this, we can write the matrix element as an integral:

hn`m|V
tree
PNC |n

0
`
0
m

0
i ⇠

Z 1

0

d⌘ ⌘
2
⌘
`0
V

tree
PNC(⌘)⌘

`
, (41)

Note that, although the above dependence of the wavefunction is only correct near the origin,

we integrate all the way to ⌘ ! 1 because the potential drops very rapidly in magnitude

and so the contribution far away from zero from the wavefunction is negligible anyway.

Terms in the potential of Eq. (40) that have angular dependence make the integral vanish

unless `0 = `±1 (from the properties of the spherical harmonics). Without loss of generality,

we take the smaller of the two to be `, and the larger to be `+ 1. Then the matrix element

goes as (notice that the momentum operator introduces a factor of 1/⌘, as does a gradient)

hn`m|V
tree
PNC |n

0
, `± 1, m0

i ⇠
↵

mea
2
0

Z 1

0

d⌘ ⌘
`+1 exp (�mZa0⌘) ⌘

`
,

⇠
↵
2`+5

m
2`+3
e

m
2`+2
Z

= me↵
2`+5

✓
me

mZ

◆2`+2

. (42)

B. Matrix elements of the neutrino loop potential

There are two terms in the loop potential (33): the “helicity” term and the spin-cross

term. Once again, we consider only the radial integrals since the angular integrals give some
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B. Matrix elements of the neutrino loop potential

There are two terms in the loop potential (33): the “helicity” term and the spin-cross

term. Once again, we consider only the radial integrals since the angular integrals give some
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O(1) number. The radial dependence of the integrands in the matrix elements is roughly

the same, since the momentum operator and the gradient operator have the same radial

structure.

The leading-order dependence of the parity non-conserving loop terms goes like G2
F/mer

6.

Matrix elements for this operator go as

hn`m|V
loop
PNC |n

0
`
0
m

0
i ⇠

G2
F

mea60

R
d⌘ ⌘

2
⌘
`0
⇣

1
⌘6

⌘
⌘
` exp

⇥
�⌘

�
1
n + 1

n0

�⇤

⇠
↵2

mem4
Za60

R
d⌘ ⌘

2
⌘
`0
⇣

1
⌘6

⌘
⌘
` exp

⇥
�⌘

�
1
n + 1

n0

�⇤
. (43)

In the expression above,
�
1
n + 1

n0

�
⇠ O(1) number, which yields some exponential suppres-

sion. Let us denote this number by nsup. The angular integrals vanish unless `0 = `± 1 and,

like before, we can estimate a naive dependence of the wave function on ↵, me, etc. We

write

hn
0(`+ 1)m0

|V
loop
PNC |n`mi ⇠

↵2

mem4
Za60

R
d⌘ ⌘

2
⌘
`+1

�
1
r6

�
⌘
` exp(�nsup⌘)

⇠
↵2

mem4
Za60

R
d⌘ ⌘

2`�3 exp(�nsup⌘). (44)

Now, we have the following sub-cases:

1. For ` = 0 and ` = 1: The radial integral does not converge, indicating the failure of

four-Fermi theory as we discussed previously.

2. ` � 2: In this case, the integral in Eq. (44) does converge and four-Fermi theory is

suitable for such states. The result is
↵
2

mem
4
Za

6
0

Z 1

0

d⌘ ⌘
2`�3 exp(�nsup⌘) ⇠ me↵

8

✓
me

mZ

◆4

, (45)

where we have ignored some O(1) constants that depend on `.

In Table I,we compare the tree-level and loop-level matrix elements for different values of

`. For ` = 2, the tree-level matrix element behaves as ↵
9 (me/mZ)

6, while the loop matrix

element goes as ↵
8 (me/mZ)

4. Thus, naively, for ` = 2,

Mtree

Mloop
⇠ ↵

✓
me

mZ

◆2

⇡ 10�13
. (46)

In other words, the effect of the tree-level potential is much smaller than the effect of the loop-

level potential for ` � 2. If we only care about powers of ↵ and me/mZ , then our calculations

suggest that the effect of the loop remains the same as ` � 2, i.e, ⇠ ↵
8 (me/mZ)

4, but the

powers in ↵ and me/mZ in the tree-level effect increase with `, rendering it much smaller.

Thus, to isolate the effects of the loop, we need to consider states for which ` � 2.
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In other words, the effect of the tree-level potential is much smaller than the effect of the loop-

level potential for ` � 2. If we only care about powers of ↵ and me/mZ , then our calculations

suggest that the effect of the loop remains the same as ` � 2, i.e, ⇠ ↵
8 (me/mZ)

4, but the

powers in ↵ and me/mZ in the tree-level effect increase with `, rendering it much smaller.

Thus, to isolate the effects of the loop, we need to consider states for which ` � 2.
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the notation |n, f,mf , j, `i:

|Ai = |4, 3, 3, 5/2, 3i ⌘ 4F5/2,F=3, (47)

|Bi = |4, 3, 3, 7/2, 3i ⌘ 4F7/2,F=3, (48)

|�i = |4, 3, 3, 5/2, 2i ⌘ 4D5/2,F=3 (49)

|Ai and |Bi are eigenstates of F̂ 2 which, in the presence of the neutrino potential, mix with

all other states with f = 3 and mf = 3 to form a true energy eigenstate of hydrogen. Before

adding the neutrino potential, these states have the same ` and hence there can be an M1

transition between them, but no E1 transition. However, once these states are corrected

by the neutrino potential, the resulting eigenstates can have both E1 and M1 transitions

between them because of the small parity violating correction, from which we can calculate

R, as in Eq. (6).

Consider now the state |�i. This state has different parity than the two base states

|Ai and |Bi while having the same f and mf quantum numbers and, hence, can mix with

them. Before we proceed, we note that other states with the same values of f and mf , such

as |5, 3, 3, 7/2, 4i for instance, mix very weakly with our base states because the quantum

number n puts these states much farther away in energy than |�i. We therefore ignore the

contribution of these states in the perturbation expansion. Lastly, we must keep in mind

that the matrix element of a parity-violating operator between states with the same parity

is zero. Therefore, the base states do not get any corrections from each other since they

have the same ` = 3.

Our aim is to compute

hA
0
|Electric Dipole|B0

i

hA0|Magnetic Dipole|B0i
⇡

hA
0
|Electric Dipole|B0

i

hA|Magnetic Dipole|Bi
(50)

where |A
0
i and |B

0
i are the true eigenstates of hydrogen, obtained from |Ai and |Bi using

the perturbation expansion as in Eq. (39). For details of the calculation, see appendix B.

The approximation in Eq. (50) holds because the selection rules permit magnetic transitions

to occur between states of the same parity, so perturbative corrections, which are much

smaller than the unperturbed transition amplitude, can be ignored.

Using the electric and magnetic dipole moment operators (details in the appendix), we

compute the inner products by performing the integrals involving the hydrogen atom wave-

25

the notation |n, f,mf , j, `i:

|Ai = |4, 3, 3, 5/2, 3i ⌘ 4F5/2,F=3, (47)

|Bi = |4, 3, 3, 7/2, 3i ⌘ 4F7/2,F=3, (48)

|�i = |4, 3, 3, 5/2, 2i ⌘ 4D5/2,F=3 (49)

|Ai and |Bi are eigenstates of F̂ 2 which, in the presence of the neutrino potential, mix with

all other states with f = 3 and mf = 3 to form a true energy eigenstate of hydrogen. Before

adding the neutrino potential, these states have the same ` and hence there can be an M1

transition between them, but no E1 transition. However, once these states are corrected

by the neutrino potential, the resulting eigenstates can have both E1 and M1 transitions

between them because of the small parity violating correction, from which we can calculate

R, as in Eq. (6).

Consider now the state |�i. This state has different parity than the two base states

|Ai and |Bi while having the same f and mf quantum numbers and, hence, can mix with

them. Before we proceed, we note that other states with the same values of f and mf , such

as |5, 3, 3, 7/2, 4i for instance, mix very weakly with our base states because the quantum

number n puts these states much farther away in energy than |�i. We therefore ignore the

contribution of these states in the perturbation expansion. Lastly, we must keep in mind

that the matrix element of a parity-violating operator between states with the same parity

is zero. Therefore, the base states do not get any corrections from each other since they

have the same ` = 3.

Our aim is to compute

hA
0
|Electric Dipole|B0

i

hA0|Magnetic Dipole|B0i
⇡

hA
0
|Electric Dipole|B0

i

hA|Magnetic Dipole|Bi
(50)

where |A
0
i and |B

0
i are the true eigenstates of hydrogen, obtained from |Ai and |Bi using

the perturbation expansion as in Eq. (39). For details of the calculation, see appendix B.

The approximation in Eq. (50) holds because the selection rules permit magnetic transitions

to occur between states of the same parity, so perturbative corrections, which are much

smaller than the unperturbed transition amplitude, can be ignored.

Using the electric and magnetic dipole moment operators (details in the appendix), we

compute the inner products by performing the integrals involving the hydrogen atom wave-

25

Cfgpsf! beejoh! ! ! -! uiftf! tubuft! ibwf! uif! tbnf! ! boe! uifsf! dbo! cf! bo!!!!!!
usbotjujpo!cvu!opu!bo!!!!!!usbotjujpo!!!

M1Vνν
E1

ℓ

Cvu!uifz!bsf!dpssfdufe

Appendix B: Details of the calculation in Sec. VII
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Using these three states, we can write the corrected states in the spirit of Eq. (39) as:

|A
0
i = |Ai+
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EA � E�
|�i+ · · · = |Ai+ CA�|�i+ · · · , (B3)

where CA� is the correction coefficient. Similarly,

|B
0
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h�|VPNC |Bi

EB � E�
|�i+ · · · = |Bi+ CB�|�i+ . . . (B4)

In the end, we add the contributions from both terms in the potential. Our states therefore

become
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h
A�)|�i+ · · · , (B5)
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Here C
sc is the correction coefficient for the spin-cross term alone, while C

h is the coefficient

for the “helicity” term alone.

Using the two terms in V
loop
PNC(r), we compute the corrections up to second order in the

small parameter ⌫i. To calculate the energy differences between the states, we use Eq. (35).
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the notation |n, f,mf , j, `i:

|Ai = |4, 3, 3, 5/2, 3i ⌘ 4F5/2,F=3, (47)

|Bi = |4, 3, 3, 7/2, 3i ⌘ 4F7/2,F=3, (48)

|�i = |4, 3, 3, 5/2, 2i ⌘ 4D5/2,F=3 (49)

|Ai and |Bi are eigenstates of F̂ 2 which, in the presence of the neutrino potential, mix with

all other states with f = 3 and mf = 3 to form a true energy eigenstate of hydrogen. Before

adding the neutrino potential, these states have the same ` and hence there can be an M1

transition between them, but no E1 transition. However, once these states are corrected

by the neutrino potential, the resulting eigenstates can have both E1 and M1 transitions

between them because of the small parity violating correction, from which we can calculate

R, as in Eq. (6).

Consider now the state |�i. This state has different parity than the two base states

|Ai and |Bi while having the same f and mf quantum numbers and, hence, can mix with

them. Before we proceed, we note that other states with the same values of f and mf , such

as |5, 3, 3, 7/2, 4i for instance, mix very weakly with our base states because the quantum

number n puts these states much farther away in energy than |�i. We therefore ignore the

contribution of these states in the perturbation expansion. Lastly, we must keep in mind

that the matrix element of a parity-violating operator between states with the same parity

is zero. Therefore, the base states do not get any corrections from each other since they

have the same ` = 3.

Our aim is to compute

hA
0
|Electric Dipole|B0

i

hA0|Magnetic Dipole|B0i
⇡

hA
0
|Electric Dipole|B0

i

hA|Magnetic Dipole|Bi
(50)

where |A
0
i and |B

0
i are the true eigenstates of hydrogen, obtained from |Ai and |Bi using

the perturbation expansion as in Eq. (39). For details of the calculation, see appendix B.

The approximation in Eq. (50) holds because the selection rules permit magnetic transitions

to occur between states of the same parity, so perturbative corrections, which are much

smaller than the unperturbed transition amplitude, can be ignored.

Using the electric and magnetic dipole moment operators (details in the appendix), we

compute the inner products by performing the integrals involving the hydrogen atom wave-
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and |Bi. Both of these states were corrected by the “correction state” |�i. Other corrections

were ignored because they are much smaller than the correction due to |�i.
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where  nlm are the unperturbed energy eigenstates of hydrogen, given by

 nlm = hr, ✓,�|nlmi =

s✓
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na0

◆3 (n� l � 1)!

2n[(n+ l)!]3
e
�r/na0

⇥
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Using these three states, we can write the corrected states in the spirit of Eq. (39) as:

|A
0
i = |Ai+

h�|VPNC |Ai

EA � E�
|�i+ · · · = |Ai+ CA�|�i+ · · · , (B3)

where CA� is the correction coefficient. Similarly,

|B
0
i = |Bi+

h�|VPNC |Bi

EB � E�
|�i+ · · · = |Bi+ CB�|�i+ . . . (B4)

In the end, we add the contributions from both terms in the potential. Our states therefore

become

|A
0
i = |Bi+ (Csc

A� + C
h
A�)|�i+ · · · , (B5)

|B
0
i = |Bi+ (Csc

B� + C
h
B�)|�i+ · · · . (B6)

Here C
sc is the correction coefficient for the spin-cross term alone, while C

h is the coefficient

for the “helicity” term alone.

Using the two terms in V
loop
PNC(r), we compute the corrections up to second order in the

small parameter ⌫i. To calculate the energy differences between the states, we use Eq. (35).

33

Appendix B: Details of the calculation in Sec. VII

In Sec. VII, we computed R, for the E1 and M1 transitions between the “base” states |Ai

and |Bi. Both of these states were corrected by the “correction state” |�i. Other corrections

were ignored because they are much smaller than the correction due to |�i.

Using the machinery of angular-momentum addition, we can write

|Ai = |4, 3, 3, 5/2, 3i ⌘ �
1
p
7
 432|""i+

r
6

7
 433|#"i, (B1)

|Bi = |4, 3, 3, 7/2, 3i ⌘ �
1

2

r
3

7
 432|""i+

1

2

r
7

2
 433|"#i �

1

2
p
14
 433|#"i,

|�i = |4, 3, 3, 5/2, 2i ⌘  422|""i,

where  nlm are the unperturbed energy eigenstates of hydrogen, given by

 nlm = hr, ✓,�|nlmi =

s✓
2

na0

◆3 (n� l � 1)!

2n[(n+ l)!]3
e
�r/na0

⇥
L
2l+1
n�l�1(2r/na0)

⇤
Y

m
l (✓,�). (B2)

Using these three states, we can write the corrected states in the spirit of Eq. (39) as:

|A
0
i = |Ai+

h�|VPNC |Ai

EA � E�
|�i+ · · · = |Ai+ CA�|�i+ · · · , (B3)

where CA� is the correction coefficient. Similarly,

|B
0
i = |Bi+

h�|VPNC |Bi

EB � E�
|�i+ · · · = |Bi+ CB�|�i+ . . . (B4)

In the end, we add the contributions from both terms in the potential. Our states therefore

become

|A
0
i = |Bi+ (Csc

A� + C
h
A�)|�i+ · · · , (B5)

|B
0
i = |Bi+ (Csc

B� + C
h
B�)|�i+ · · · . (B6)

Here C
sc is the correction coefficient for the spin-cross term alone, while C

h is the coefficient

for the “helicity” term alone.

Using the two terms in V
loop
PNC(r), we compute the corrections up to second order in the

small parameter ⌫i. To calculate the energy differences between the states, we use Eq. (35).

33

Appendix B: Details of the calculation in Sec. VII

In Sec. VII, we computed R, for the E1 and M1 transitions between the “base” states |Ai

and |Bi. Both of these states were corrected by the “correction state” |�i. Other corrections

were ignored because they are much smaller than the correction due to |�i.

Using the machinery of angular-momentum addition, we can write

|Ai = |4, 3, 3, 5/2, 3i ⌘ �
1
p
7
 432|""i+

r
6

7
 433|#"i, (B1)

|Bi = |4, 3, 3, 7/2, 3i ⌘ �
1

2

r
3

7
 432|""i+

1

2

r
7

2
 433|"#i �

1

2
p
14
 433|#"i,

|�i = |4, 3, 3, 5/2, 2i ⌘  422|""i,

where  nlm are the unperturbed energy eigenstates of hydrogen, given by

 nlm = hr, ✓,�|nlmi =

s✓
2

na0

◆3 (n� l � 1)!

2n[(n+ l)!]3
e
�r/na0

⇥
L
2l+1
n�l�1(2r/na0)

⇤
Y

m
l (✓,�). (B2)

Using these three states, we can write the corrected states in the spirit of Eq. (39) as:

|A
0
i = |Ai+

h�|VPNC |Ai

EA � E�
|�i+ · · · = |Ai+ CA�|�i+ · · · , (B3)

where CA� is the correction coefficient. Similarly,

|B
0
i = |Bi+

h�|VPNC |Bi

EB � E�
|�i+ · · · = |Bi+ CB�|�i+ . . . (B4)

In the end, we add the contributions from both terms in the potential. Our states therefore

become

|A
0
i = |Bi+ (Csc

A� + C
h
A�)|�i+ · · · , (B5)

|B
0
i = |Bi+ (Csc

B� + C
h
B�)|�i+ · · · . (B6)

Here C
sc is the correction coefficient for the spin-cross term alone, while C

h is the coefficient

for the “helicity” term alone.

Using the two terms in V
loop
PNC(r), we compute the corrections up to second order in the

small parameter ⌫i. To calculate the energy differences between the states, we use Eq. (35).

33

Tp!xf!dbo!gjobmmz!dpnqvuf

R = Im ( E1PV

M1 ) = Im ( ⟨A′ | ̂P |B′ ⟩
⟨A′ |M̂ |B′ ⟩ ) ≈ (−

1
4

+ s2
W +

1
2

|Uei |
2 ) −7.7 × 10−33 + 3.7 × 10−32 (

mνi

α me )
2

Uif!spubujpo!evf!up!uif!ofvusjop!gpsdf!xpvme!cf! Φ ∼ 10−32 rads

Uijt! jt! bcpvu! 34! psefst! pg! nbhojuvef! tnbmmfs! uibo! xibu! dbo! cf!
nfbtvsfe!jo!uif!mbc!)xjui!Dt* Lintz, Guéna & Bouchiat (2006)

11



Opu!zfu"!Uif!nfbtvsfnfou!pg!pqujdbm!spubujpo!evf!up!uif!ofvusjop!mppq!jt!
fyusfnfmz!dibmmfohjoh!hjwfo!uif!sftpmvujpot!xf!dbo!bdijfwf!upebz/!!

Opofuifmftt-!uijt!dbmdvmbujpo-!qfsgpsnfe!gps!puifs!tztufnt-!dpvme!mfbe!up!
tpnfxibu!mbshfs!rvboujujft!boe!uif!ofyu!tufq!xpvme!nptu!mjlfmz!cf!bo!
bqqmjdbujpo!pg!uijt!jefb!up!nboz.fmfduspo!bupnt-!cfzpoe!uif!tjnqmf!izesphfo!
dbtf/!Uif!nbusjy!fmfnfout!jo!uiftf!bupnt!bsf!bnqmjgjfe!cz!bo!beejujpobm! !
gbdups/!

Bmuipvhi!uif!fggfdut!pg!uif!ofvusjop!gpsdf!po!uif!izesphfo!bupn!bsf!fyusfnfmz!
tnbmm!up!nfbtvsf!jo!bo!fyqfsjnfou-!uif!ofvusjop!gpsdf!jt!uif!mbshftu!mpoh.sbohf!
qbsjuz.wjpmbujoh!gpsdf!uifsf!jt/!

Z3

Uibol!zpv"
12 Xbmufs!Ubohbsjgf!.!OvDp!3132

Dbo!xf!qspcf!uif!ofvusjop!gpsdf!vtjoh!bupnjd!qbsjuz!wjpmbujpo@


