Neutrino Lines from Dark Matter

Camilo Garcia Cely

NuCo 2021: Neutrinos en Colombia

July 30, 2021

Prospects for discovering a neutrino line induced by dark matter annihilation

Chaimae El Aisati¹, Camilo Garcia-Cely¹, Thomas Hambye¹ and Laurent Vanderheyden¹ Published 17 October 2017 · © 2017 IOP Publishing Ltd and Sissa Medialab

<u>Journal of Cosmology and Astroparticle Physics</u>, <u>Volume 2017</u>, <u>October 2017</u>

Citation Chaimae El Aisati et al JCAP10(2017)021

Indirect dark matter detection:

Dark matter annihilates or decays into some particles and these in turn produce a flux of γ , e^{\pm} , p, \overline{p} , and (anti-)neutrinos. Subsequently, these propagate from the point where they are produced until they reach the earth.

This talk: DM $\rightarrow \nu \nu$ or DM DM $\rightarrow \nu \nu$.

- Neutrinos point to the direction where they come from.
- \bullet Neutrinos are not subject to energy loses \to The observation of a line would allow to infer the DM mass.
- Neutrino telescopes are expected to improve their sensitivities in the near future.

Look at the sky and search for

$$\frac{d\phi_{\gamma}}{dE_{\gamma}} = \frac{\bar{J}}{8\pi m_{\rm DM}^2} \frac{d(\sigma v)_{\gamma}}{dE_{\gamma}}$$

$$\frac{d\phi_{\gamma}}{dE_{\gamma}} = \frac{\bar{J}}{8\pi m_{\rm DM}^2} \frac{d(\sigma v)_{\gamma}}{dE_{\gamma}} \qquad \bar{J} = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} \int_{\rm l.o.s.} \rho_{\rm DM}^2 \, ds \, d\Omega \, .$$

• From $\Omega h^2 = 0.12$, we expect $\sigma v \sim 1 \, \mathrm{pb} \sim 3 \times 10^{-26} \, \mathrm{cm}^3/\mathrm{s}$.

Look at the sky and search for

$$\bar{J} = \frac{1}{\sqrt{2}} \int \int ds \, ds \, ds$$

$$\frac{d\phi_{\gamma}}{dE_{\gamma}} = \frac{\bar{J}}{8\pi m_{\rm DM}^2} \frac{d(\sigma v)_{\gamma}}{dE_{\gamma}} \qquad \bar{J} = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} \int_{\rm l.o.s.} \rho_{\rm DM}^2 \, ds \, d\Omega \, .$$

• From
$$\Omega h^2 = 0.12$$
, we expect $\sigma v \sim 1 \, \mathrm{pb} \sim 3 \times 10^{-26} \, \mathrm{cm}^3/\mathrm{s}$.

• Determination of backgrounds is challenging.

Look at the sky and search for

$$rac{d\phi_{\gamma}}{dE_{\gamma}} = rac{ar{J}}{8\pi\,m_{
m DM}^2}rac{d(\sigma v)_{\gamma}}{dE_{\gamma}} \qquad ar{J} = rac{1}{\Delta\Omega}\int_{\Delta\Omega}\int_{
m l.o.s.}
ho_{
m DM}^2\,ds\,d\Omega\,.$$

- From $\Omega h^2=0.12$, we expect $\sigma v\sim 1\,\mathrm{pb}\sim 3\times 10^{-26}\,\mathrm{cm}^3/\mathrm{s}.$
- Determination of backgrounds is challenging.
- At the TeV scale, no astrophysical process is known to produce gamma-ray lines (monochromatic signals)
 - → Smoking-gun signature

Look at the sky and search for

$$rac{d\phi_{\gamma}}{dE_{\gamma}}=rac{ar{J}}{8\pi m_{
m DM}^2}rac{d(\sigma v)_{\gamma}}{dE_{\gamma}} \qquad ar{J}=rac{1}{\Delta\Omega}\int_{\Delta\Omega}\int_{
m Lo.s.}
ho_{
m DM}^2\,ds\,d\Omega\,.$$

- From $\Omega h^2=0.12$, we expect $\sigma v\sim 1\,\mathrm{pb}\sim 3\times 10^{-26}\,\mathrm{cm}^3/\mathrm{s}.$ Caveats here
- Determination of backgrounds is challenging.
- At the TeV scale, no astrophysical process is known to produce gamma-ray lines (monochromatic signals)
 - → Smoking-gun signature

H.E.S.S. searches for line-like features

- Target region: a circle of 1 degree radius centered in the Milky Way Center, excluding Galactic plane $|b| \ge 0.3$ degrees.
- Adopt a phenomenological background model.

Dark matter indirect searches with neutrino lines

- Neutrinos are similar to photons. They point to the direction where they were produced.
- With current resolutions, neutrino lines can be disentangled from the atmospheric and astrophysical background.

Dark matter indirect searches with neutrino lines

What sort of models can be probed in the near future?

- Question partially addressed. Lindner, Merle, Niro, 2010.
- Consider simple models where the annihilation into neutrinos fixes the freeze-out process: $\sigma v \sim 3 \times 10^{-26} \, \mathrm{cm}^3/\mathrm{s}$ in the Early Universe.
- Calculate the Sommerfeld effect and see what are the neutrino indirect detection prospects.

Hisano et al, 2004

In practice, this means that today $\sigma v \gg 3 \times 10^{-26} \, \mathrm{cm}^3/\mathrm{s}$.

The importance of s-wave annihilations

$$\sigma v = \sigma v \bigg|_{L=0 \text{ (s-wave)}} + \sigma v \bigg|_{L=1 \text{ (p-wave)}} + \dots$$

p-wave

It is generally suppressed.

- No Sommerfeld effect \rightarrow proportional to v^2 .
- Sommerfeld effect \rightarrow proportional to α^2 . Cassel, 2010

s-wave

In order to observe an indirect detection signal, it must not vanish

- Of order $10^{-26} \, \mathrm{cm}^3/\mathrm{s}$ at freeze-out.
- \bullet Sommerfeld effect $\to \sigma v$ can be much larger than that.

The importance of s-wave annihilations

$$\sigma v = \sigma v \bigg|_{L=0 \text{ (s-wave)}} + \sigma v \bigg|_{L=1 \text{ (p-wave)}} + \dots$$

p-wave

It is generally suppressed.

- No Sommerfeld effect \rightarrow proportional to v^2 .
- Sommerfeld effect \rightarrow proportional to α^2 . Cassel, 2010

s-wave

In order to observe an indirect detection signal, it must not vanish

- Of order $10^{-26} \, \mathrm{cm}^3/\mathrm{s}$ at freeze-out.
- Sommerfeld effect $\rightarrow \sigma v$ can be much larger than that.

Annihilation channels

We must separately analyze two final states: $\nu\nu$ or $\nu\overline{\nu}$.

Putting everything together

Final state $\nu \overline{\nu}$

- It does not work for scalar or Majorona DM.
- The simplest possibility is Dirac DM.

Final state $\nu\nu$

Lepton Number	Hypercharge	Angular Momentum J
2	2	≥ 0

- At the TeV scale, it requires a DM particle with hypercharge
- Too large neutrino masses might be induced by the same process leading to DM annihilations.

Two benchmark models

Model F_1 : Dirac DM coupled to a heavier Z'

We want Sommerfeld effect \rightarrow Take DM in a triplet with Y = 0.

Model S_1^r : Scalar DM coupled to a scalar triplet with Y=2.

We want Sommerfeld effect \rightarrow Take DM as an Inert Higgs.

Two benchmark models

Model F_1 : Dirac DM coupled to a heavier Z'

We want Sommerfeld effect \rightarrow Take DM in a triplet with Y = 0.

Model S_1^r : Scalar DM coupled to a scalar triplet with Y = 2.

We want Sommerfeld effect \rightarrow Take DM as an Inert Higgs.

Type-II seesaw mechanism \rightarrow Neutrino masses at tree level.

Model F_1

DM belongs to $\psi \sim 3_0$

$$\mathcal{L}_{Z'}\supset g_D Z'_\mu \left(\overline{\psi}\gamma^\mu\psi + Q\overline{L_\alpha}\gamma^\mu L_\alpha\right)\,.$$

At freeze-out $\sigma v \sim 2.3 \times 10^{-26} \, \mathrm{cm}^3/\mathrm{s}$.

Model S_1^r

DM belongs to
$$\phi_D \sim 2_1 = \begin{pmatrix} H^+ \\ (H^0 + iA^0)/\sqrt{2} \end{pmatrix}$$
 $\xrightarrow{\mathrm{DM} \in 2_1} \rightarrow -\frac{3_2}{2} \rightarrow -\frac{3_2}{$

At freeze-out $\sigma v \sim 2.3 \times 10^{-26} \, \mathrm{cm}^3/\mathrm{s}$.

Astrophysical neutrinos (produced as flavor eigenstates)

$$\rho^{S} = \overbrace{\begin{pmatrix} \alpha_e^S & 0 & 0 \\ 0 & \alpha_\mu^S & 0 \\ 0 & 0 & \alpha_\tau^S \end{pmatrix}}^{\text{flavor-eigenstate basis}}, \qquad H \simeq E \, 1\!\!1 + \overbrace{\begin{pmatrix} \frac{m_1^2}{2E} & 0 & 0 \\ 0 & \frac{m_2^2}{2E} & 0 \\ 0 & 0 & \frac{m_3^2}{2E} \end{pmatrix}}^{\text{mass-eigenstate basis}}$$

Astrophysical neutrinos (produced as flavor eigenstates)

$$\rho^{S} = \overbrace{\begin{pmatrix} \alpha_{e}^{S} & 0 & 0 \\ 0 & \alpha_{\mu}^{S} & 0 \\ 0 & 0 & \alpha_{\tau}^{S} \end{pmatrix}}^{\text{flavor-eigenstate basis}}, \qquad H \simeq E \, 1\!\!1 + \overbrace{\begin{pmatrix} \frac{m_{1}^{2}}{2E} & 0 & 0 \\ 0 & \frac{m_{2}^{2}}{2E} & 0 \\ 0 & 0 & \frac{m_{2}^{2}}{2E} & 0 \\ 0 & 0 & \frac{m_{2}^{2}}{2E} \end{pmatrix}}^{\text{flavor-eigenstate basis}}$$

$$\rho^{\oplus} = \mathrm{e}^{-iHL} \rho^{S} \mathrm{e}^{iHL} \xrightarrow{L \gg \frac{E}{\Delta m_{i}^{2}}} \overbrace{\begin{pmatrix} \alpha_{e}^{\oplus} & \cdot & \cdot \\ \cdot & \alpha_{\mu}^{\oplus} & \cdot \\ \cdot & \cdot & \alpha_{\tau}^{\oplus} \end{pmatrix}}^{\text{flavor-eigenstate basis}}$$
 with $\alpha^{\oplus} \simeq P \alpha^{S}$
$$P_{\ell\ell'} = \sum_{i} |U_{\ell i}|^{2} |U_{\ell' i}|^{2}$$

Astrophysical neutrinos (produced as flavor eigenstates)

The same is true for DM annihilations

- Process DM DM $\rightarrow \nu\nu$
- Process DM DM $\rightarrow \nu \overline{\nu}$ with a t-channel induced by a Yukawa interaction
- Process DM DM $\rightarrow \nu \overline{\nu}$ with a Z' in the s-channel

Conclusions

- Multi-TeV DM models predict significant annihilation rates due to the Sommerfeld effect. These typically correspond to cross sections well above the canonical thermal value.
- I discussed models whose main signature is the annihilation into neutrino lines. They can be probed in the near future.
- In certain cases, the flavor structure of the lines can not be mimicked by astrophysical neutrinos.

Conclusions

- Multi-TeV DM models predict significant annihilation rates due to the Sommerfeld effect. These typically correspond to cross sections well above the canonical thermal value.
- I discussed models whose main signature is the annihilation into neutrino lines. They can be probed in the near future.
- In certain cases, the flavor structure of the lines can not be mimicked by astrophysical neutrinos.

Thanks for your attention