A search for Pseudo-Dirac neutrinos in the Cosmos

Yuber F. Perez-Gonzalez

Neutrinos en Colombia July 29th, 2021

What do we know about neutrino masses and mixing?

What do not we know about neutrino masses and mixing?

Pseudo-Dirac Neutrinos

Let's consider the Dirac+Majorana Lagrangian

$$M = \begin{pmatrix} 0_3 & \frac{Yv}{\sqrt{2}} \\ & M_D \\ Yv/\sqrt{2} & M_R \end{pmatrix}$$

$$\mathscr{L}_{Y} = -Y\overline{L}\widetilde{H}N_{R} + \frac{1}{2}\overline{N^{c}}M_{R}N + h.c.$$

★
$$M_R = 0$$
 → Dirac neutrinos
★ $M_R \gg M_D$ → Usual type I seesaw
★ $M_R \ll M_D$ → PseudoDirac neutrinos

See C. Sheng talk

Pseudo-Dirac Neutrinos

NuCo - July 29th, 2021

Pseudo-Dirac Neutrinos

 $\delta m^2 \rightarrow \text{tiny but non-zero}$

mass difference,

equal for all eigenstates

$$m_{ks}^{2} = m_{k}^{2} + \frac{1}{2}\delta m^{2}$$
$$m_{ks}^{2} = m_{k}^{2} - \frac{1}{2}\delta m^{2}$$

Limits on δm_k^2

- Solar neutrinos $\delta m^2 \lesssim 10^{-12} \text{ eV}^2$
 - de Gouvêa et.al. 0906.1611, Donini et.al. 1106.0064
- * Atms neutrinos $\delta m^2 \lesssim 10^{-4} \text{ eV}^2$
 - Beacom et.al. 0307151
- * HE neutrinos $10^{-18} \text{ eV}^2 \leq \delta m^2 \leq 10^{-12} \text{ eV}^2$
 - Beacom et al 0307151, Esmaili 0909.5410, Esmaili and Farzan 1208.6012

✤ JUNO & DUNE

• Anamiati, De Romeri, Hirsch, Ternes, and Tortola, 1907.00980

What about SN?

Beacom et.al. 0307151

Core-collapse Supernovae

• MeV neutrinos are emitted

SN1987A

- A SN was observed on the large Magellanic cloud
- A burst of neutrinos were detected hours before the light reached the Earth

Masayuki Nakahata, CERN courrier

Prove the survival probability
Oscillation and decoherence lengths
$$L_{coh} = \frac{4\sqrt{2}E^2}{|\delta m^2|} \alpha_x \approx 114 \operatorname{kpc}\left(\frac{E_{\nu}}{25 \operatorname{MeV}}\right)^2 \left(\frac{10^{-19} \operatorname{eV}^2}{\delta m^2}\right) \left(\frac{\sigma_x}{10^{-13} \operatorname{m}}\right)$$

We follow the standard treatment of the SN1987A data*

$$\mathscr{L} = e^{-N_{\text{tot}}} \prod_{i}^{N_{\text{obs}}} dE_i \left[\frac{dS}{dE_i} + \frac{dB}{dE_i} \right]$$

We find a *mild* preference for pseudo-Dirac oscillations

Experiment(s)	$\mathcal{E}_{ ext{tot}}$	E_{0e}	E_{0x}	δm^2	$\Delta \chi^2_{ m NoOsc}$
KII	2.2	4.24	10.96	6.31	1.1
IMB	3.2	1.36	12.86	6.03	1.7
Baksan	15.7	4.28	8.03	3.16	1.7
Joint Fit	2.7	4.00	12.61	6.31	2.9

F. Vissani, arXiv:1409.4710

- * Assumptions:
- We don't add any prior on SN properties
- Events are due to IBD
- Add expected backgrounds in all experiments

We exclude with $\Delta \chi^2 > 9$ a region on the mass differences

SN1987A data is great, but we need more data!

For a galactic SN (10 kpc)

Martinez-Soler, YFPG, Sen, <u>2105.12736</u>

Alpha-fit parametrization

Diffuse Supernova Neutrino Background

- Galactic SNe are rare, 3 per century
- Future SNe could make our detectors "shine like a Christmas tree" —> O(10k) events!
- When will the next galactic SN be?

- Instead, we could look at *all* the SNe that have exploded in the Universe
- This should create a diffuse (isotropic and time independent) neutrino flux

Lunardini, Astropart. Phys2016

NuCo - July 29th, 2021

Conclusions

- Pseudo-Dirac neutrinos are a real possibility but a nightmare scenario: they are truly Majorana but behave in almost all phenomena as Dirac (no neutrinoless double beta decay)
- Nevertheless, the existence of a tiny mass splitting could lead to observable oscillations between active and sterile states
- To test the smallest possible mass differences we need low energy neutrinos that have travelled the longest → SN neutrinos are the best candidate!
- By looking at the SN1987A data, we found a **mild** preference for a non-zero mass splitting, $\delta m^2 = 6.31 \times 10^{-20} \text{ eV}^2$. Also, and <u>more importantly</u>, we have able to exclude the tiniest mass differences explored so far.
- A future galactic SN would certainly shed more light into this.
- Measuring the DSNB would allow for testing even more smaller mass differences

¡Gracias!

